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Abstract

The power spectral formula of the Čerenkov radiation of the system of two
equal charges is derived in the framework of the field theory. The distance between
charges is supposed to be relativistically contracted which manifests in the spectral
formula. The knowledge of the spectral formula then can be used to verification
of the Lorentz contraction of the relativistic length. A feasible experiment for the
verification of the Lorentz contraction is suggested.

PACS numbers: 03.30.+p, 41.60.Bq

1 Introduction

It is well known that the basis of every physical theory is the systems of axioms. From
it are drawn the conclusions which are compared with the experiments. Inasmuch in
this comparison agreement is found between the messured and the calculated values, the
initial system of axioms is considered correct. If no agreement is found, there is good
reason for the axioms to be subjected to analysis and corrected.

However, from the theoretical point of view theyselves can be reason for analysis and
correction of axioms in themselves. We can ask for their independence, indisputability,
for completeness of the syste, or directly for the ideological content of the axioms. From
the viewpoint of the ideo-logical content the axiom of the constant light velocity related
to the length contraction in the special relativity theory appears to be very important.
However such analysis can be incomplete because of the existence of so-called Göedel
theorem which is as follows: Göedel theorem:
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In any consistent and rich enough formal structure, based on afinite number of first
principles and inference rules, there will always be propositions that may be formulated
within this formal system but are undecidable. Such a theory cannot be both consistent and
complete. (Ben-Yaacov, 2019). So, let us look on the length contraction and simultaneity
from the viewpoint of Euclidean geometry.

So, Let us have two inertial systems S and S ′ of which S ′ moves in the positive direction
of axis x so that x ≡ x′. Let us assume that on each of the x-axes of both systems lies
a solid rod represented by the abscissa AB in the syste S and A′B′ in S ′ and for their
resting length (AB)0, (A

′B′)0 holds (AB)0 ≡ (A′B′)0.
Theorem: If (AB)0 ≡ (A′B′)0 in the rest system of S and v = 0, then it is (AB)0 ≡

(A′B′), when v ̸= 0. Proof: The identity of two rods is timeless and non-kinematical
notion and it means that the identity of length is timeless and it is only geometrical one.
At the same time we can define the simultaneity at points A and B. Namely: if (A ≡ A′),
at time T then, (B ≡ B′) at time T . This definition of simultaneity differes from the
Einstein definition as can be seen in the next text.

A remark: There is a possibility that our statement is undecidable because the
Euclidean geometry involves no information on the geometry of moving rod.

2 The Einstein physical resolution of the Gödel the-

orem

Let us write the text, which is identical with the Einstein text (Einstein, 1916; 1919).
On the Idea of Time in Physics: Lightning has struck the rails on our railway embank-

ment at two places A and B far distant from each other. I make the additional assertion
that these two lightning flashes occurred simultaneously. If I ask you whether there is
sense in this statement, you will answer my question with a decided ”Yes.” But if I now
approach you with the request to explain to me the sense of the statement more precisely,
you find after some consideration that the answer to this question is not so easy as it
appears at first sight.

After some time perhaps the following answer would occur to you: ”The significance of
the statement is clear in itself and needs no further explanation; of course it would require
some consideration if I were to be commissioned to determine by observations whether in
the actual case the two events took place simultaneously or not.” I cannot be satisfied with
this answer for the following reason. Supposing that as a result of ingenious considerations
an able meteorologist were to discover that the lightning must always strike the places A
and B simultaneously, then we should be faced with the task of testing whether or not this
theoretical result is in accordance with the reality. We encounter the same difficulty with
all physical statements in which the conception ” simultaneous ” plays a part. The concept
does not exist for the physicist until he has the possibility of discovering whether or not
it is fulfilled in an actual case. We thus require a definition of simultaneity such that
this definition supplies us with the method by means of which, in the present case, he can
decide by experiment whether or not both the lightning strokes occurred simultaneously.
As long as this requirement is not satisfied, I allow myself to be deceived as a physicist
(and of course the same applies if I am not a physicist), when I imagine that I am able to
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attach a meaning to the statement of simultaneity. (I would ask the reader not to proceed
farther until he is fully convinced on this point.)

3 The Čerenkov effect

The fast moving charged particle in a medium when its speed is faster than the speed
of light in this medium produces electromagnetic radiation which is called the Čerenkov
radiation.

The prediction of Cerenkov radiation came long ago. Heaviside (1889) investigated the
possibility of a charged object moving in a medium faster than electromagnetic waves in
the same medium becomes a source of directed electromagnetic radiation. Kelvin (1901)
presented an idea that the emission of particles is possible at a speed greater than that
of light. Somewhat later, Sommerfeld (1904) proposed the hypothetical radiation with
a sharp angular distribution. However, in fact, from experimental point of view, the
electromagnetic Čerenkov radiation was first observed in the early 1900’s by experiments
developed by Marie and Pierre Curie when studying radioactivity emission. In essence
they observed the emission of a bluish-white light from transparent substances in the
neighborhood of strong radioactive source. But the first attempt to understand the origin
of this was made by Mallet (1926; 1929a; 1929b), who observed that the light emitted
by a variety of transparent bodies placed close to a radioactive source always had the
same bluish-white quality, and that the spectrum was continuous, with no line or band
structure characteristic of fluorescence. Unfortunately, these investigations were forgotten
for many years. Cherenkov experiments (Čerenkov, 1934) was performed at the suggestion
of Vavilov who opened a door to the true physical nature of this effect (Bolotovskii, 2009).

This radiation was first theoretically interpreted by Tamm and Frank (1937) in the
framework of the classical electrodynamics. The source theoretical description of this
effect was given by Schwinger et al. (1976) at the zero temperature regime and the classical
spectral formula was generalized to the finite temperature situation in the framework of
the source theory by author (Pardy, 1989). The similar problems was solved and published
by author in plenty articles (Pardy, 1983; 2000; 2002; 2004).

The question arises, what is the relation of the Čerenkov radiation to the relativistic
length. The relativistic length can be formed by the system of charges of the linear
chain, or, only by the two charges of the rest distance l. The problem of the radiation
of the composed systems of charges is not new and it was defined for the first time in
the pioneering work of Ginzburg (1940). Later by Frank (1942; 1946), it was given the
solution of the problem of the Čerenkov radiation of the electrical and magnetical dipoles
oriented parallelly and perpendicularly to the direction of motion. While the parallel
orientation gives no surprising result the situation with the perpendicular orientation
gives special anomaly which has been frequently discussed in the physical journals. In
year 1952 was published the article discussing the Čerenkov radiation of the arbitrary
electrical and magnetical multipoles (Frank, 1952). The review of the problems of the
Čerenkov radiation of the magnetic and electrical multipoles was given by Frank (1984).
The extensive work concerning the radiation by uniformly moving sources is eleborated
(Ginzburg, 1986). However, the problem of testing the Lorentz contraction by Čerenkov
effect is here considered for the first time (Pardy, 1997; Cavalleri, 2000).
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While the original articles on the Čerenkov radiation involve only determination of
the spectral formulae, it is possible interest the question on the relationship between the
spectral formula and the Lorentz contraction of the length of some linear object. The
specific situation forms the system of two equal or opposite charges of the rest distance
l. Then, we can expect that the spectral formula of the Čerenkov radiation involves
the Lorentz contraction which follows immediately from the Lorentz transformation for
coordinates between systems S ′ and S:

x′ = γ(x− vt); γ =
1√

1− v2/c2
, (1)

where x are coordinates in the system S and x′ are corresponding coordinates in the
system S ′ which is moving with velocity v relative to the system S. If the left and right
points of the moving rod are x1, x2 in the system S and x′

1 and x′
2 in the system S ′, then

from equation (1) we have:

x′
2 − x′

1 = γ(x2 − x1), (2)

which can be transcribed in the form

a = l
√
1− v2/c2, (3)

where l is the rest length of the rod and a is the length of the moving rod.
The formula (3) is well known and there was general belief since the formulation of the

special theory of relativity by Einstein that the so called Lorentz contraction (3) should be
visible to the eye. Also Lorentz stated in 1922 that the contraction could be photographed.
Similar statements appear in other references concerning the special theory of relativity.

However, the special theory of relativity predicts that the contraction can be observed
by a suitable experiment with the nuance that there is distinction between observing and
seeing. The situation was analysed for instance by Terrell (1959) and Weisskopf (1960)
and others (Dreissler, 2005), who proved that the photograph obtained by an observer
depends only on the place and time of taking the picture and is independent of the relative
motion of observer and object photographed.

It would be incorrect to state that we see the length contraction, or, that the length

”appears” to be contracted by the factor
√
1− v2/c2. As first pointed out by Lampa (1924)

and later by Penrose (1959), Terrell (1959) and Weisskopf (1960) what one sees and how
an object appears are very different from what is given by the Lorentz contraction. The
reason is that various parts of the object are different distances from the observer, and in
order for the light rays from the various parts to arrive at the observer at the same time,
they must have left the object at different times. It follows from the special theory of
relativity that the length contraction is the result of the measurement procedure and the
time dilation is also the measurement procedure as was shown by Fok (1961) and author
(Pardy, 1969).

In other words, an observation of the shape of a fast moving object involves simul-
taneous measurement of the position of a number of points on the object. If done by
means of light, all the quanta should leave the surface simultaneously, as determined in
the observer position at different times. In such observation the data received must be
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corrected for the finite velocity of light, using measured distances to various points of the
moving object. In seeing the object, on the other hand, or photographing it, all the light
quanta arrive simultaneously at the eye having departed from the object at various earlier
times. In such a way this should make a difference between contracted shape which is
in principle observable and the actual visual appearance of a fast-moving object. The
photograph of a relativistically moving object with a camera using, instead of photons,
particles moving much faster than the velocity of light, eliminates the non-desired optical

effects and the film would show the object shortened by a factor of
√
1− v2/c2. in the

direction of motion. However, such a camera is not physically possible, and we can ask
how to correct for the optical effects so that only the relativistic effects will be observed
on a photograph taken by an ordinary camera.

In this paper we refer to new approach the measurement of the Lorentz contraction.
We use the synchrotron spectrum of the rigid two-body system in such a way, the we
read the information on the Lorentz contraction from this spectrum as the proof of the
Lorentz contraction.

Obviously, the Čerenkov radiation of the charged two-particle system involves the
Lorentz contraction of their rest distance. We will consider the system of two equal
charges e which have the mutual rest distance l. The Lorentz contraction will be involved
in the power spectral formula for this linear system.

In this article we evaluate in source theory the power spectral formula of the Čerenkov
radiation of the two-charge system moving with velocity v in the dielectrical medium. Ra-
diative corrections to this two-body Čerenkov radiation are considered too. In conclusion,
a feasible experiment is suggested for the verification of the Lorentz contraction.

4 The field formulation of the problem

Source theory (Schwinger, et al. 1976; Schwinger, 1970; Dittrich, 1978) is the the-
oretical construction which uses quantum-mechanical particle language. Initially it was
constructed for description of the particle physics situations occurring in the high-energy
physics experiments. However, it was found that the original formulation simplifies the
calculations in the electrodynamics and gravity where the interactions are mediated by
photon or graviton respectively.

The basic formula in the source theory is the vacuum to vacuum amplitude (Schwinger,
et al. 1976):

< 0+|0− >= e
i
h̄
W (S), (4)

where the minus and plus tags on the vacuum symbol are causal labels, referring to any
time before and after space-time region where sources are manipulated. The exponential
form is introduced with regard to the existence of the physically independent experimental
arrangements which has a simple consequence that the associated probability amplitudes
multiply and corresponding W expressions add (Schwinger, 1970; Dittrich, 1978).

The electromagnetic field is described by the amplitude (4) with the action

W (J) =
1

2c2

∫
(dx)(dx′)Jµ(x)D+µν(x− x′)Jν(x′), (5)
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where the dimensionality ofW (J) is the same as the dimensionality of the Planck constant
h̄. Jµ is the charge and current densities. The symbol D+µν(x − x′), is the photon
propagator and its explicit form will be determined later.

It may be easy to show that the probability of the persistence of vacuum is given by
the following formula (Schwinger, et al. 1976):

| < 0+|0− > |2 = exp{−2

h̄
ImW} d

= exp{−
∫

dtdω
P (ω, t)

h̄ω
}, (6)

where we have introduced the so called power spectral function (Schwinger, et al. 1976)
P (ω, t). In order to extract this spectral function from ImW , it is necessary to know the
explicit form of the photon propagator D+µν(x− x′).

The electromagnetic field is described by the four-potentials Aµ(ϕ,A) and it is gen-
erated by the four-current Jµ(cϱ,J) according to the differential equation (Schwinger, et
al. 1976):

(∆− µε

c2
∂2

∂t2
)Aµ =

µ

c
(gµν +

n2 − 1

n2
ηµην)Jν (7)

with the corresponding Green function D+µν :

Dµν
+ =

µ

c
(gµν +

n2 − 1

n2
ηµην)D+(x− x′), (8)

where ηµ ≡ (1,0), µ is the magnetic permeability of the dielectric medium with the
dielectric constant ε, c is the velocity of light in vacuum, n is the index of refraction of
this medium, and D+(x − x′) was derived by Schwinger et al. (1976) in the following
form:

D+(x− x′) =
i

4π2c

∫ ∞

0
dω

sin nω
c
|x− x′|

|x− x′|
e−iω|t−t′|. (9)

Using formulae (5), (6), (8) and (9), we get for the power spectral formula the following
expression (Schwinger et al., 1976):

P (ω, t) = − ω

4π2

µ

n2

∫
dxdx′dt′

sin nω
c
|x− x′|

|x− x′|
cos[ω(t− t′)]×

×
{
ϱ(x, t)ϱ(x′, t′)− n2

c2
J(x, t) · J(x′, t′)

}
. (10)

Now, we are prepared to apply the last formula to the situations of the two equal
charges moving in the dielectric medium.

5 The Čerenkov radiation of the two-charge system

It is usually supposed that the Čerenkov radiation in electrodynamics is produced by
uniformly moving charge with the constant velocity. Here we consider the system of two
equal charges e with the constant mutual distance a = |a| moving with velocity v in
dielectric medium. We follow the author articles (Pardy, 1997; 2007).
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In this situation the charge and the current densities for this system are given by the
by the following equations:

ϱ = e[δ(x− vt) + δ(x− a− vt)] (11)

J = ev[δ(x− vt) + δ(x− a− vt)]. (12)

where a is the vector going from the left charge to right charge with the length of a = |a|
in the system S.

Let us suppose that v ∥ a ∥ x. Then, after insertion of eq. (11) and (12) into eq. (10),
putting τ = t′ − t, and β = v/c, where v = |v|, we get instead of the formula (10) the
following relation:

P (ω, t) = 2P1(ω, t) + P2(ω, t) + P3(ω, t), (13)

where

P1(ω, t) =
1

4π2

e2µω

c2
v

[
1− 1

n2β2

] ∫ ∞

−∞
dτ

sinnωβτ

τ
cosωτ (14)

P2(ω, t) =
1

4π2

e2µω

c2
v

[
1− 1

n2β2

] ∫ ∞

−∞
dτ

sinnωβ|a
v
+ τ |

|a
v
+ τ |

cosωτ (15)

P3(ω, t) =
1

4π2

e2µω

c2
v

[
1− 1

n2β2

] ∫ ∞

−∞
dτ

sinnωβ|a
v
− τ |

|a
v
− τ |

cosωτ. (16)

The formula (14) contains the known integral:

J1 =
∫ ∞

−∞
dτ

sinnωβτ

τ
cosωτ =

{
π; nβ > 1
0; nβ < 1

. (17)

Formulae (15) and (16) contain the following integrals:

J2 =
∫ ∞

−∞
dτ

sinnωβ|a
v
+ τ |

|a
v
+ τ |

cosωτ (18)

and

J3 =
∫ ∞

−∞
dτ

sinnωβ|a
v
− τ |

|a
v
− τ |

cosωτ. (19)

Using the integral (17) we finally get the power spectral formula P1 of the produced
photons:

P1(ω, t) =
e2

4π

µω

c2
v

[
1− 1

n2β2

]
; nβ > 1 (20)

and

P1(ω, t) = 0; nβ < 1. (21)

Using transformations
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a

v
+ τ = T,

a

v
− τ = T, (22)

we get after evaluations of the corresponding integrals J2, J3 the corresponding spectral
formulas P2, P3:

P2(ω, t) =
e2

4π

µω

c2
cos

(
ωa

v

)
v

[
1− 1

n2β2

]
= P3; nβ > 1 (23)

and

P2(ω, t) = P3(ω, t) = 0; nβ < 1. (24)

The sum of the partial spectral formula form the total radiation emitted by the
Čerenkov mechanism of the two-charge system:

P (ω, t) = 2(P1 + P2) = cos2
(
aω

2v

)
e2

4π

µω

c2
v

[
1− 1

n2β2

]
;nβ > 1 (25)

and

P (ω, t) = 0; nβ < 1. (26)

The zero point of function P (ω, t) are as follows:

ω0 = 0;
ωna

2v
=

(2n− 1)

2
π; n = 1, 2, 3, . . . . (27)

From the last equation follows

a =
(m− n)2πv

(ωm − ωn)
= l

√
1− v2

c2
, (28)

or,

l =
2πv√
1− v2

c2

(m− n)

(ωm − ωn)
. (29)

If we know the n-th and m-th zero points with the corresponding ω-s and velocity
of the charges we can exactly determine their rest distance. Then, the rest distance
determined by the formula (29) can be compared with the rest distance of the charges
obtained by direct measurement and in such a way we can verify the Lorentz contraction.

6 A feasible experiment

With regard to the situation in laboratories where the great accelerator works for in-
stance in Grenoble, DESY, CERN and SLAC we can suggest a feasible experiment for the
verification of the Lorentz contraction. The experiment must be based on the definition
of the length. Instead of two electrons we can consider two bunches with 1010 electrons
in volume 300µm × 40µm × 0,01 m with the rest distance l = 1m. After acceleration
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of the considered bunches the distance of the two bunches is the relativistic length a and
it can be determined by the Čerenkov spectrum derived in our article. However, during
the acceleration the motion of particles in storage rings is influenced by various kinds of
perturbations. It is necessary to consider phenomena such as the ground motion, power
supply ripple, noise caused by the quantum emission of synchrotron radiation and noise in
the radiofrequency (rf) system and so on. Therefore it is necessary to include the stochas-
ticity caused by these effects in the calculation of the beam dynamics. The stochastic
forces can change the distance of the bunches. So instead of the determination of the rest
length at the beginning of the experiment, it is more suitable to determine the rest length
immediately after the determination of the Čerenkov spectrum.

We can slow down the velocity of bunches by the simultaneous deceleration of every
bunch in order to get the final nonrelativistic velocity vf instead of the relativistic velocity
v in the spectral formula. It can be performed by switching the electric field or by the
sufficiently intensive laser field of photons moving in the opposite direction of motion of
the bunches. The simultaneity is the inevitable condition in order to conserve the length
during deceleration.

If a particle is accelerated in the system S by the constant acceleration w, then the
law of its motion with the initial conditions x(0) = 0, v(0) = 0 is as follows:

x1(t) =
c2

w

√1 +
(
wt

c

)2

− 1

 (30)

and in case of the initial condition x(0) = l, v(0) = 0, we have for the law of its motion

x2(t) = x1(t) + l (31)

So, in case of acceleration of the free two-body system we get:

x2(t)− x1(t) = l (32)

and the observer in the system S observes the distance of the the electrons is equal to l. In
case the acceleration is replaced by the deceleration, the final result is the same. Or, the
observer in the system S finds that the distance of the two electrons or bunches does not
change during the deceleration. In case of application of the laser field the simultaneity
is broken with the difference l/c ≈ 10−9 s in the system of bunches, for the distance l =
1m. However, such deviation from the simultaneity is sufficiently small in order not to
influence substantially the result of experiment. It is evident that in order the experiment
to be meaningful it will be necessary to respect the law of of deceleration motion from
which eq. (32) follows.

Our situation does not represents the rigid motion considered by Rindler (1977). He
shows that for so called rigid motion at every instant t = constant the two points are
separated by a coordinate distance dx inversely proportional to their γ-factor, and con-
sequently the element bounded by these points ’moves rigidly’.

The two bunches impinge into detector with the time difference ∆t = l/vf . This time
difference can be determined by the scintillation detector with the sufficient time reso-
lution. The scintillation detectors or counters consist of scintillationg materials, usually
a doped plastic, that emit light in response to molecular excitation by the passage of a
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charged particle. The scintillation light can be detected with photomultipliers or photodi-
odes. The light yield in a plastic scintillator is usually sufficiently large. The scintillation
counters range is size from very small to very large a few square meters. The important
feature of scintillation counters is their speed which is in nanosecond range. So they can
accurately measure the time of arrival of a charged particle and therefore the speed of a
particle (Kleinknecht, 1977).

The rest length measured by the scintillation detector l = ∆tvf can be compared with
the formula (29) in order to verify the Lorentz contraction. For velocity vf = 104 m, we
have the ∆t ≈ 10−4 s with the assumption that the Lorentz contraction corresponding to
this velocity can be neglected. To our knowledge the detectors have better time resolution
than the calculated ∆t. So, the verification of the Lorentz formula is in principle possible.

7 Discussion

We have demonstrated that in case of the system of two equal charges, the Lorentz
contraction can be determined from the spectral formula of the Čerenkov radiation. Ob-
viously this effect can be involved into the group of the classical relativistic effects. In
case of the system of opposite charges, or, in other words, of the dipole we have instead
of cos(ωa/2v) function sin(ωa/2v) in the final formulae. To our knowledge the determi-
nation of the Lorentz contraction using the Čerenkov effect was not considered in theory
and in experiment. After performing the experiment with the Čerenkov radiation of the
system of the two charges it will be definitely confirmed the Lorentz contraction.

While the simultaneous acceleration of the system of the two equal charges can be
performed immediately in every laboratory with the circle accelerator, the simultaneous
acceleration of the system of two opposite charges can be performed only with the laser ac-
celerator. In this equipment the opposite charges are accelerated at the same acceleration
as a result of the Compton effect.

The experiment suggested by us is feasible in the sense that the bunches of charges
are prepared in every circle accelerator and therefore it is not necessary to prepare sub-
stantially new arrangement of equipments for verification of the Lorentz contraction. We
hope that sooner or later such experiment will be performed.
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Pardy, M. (2000). The Čerenkov-Compton effect in particle physics, arXiv:hep-ph/0009063v2.

Pardy, M. (2004). Compton effect in dielectric medium, arXiv:hep-ph/0406008v1.

Pardy, M. (2007). Missing experiment in relativity and gravity, arXiv: 0710.3489v2 [nucl-
ex] 8 Feb 2008 .

Penrose, R., (1959). The apparent shape of a relativistically moving sphere, Proc. Cam-
bridge Philos. Soc. 55, 137-139.

Rindler, W. (1977). Essential Relativity, (Springer-Verlag, New York, 1977).

Schwinger, J., Tsai, W. Y. and Erber, T. (1976). Classical and quantum theory of syner-
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