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Abstract

This paper is a continuation of the works earlier published by the
author and deals with the theories involving a minimal length at all
energy scales. The previously introduced notion of measurability is
also used. As a new step, in this work at the initial stage possible
contributions from the inclusion of the space-time quantum fluctua-
tions into quantum theory are studied in the present formalism.

1 Introduction. Main Motivation and Aim

This paper directly continuous the earlier studies of the author [1]–[6] and
in part [7]. The principal idea that has been put forward in [6] is further
developed in this paper as follows: due to the Uncertainty Principle, in
quantum theory there are solid grounds to consider as a background space
not continuous space-time but discrete space-time involving the minimal
length lmin and the minimal time tmin. Such a space represents a lattice but
very irregular lattice in a sense that all its variations are determined by the
existent energies.
At the present time all the fundamental theories at the well-known energy
scales (gravity, quantum theory, statistical physics, and the like) are asso-
ciated with continuous space-time and with the corresponding mathematical
apparatus of infinitesimal space-time variations (increments) dxµ, δxµ, ds, δs, ....

1E-mail: a.shalyt@mail.ru; alexm@hep.by

1



Until very recently, this apparatus has been well applicable both in classical
and quantum physics. However, in the first case the mathematical appa-
ratus has been used without difficulties, whereas in the quantum case its
use provokes various problems: (1)the problem of ultraviolet and infrared
divergences; (2) the problem of the gravity non-renormalizability in a quan-
tum approach, and (3)the problem, that is more general, of the adequate
transition to the ultraviolet limit in quantum gravity.
The efforts to solve these problems in theoretical physics have generated nu-
merous attractive and important approaches: supersymmetry, supergravity,
superstrings, M -theories, and so on (for example, [8]).
But all the mentioned theories are actualized at high (Planck’s) energies
E ≈ EP .
At low energies E ≪ EP they, to a high accuracy, should lead to the well-
known Quantum Theory (QT) [9], [10] and General Relativity (GR) [11]
defined for the continuous space-time.
In the majority of the above-mentioned approaches high (Planck’s) energies
E ≈ EP are associated with the minimal length lmin ∝ lP that disappears
at low energies E ≪ EP , i.e. lmin → 0.
But if lmin is really present, it must be present at all the “Energy Levels” of
the theory, low energies including. Therefore, in this case the mathematical
formalism of the theory should not involve any infinitesimal spatial-temporal
quantities. Besides, some new parameters become involved, which are de-
pendent on lmin [12]–[21]. But, on the other hand, these parameters could
hardly disappear totally at low energies, i.e., for QT and GR too. However,
since the well-known canonical statement of QT [9], [10] and GR [11] has no
such parameters, the inference is as follows: their influence at low energies
is so small that it may be disregarded at the modern stage in evolution of
the theory and of the experiment.

Still this does not imply that they should be ignored in future evolution
of the theory, especially on going to its high-energy limit.

In this way this paper, similarly to the cited works [1]–[6], has been mo-
tivated by the need for actualization of the minimal length lmin and the
minimal time tmin, and also of their associated parameters at all the En-
ergy Levels of the theory, low energies (E ≪ EP ) including. It should be
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noted that the inclusion of lmin (tmin) is dictated not only by selection of the
corresponding model but by the application of the fundamental principles
of quantum theory within the scope of quite natural assumptions ([6] and
Section 2).

It is clear that, because of the actualization of lmin (tmin) at all the En-
ergy Levels, the theory is specified for discrete space-time rather than for
continuous space-time. By the main hypothesis set up by the author, the
adequately resolved discrete theory should have the following properties:
a) at low energies, which are far from the Plank energies E ≪ EP , this
theory is very close to the initial continuous theory;
b) the problems indicated in points (1)–(3) in this theory will be solved natu-
rally (without the appearance of infinities) within the scope of the transition
from low to high energies E ≈ EP and vice versa.

The principal objective of the author is to suggest the adequate deriva-
tion of such discrete theory on the basis of his previous works [1]–[6]. As
compared to [1]–[6], in this paper the author begins to analyze the inferences
of the inclusion of space-time quantum fluctuations into quantum theory in
the present formalism.

2 Uncertainty Principle and ≪Principle of Bounded

Space-Time Variations (Increments)≫

In this Section the principal assumptions are introduced which have been
implicitly used previously in [1]– [5] and explicitly in [6].

2.1 Principle of Bounded Space-Time Variations

It is well known that in a quantum study the key role is played by the
measuring procedure, its fundamental principle being the Heisenberg Un-
certainty Principle (HUP) [22, 9]:

∆x ≥ ~
∆p

(1)
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(Note that the normalization ∆x∆p ≥ ~ is used rather than △x∆p ≥
~/2.)
Supposition 1. Any small variation (increment) ∆̃xµ of any spatial coor-
dinate xµ of the arbitrary point xµ, µ = 1, ..., 3 in some space-time system
R may be realized in the form of the uncertainty (standard deviation) ∆xµ
when this coordinate is measured within the scope of Heisenberg’s Uncer-
tainty Principle (HUP)

∆̃xµ = ∆xµ,∆xµ ≃ ~
∆pµ

, µ = 1, 2, 3 (2)

for some ∆pµ ̸= 0.
Similarly, for µ = 0 for pair “time-energy” (t, E), any small variation

(increment) in the value of time ∆̃x0 = ∆̃t0 may be realized in the form of
the uncertainty (standard deviation) ∆x0 = ∆t and then

∆̃t = ∆t,∆t ≃ ~
∆E

(3)

for some ∆E ̸= 0.
Here HUP is given for the nonrelativistic case. In the relativistic case

HUP has the distinctive features [23] which, however, are of no significance
for the general formulation of Supposition 1, being associated only with
particular alterations in the right-hand side of the second relation Equation
(2) as shown later.

It is clear that at low energies E ≪ EP (momentums P ≪ Ppl) Sup-

position 1 sets a lower bound for the variations (increments) ∆̃xµ of any
space-time coordinate xµ.

At high energies E (momentums P ) this is not the case if E (P ) have no
upper limit. But, according to the modern knowledge, E (P ) are bounded
by some maximal quantities Emax, (Pmax)

E ≤ Emax, P ≤ Pmax, (4)

where in general Emax, Pmax may be on the order of Planck quantities
Emax ∝ EP , Pmax ∝ Ppl and also may be the trans-Planck’s quantities.

In any case the quantities Pmax and Emax lead to the introduction of the
minimal length lmin and of the minimal time tmin.
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With this point of view, even at the ultimate (Planck) energies a min-
imal “detected” (i.e., measurable) space-time volume is, within the known
constants, restricted to

Vmin ∝ l4P . (5)

Consequently, “detectability” of the infinitesimal space-time volume

Vdxµ = (dxµ)
4 (6)

is impossible as this necessitates going to infinitely high energies

E → ∞. (7)

Because of this, it is natural to complete Supposition 1 with Supposition
2.

Supposition 2. There is the minimal length lmin as a minimal measure-
ment unit for all quantities having the dimension of length, whereas the
minimal time tmin = lmin/c as a minimal measurement unit for all quanti-
ties having the dimension of time, where c is the speed of light.

lmin and tmin are naturally introduced as ∆xµ, µ = 1, 2, 3 and ∆t in
Equations (2) and (3) for ∆pµ = Pmax and ∆E = Emax.

For definiteness, we consider that Emax and Pmax are the quantities on
the order of the Planck quantities, then lmin and tmin are also on the order
of Planck quantities lmin ∝ lP , tmin ∝ tP .

Suppositions 1 and 2 are quite natural in the sense that there are no
physical principles with which these suppositions are inconsistent.

The combination of Suppositions 1,2 will be called the Principle of
Bounded Space-Time Variations (Increments).

2.2 Minimal Length and Measurability

Now, from the start, we assume that the theory involves the minimal length
lmin as a minimal measurement unit for all quantities having the dimension
of length.

Then it is convenient to begin our study not with HUP Equation (1)
but with its widely known high-energy generalization—the Generalized
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Uncertainty Principle (GUP) that naturally leads to the minimal length
lmin [24]–[35]:

∆x ≥ ~
∆p

+ α′l2P
∆p

~
. (8)

Here α′ is the model-dependent dimensionless numerical factor and lP
is the Planckian length.
Note also that initially GUP Equation (8) was derived within a string theory
[24]–[26] and, subsequently, in a series of works far from this theory [27]–
[33] it has been demonstrated that on going to high (Planck) energies in
the right-hand side of HUP Equation (1) an additional “high-energy” term
∝ l2P

△p
~ appears. Of particular interest is the work [27], where by means of

a simple gedanken experiment it has been demonstrated that with regard
to the gravitational interaction Equation (8) is the case.

As Equation (8) is a quadratic inequality, then it naturally leads to the
minimal length lmin = ξlP = 2

√
α′lP .

This means that the theory for the quantities with a particular dimension
has a minimal measurement unit. At least, all the quantities with such a
dimension should be “quantized”, i.e., be measured by an integer number
of these minimal units of measurement.

Specifically, if lmin—minimal unit of length, then for any length L we
have the “Integrality Condition” (IC)

L = NLlmin, (9)

where NL > 0 is an integer number.
What are the consequences for GUP Equation (8) and HUP Equation

(1)?
Assuming that HUP is to a high accuracy derived from GUP on going

to low energies or that HUP is a special case of GUP at low values of the
momentum, we have

(GUP,∆p→ 0) = (HUP ). (10)

By the language of NL from Equations (9) and (10) is nothing else but
a change-over to the following:

(N∆x ≈ 1) → (N∆x ≫ 1). (11)
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The assumed equalities in Equations (1) and (8) may be conveniently
rewritten in terms of lmin with the use of the deformation parameter αa.
This parameter has been introduced earlier in the papers [36]–[43] as a
deformation parameter on going from the canonical quantum mechanics to
the quantum mechanics at Planck’s scales (early Universe) that is considered
to be the quantum mechanics with the minimal length (QMML):

αa = l2min/a
2, (12)

where a is the measuring scale.

Definition 1
Deformation is understood as an extension of a particular theory by inclu-
sion of one or several additional parameters in such a way that the initial
theory appears in the limiting transition [44].

Then with the equality (∆p∆x = ~) Equation (8) is of the form

∆x =
~
∆p

+
α∆x

4
∆x. (13)

In this case due to Equations (9), (11) and (13) takes the following form:

N∆xlmin =
~
∆p

+
1

4N∆x
lmin (14)

or

(N∆x −
1

4N∆x
)lmin =

~
∆p

. (15)

That is

∆p =
~

(N∆x − 1
4N∆x

)lmin

. (16)

From Equations (14)–(16) it is clear that HUP Equation (1) in the case of
the equality appears to a high accuracy in the limit N∆x≫ 1 in conformity
with Equation (11).

It is easily seen that the parameter αa from Equation (12) is discrete as
it is nothing else but

αa = l2min/a
2 =

l2min

N2
a l

2
min

=
1

N2
a

. (17)
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At the same time, from Equation (17) it is evident that αa is irregularly
discrete.

It is clear that from Equation (16) at low energies (N∆x ≫ 1), up to a
constant

~2

l2min

=
~c3

4α′G
(18)

we have
α∆x = (∆p)2. (19)

But all the above computations are associated with the nonrelativistic
case. As known, in the relativistic case, when the total energy of a particle
with the mass m and with the momentum p equals [45]:

E =
√
p2c2 +m2c4, (20)

a minimal value for ∆x takes the form [23]:

∆x ≈ c~
E
. (21)

And in the ultrarelativistic case

E ≈ pc (22)

this means simply that

∆x ≈ ~
p
. (23)

Provided the minimal length lmin is involved and considering the “Inte-
grality Condition” (IC) Equation (9), in the general case for Equation (21)
at the energies considerably lower than the Planck energies E ≪ EP we
obtain the following:

∆x = N∆xlmin ≈ c~
E
,

or

E ≈ c~
N∆x

. (24)
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Similarly, at the same energy scale in the ultrarelativistic case we have

p ≈ ~/N∆x. (25)

Next under Supposition 2, we assume that there is a minimal measuring
unit of time

tmin = lmin/vmax = lmin/c. (26)

Then the foregoing Equations (1)–(15) are rewritten by substitution as
follows:

∆x→ ∆t; ∆p→ ∆E; lmin → tmin;NL → Nt=L/c (27)

Specifically, Equation (15) takes the form

(N∆t −
1

4N∆t
)tmin =

~
∆E

. (28)

And similar to Equation (9), we get the “Integrality Condition” (IC) for
any time t:

t ≡ t(Nt) = Nttmin, (29)

for certain an integer |Nt| ≥ 0.
According to Equation (28), let us define the corresponding energy E

E ≡ E(Nt) =
~

|Nt − 1
4Nt

|tmin

. (30)

Note that at low energies E ≪ EP , that is for |Nt| ≫ 1, the formula
Equation (30) naturally takes the following form:

E ≡ E(Nt) =
~

|Nt|tmin

=
~

|t(Nt)|
. (31)

Definition 2 (Measurability)
(1) Let us define the quantity having the dimensions of length L or time
t measurable, when it satisfies the relation Equation (9 (and respectively
Equation (29)).
(2) Let us define any physical quantity measurable, when its value is consis-
tent with points (1) of this Definition.
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Thus, infinitesimal changes in length (and hence in time) are impossible
and any such changes are dependent on the existing energies.

In particular, a minimal possible measurable change of length is lmin.
It corresponds to some maximal value of the energy Emax or momentum
Pmax, If lmin ∝ lP , then Emax ∝ EP ,Pmax ∝ PPl, where Pmax ∝ PPl,
where PPl is where the Planck momentum. Then denoting in nonrelativistic
case with △p(w) a minimal measurable change every spatial coordinate w
corresponding to the energy E we obtain

△Pmax(w) = △Emax(w) = lmin. (32)

Evidently, for lower energies (momenta) the corresponding values of
△p(w) are higher and, as the quantities having the dimensions of length
are quantized Equation (9), for p ≡ p(Np) < pmax, △p(w) is transformed to

|△p(Np)(w)| = |Np|lmin. (33)

where |Np| > 1 is an integer number so that we have

|Np −
1

4Np

|lmin =
~

|p(Np)|
. (34)

In the relativistic case the Equation (32) holds, whereas Equations (33)
and (34) for E ≡ E(NE) < Emax are replaced by

|△E(NE)(w)| = |NE|lmin, (35)

where |NE| > 1 is an integer.
Next we assume that at high energies E ∝ EP there is a possibility only

for the nonrelativistic case or ultrarelativistic case.
Then for the ultrarelativistic case, with regard to Equations (22)–(28),

Formula (34) takes the form

|NE − 1

4NE

|lmin =
~c

E(NE)
=

~
|p(Np)|

, (36)

where NE = Np.
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In the relativistic case at low energies we have

E ≪ Emax ∝ EP . (37)

In accordance with Equations (20) and (21) and Formula (33) is of the
form

|△E(NE)(w)| = |NE|lmin =
~c

E(NE)
, |NE| ≫ 1 − integer. (38)

In the nonrelativistic case at low energies Equation (37) due to Equation
(34) we get

|△p(Np)(w)| = |Np|lmin =
~

|p(Np)|
, |Np| ≫ 1− integer. (39)

In a similar way for the time coordinate t, by virtue of Equations (29)–
(31), at the same conditions we have similar Equations (32)–(34)

△Emax(t) = tmin. (40)

For E ≡ E(Nt) < Emax

|△E(Nt)(t)| = |Nt|tmin, (41)

where |NE| > 1 is an integer, so that we obtain

|Nt −
1

4Nt

|tmin =
~c

E(Nt)
. (42)

In the relativistic case at low energies

E ≪ Emax ∝ EP , (43)

in accordance with Equations (20) and (21), Equation (33) takes the form

|△E(Nt)(w)| = |Nt|lmin =
~c

E(Nt)
, |Nt| ≫ 1− integer. (44)

Remark 1.
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1.1. It should be noted that the lattice is usually understood as a uni-
form discrete structure with one and the same constant parameter a (lattice
pitch). But in this case we have a nonuniform discrete structure (lattice in
its nature), where the analogous parameter is variable, is a multiple of lmin,
i.e., a = Nalmin, and also is dependent on the energies. Only in the limit
of high (Planck’s) energies we get a (nearly) uniform lattice with (nearly)
constant pitch a ≈ lmin or a = κlmin where κ is on the order of 1.

1.2. Obviously, when lmin is involved, the foregoing formulas for the mo-
menta p(Np) and for the energies E(NE), E(Nt) may certainly give the
highly accurate result that is close to the experimental one only at the veri-
fied low energies: |Np| ≫ 1, |NE| ≫ 1, |Nt| ≫ 1. In the case of high energies
E ∝ Emax ∝ EP or, what is the same |Np| → 1, |NE| → 1, |Nt| → 1, we
have a certain, experimentally unverified, model with a correct low-energy
limit.

1.3. It should be noted that dispersion relations Equation (20) are valid
only at low energies E ≪ EP . In the last few years in a series of works [46]–
[49] it has been demonstrated that within the scope of GUP the high-energy
generalization of Equation (20)—Modified Dispersion Relations (MDRs)—
is valid.

Specifically, in its most general form the Modified Dispersion Relation
(Formula (9) in [49]) may be given as follows:

p2 = f(E,m; lp) ≃ E2 − µ2 + α1lpE
3 + α2l

2
pE

4 +O
(
l3pE

5
)
, (45)

where in the notation of [49] the fundamental constants are c = ~ = kB = 1,
f is the function that gives the exact dispersion relation, and in the right-
hand side the applicability of the Taylor-series expansion for E ≪ 1/lP is
assumed. The coefficients αi can take different values in different quantum-
gravity proposals. m is the rest energy of a particle, and the mass parameter
µ in the right-hand side is directly related to the rest energy but µ ̸= m if
not all the coefficients αi are vanishing.

The general case of (MDRs) Equation (45) in terms of the considerations
given in this section is yet beyond the scope of this paper and necessitates
further studies of the transition from low E ≪ EP to high E ≈ EP energies.
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For now it is assumed that at low energies Equation (20) is valid to
within a high accuracy, whereas at high energies, i.e., for |Np| → 1, |NE| →
1, |Nt| → 1, Equation (20) should be replaced by Equation (45). Besides, it
is important that in this paper, as distinct from [46]–[49], the author uses
the simplest (earlier) variant of GUP [24]–[33], involving a minimal length
but not a minimal momentum.

Also note that references [46]–[49] give not nearly so complete a list of
the publications devoted to GUP (and, in particular, MDR)—a very com-
plete and interesting survey may be found in [46].

1.4. The papers [1]–[6] point to the fact that the resolved discrete the-
ory is very close to the initial continuous one (lmin = 0) at low energies
E ≪ EP , i.e., at |Np| ≫ 1, |NE| ≫ 1.

In what follows all the considerations are given in terms of “measurable
quantities” in the sense of Definition 2 given in this Section.

3 Space-Time Lattice of Measurable Quan-

tities and Dual Lattice

So, provided the minimal length lmin exists, two lattices are naturally arising
[6].
I. Lattice of the space-time variation—LatS−T representing, to within the
known multiplicative constants, the sets of nonzero integers Nw ̸= 0 and
Nt ̸= 0 in the corresponding formulas from the set Equations (33) and (44)
for each of the three space variables w

.
= x; y; z and the time variable t

LatS−T
.
= (Nw, Nt). (46)

Which restrictions should be initially imposed on these sets of nonzero
integers?

It is clear that in every such set all the integers (Nw, Nt) should be
sufficiently “close”, because otherwise, for one and the same space-time
point, variations in the values of its different coordinates are associated
with principally different values of the energy E which are “far” from each
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other. Note that the words “close” and “far” will be elucidated further in
this text.
Thus, at the admittedly low energies (Low Energies) E ≪ Emax ∝ EP the
low-energy part (sublattice) LatS−T [LE] of LatS−T is as follows:

LatS−T [LE] = (Nw, Nt) ≡ (|Nx| ≫ 1, |Ny| ≫, |Nz| ≫ 1, |Nt| ≫ 1). (47)

At high energies (High Energies) E → Emax ∝ EP we, on the contrary, have
the sublattice LatS−T [HE] of LatS−T

LatS−T [HE] = (Nw, Nt) ≡ (|Nx| ≈ 1, |Ny| ≈ 1, |Nz| ≈ 1, |Nt| ≈ 1). (48)

II. Next let us define the lattice momenta-energies variation LatP−E as a
set to obtain (px(Nx,p), py(Ny,p), pz(Nz,p), E(Nt)) in the nonrelativistic and
ultrarelativistic cases for all energies, and as a set to obtain
(Ex(Nx,E), Ey(Ny,E), Ez(Nz,E), E(Nt)) in the relativistic
(but not ultrarelativistic) case for low energies E ≪ EP , where all the
components of the above sets conform to the space coordinates (x, y, z) and
time coordinate t and are given by the corresponding Formulas (32)–(44)
from the previous Section.

Note that, because of the suggestion made after formula Equation (37)
in the previous Section, we can state that the foregoing sets exhaust all the
collections of momentums and energies possible for the lattice LatS−T .
From this it is inferred that, in analogy with point I of this Section, within
the known multiplicative constants, we have

LatP−E
.
= (

1

Nw − 1
1/4Nw

,
1

Nt − 1
1/4Nt

), (49)

where Nw ̸= 0, Nt ̸= 0 are integer numbers from Equation (46). Similar to
Equation (47), we obtain the low-energy (Low Energy) part or the sublattice
LatP−E[LE] of LatP−E

LatP−E[LE] ≈ (
1

Nw

,
1

Nt

), |Nw| ≫ 1, |Nt| ≫ 1. (50)

In accordance with Equation (48), the high-energy (High Energy) part
(sublattice) LatP−E[HE] of LatP−E takes the form

LatP−E[HE] ≈ (
1

Nw − 1
1/4Nw

,
1

Nt − 1
1/4Nt

), |Nw| → 1, |Nt| → 1. (51)

14



Considering Remark 1 from the previous Section, it should be noted
that, as currently the low energies E ≪ Emax ∝ EP are verified by numer-
ous experiments and thoroughly studied, the sublattice LatP−E[LE] Equa-
tion (50) is correctly defined and rigorously determined by the sublattice
LatS−T [LE] Equation (47).

However, at high energies E → Emax ∝ EP we can not be so confident
the sublattice LatP−E[HE] may be defined more exactly.

Specifically, αa is obviously a small parameter. And, as demonstrated
in [50, 51], in the case of GUP we have the following:

[x⃗, p⃗] = i~(1 + a1α+ a2α
2 + ...). (52)

But, according to Equation (17), |1/Na| =
√
αa, then, due to Equation

(52), the denominators in the right-hand side of Equation (51) may be also
varied by adding the terms ∝ 1/N2

w,∝ 1/N3
w...,∝ 1/N2

t ,∝ 1/N3
t ..., that is

liable to influence the final result for |Nw| → 1, |Nt| → 1.
The notions “close” and “far” for LatP−E will be completely determined by
the dual lattice LatS−T [LE] and by Formulas (33) and (44).

It is important to note the following.
In the low-energy sublattice LatP−E[LE] all elements are varying very

smoothly enabling the approximation of a continuous theory.

4 A Gravitational Model, Which Can Be Con-

sidered as Universal

The Sections 4,5 are based on the results of [6].
In his work [52] M.A. Markov has considered the gravitational model that, at
low energies far from Planck’s energies, in fact included General Relativity.
In [52], M.A.Markov has suggested that “by the universal decree of nature
a quantity of the material density ϱ is always bounded by its upper value
given by the expression that is composed of fundamental constants” ([52],
p. 214):

ϱ ≤ ϱp =
c5

G2~
, (53)

with ϱp as “Planck’s density”.
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Then the quantity
℘ϱ = ϱ/ϱp ≤ 1 (54)

is the deformation parameter as it is used in [52] to construct the following
of Einstein equations deformation or ℘ϱ-deformation (Formula (2) in [52]):

Rν
µ −

1

2
Rδνµ =

8πG

c4
T ν
µ (1− ℘2

ϱ)
n − Λ℘2n

ϱ δ
ν
µ, (55)

where n ≥ 1/2, T ν
µ–energy-momentum tensor, Λ—cosmological constant.

The case of the parameter ℘ϱ ≪ 1 or ϱ≪ ϱp correlates with the classical
Einstein equations, and the case when ℘ϱ = 1—with the de Sitter Universe.
In this way Equation (55) may be considered as ℘ϱ-deformation of the Gen-
eral Relativity in the meaning of Definition 1 in Section 3.
Besides, the gravitational model (55) may be considered universal as it in-
cludes the principal cases covered by the General Relativity: at low energies
– GR in the most general form and at high energies – de Sitter Universe.

As shown in [51], ℘ϱ-of Einstein equations deformation Equation (55) is
nothing else but α-deformation of GR for the parameter αl at a = l from
Equation (12).
If ϱ = ϱl is the average material density for the Universe of the characteristic
linear dimension l, i.e., of the volume V ∝ l3, we have

℘l,ϱ =
ϱl
ϱp

∝ α2
l = ωα2

l , (56)

where ω is some computable factor.
Then it is clear that αl-representation Equation (55) is of the form

Rν
µ −

1

2
Rδνµ =

8πG

c4
T ν
µ (1− ω2α4

l )
n − Λω2nα4n

l δ
ν
µ, (57)

or in the general form we have

Rν
µ −

1

2
Rδνµ =

8πG

c4
T ν
µ (αl)− Λ(αl)δ

ν
µ. (58)

But, as r.h.s. of Equation (58) is dependent on αl of any value and
particularly in the case αl ≪ 1, i.e., at l ≫ ℓ, l.h.s of Equation (58) is also
dependent on αl of any value and Equation (58) may be written as

Rν
µ(αl)−

1

2
R(αl)δ

ν
µ =

8πG

c4
T ν
µ (αl)− Λ(αl)δ

ν
µ. (59)
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Thus, in this specific case we obtain the explicit dependence of GR on
the available energies E ∼ 1

l
, that is insignificant at low energies or for l ≫ ℓ

and, on the contrary, significant at high energies, l → ℓ.

4.1 Low Energies, E ≪ EP

1. Low energies. Nonmeasurable case. In this case at low energies, using
Formula (12) in the limit ℓ = 0 for a = l, we get a continuous theory coin-
cident with the General Relativity.

2. Low energies. Measurable case. In this case at low energies, using
Formulas (12) and (17) for ℓ ̸= 0, for a = l (and hence for Nl ≫ 1), we get a
discrete theory which is a “nearly continuous theory”, practically similar to
the General Relativity with the slowly (smoothly) varying parameter αl(t),
where t—time.
So, due to low energies and momentums (E ≪ EP , p≪ PPl), the “continu-
ous case” 1 (General Relativity) and the “discrete case” 2 that is actually
a “nearly continuous case”.

4.2 High Energies, E ≈ EP

At high energies we consider the measurable case only. Then it is clear
that at high energies the parameter αl(t) is discrete and for the limiting
value of αl(t) = 1 we get a discrete series of equations of the form Equation
(59) (or a single equation of this form met by a discrete series of solutions)
corresponding to αl(t) = 1; 1/4; 1/9; ...

As this takes place, T ν
µ (αl) ≈ 0, and in both cases as 2 in 6.1 as well as 4.2

Λ(αl) is not longer a cosmological constant, being a dynamical cosmological
term.

Note that because of Formula (19) given in Section 2.2,
√
αl(t) in cases

2 in 6.1 and 4.2 is an element of the lattice LatP−E from Section 3. And
in case 2 it is an element of the sublattice LatP−E[LE], whereas case 4.2 is
associated with the sublattice LatP−E[HE].

It seems expedient to make some important remarks:
(1) Generally speaking, as 4.2 and case 2 in 4.1 are associated with measur-
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able cases for low energies and high energies, respectively, all the terms of
the Equation (59): Rν

µ(αl), R(αl), T
ν
µ (αl),Λ(αl) must be expressed in terms

of measurable quantities in view of Definition 2 from Section 2.2. But this
problem still remains to be solved. In fact, it is reduced to the construction
of the following “measurable” deformations in the sense of Definition 2 in
Section 2.2 as follows:

lim
ℓ→0

(Rν
µ(αl ≪ 1), R(αl ≪ 1), T ν

µ (αl ≪ 1),Λ(αl ≪ 1)) →

→ (Rν
µ, R, T

ν
µ ,Λ) (60)

and

lim
(αl≈1)→(αl≪1)

(Rν
µ(αl ≈ 1), R(αl ≈ 1), T ν

µ (αl ≈ 1),Λ(αl ≈ 1)) →

→ lim
lmin→0

(Rν
µ(αl ≪ 1), R(αl ≪ 1)δνµ, T

ν
µ (αl ≪ 1),Λ(αl ≪ 1)) →

→ (Rν
µ, R, T

ν
µ ,Λ). (61)

Here the first Equation (60) is a pure low-energy limiting transition from
the measurable variant of gravity to the nonmeasurable one (or from a dis-
crete theory to a continuous theory), whereas the second Equation (61)
from the beginning is associated with the measurable transition from high
energies to low energies and then is coincident with the first one.

(2) It should be noted that in [1, 2] in terms of measurable quantities, as an
example, we have studied gravity for the static spherically-symmetric hori-
zon space. It has been shown that, “...despite the absence of infinitesimal
spatial-temporal increments owing to the existence of lmin and the essential
‘discreteness’ of a theory, this discreteness at low energies is not ‘felt’, the
theory in fact being close to the original continuum theory. The indicated
discreteness is significant only in the case of high (Planck) energies ” [1].
The Markov model considered in this section represents the generalization
of the above-mentioned example. Of course, this model requires further
thorough investigation in terms of measurable quantities.
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5 Measurable Quantities in Momentum Rep-

resentation. Start

For convenience, we denote the minimal length lmin ̸= 0 by ℓ.
Let us consider the above calculations using the formalism of the well-

known work [34]. Then GUP (Section 3.2 in [34]) has the following form:

[x,p] = i~(1 + βp2), (62)

where (β > 0) and

β =
ℓ2

~2
. (63)

In the formalism of Section 2.2 of the present work, formula (7) from
[34]

∆x∆p ≥ ~(1 + β(∆p)2 + β⟨,p⟩2) (64)

with regard to Equations (9), (14), (16), and (63) may be written as

~N∆x

(N∆x − 1
4N∆x

)
≥ ~(1 +

1

(N∆x − 1
4N∆x

)2
+
ℓ2

~2
⟨p⟩2). (65)

In the equality case this results in the following expression:

−~2(12N2
∆x + 1)

(4N2
∆x − 1)2ℓ2

=
−~2

ℓ2
(3 +

4

(4N2
∆x − 1)2

) = ⟨p⟩2. (66)

In this way at low energies E ≪ EP , i.e., at |N∆x| ≫ 1, ⟨p⟩2 is varying
practically continuously.
Next, hereinafter we use the Formula (34) with the replacement of lmin = ℓ,
i.e., we have
N∆x = Np and

|pN | =
~

|Np − 1
4Np

|ℓ
. (67)

We can write

ı~(1 + βp2) = ı~(1 +
ℓ2

~2
~2

(Np − 1
4Np

)2ℓ2
) = ı~(1 +

1

(Np − 1
4Np

)2
). (68)
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Let us introduce the following symbols:

∆ppN = pN − pN+1; ∆
−1
p ψ(pN) =

ψ(pN)− ψ(pN+1)

pN − pN+1

=

=
ψ(pN+1 +∆ppN)− ψ(pN+1)

∆ppN
. (69)

Then we suppose that only in the classical dynamics variations of mo-
menta (energies) have no lower bounds and we have dp. At the same time,
in a quantum dynamics, due to the limited spatial domains, these variations
have both upper and lower bounds.

In this case, as distinct from [34], in the theory there is a minimum
variation of the momentum ∆pmin that within the scope of the measurability
(Definition 2 in Section 2.2) takes the form

∆pmin ≡ p =
~
ℓ

1

(N− 1
4N

)
≈ ~
ℓN

. (70)

As in Equation (69) at high |Np|, (|Np| ≫ 1), ∆ppN = pN − pN+1 ∝
( 1
Np

− 1
Np+1

) = 1
Np(Np+1)

, it is clear that

Np(Np + 1) ≤ N or − 1

2
−
√

(
1

4
+N) ≤ Np ≤ −1

2
+
√

(
1

4
+N). (71)

Considering that Np is an integer number and N ≫ 1, it follows that

|Np| ≤ [
√
N]− 1 ≡ Ñ, (72)

where the square brackets [ ] in the right-hand side of Equation (72) denote
an integer part of the number.

Next, due to Equations (68) and (69), an analog of Formulae (11) and
(12) from [34] in the case under study at low energies will be of the form

p.ψ(p) ⇒ pNψ(pN) =
~

(Np − 1
4Np

)ℓ
ψ(pN) ≈

~
Npℓ

ψ(pN),

x.ψ(p) ⇒ x.ψ(pN) = ı~(1 +
1

(Np − 1
4Np

)2
)∆−1

p ψ(pN) ≈

≈ ı~(1 +
1

N2
p

)∆−1
p ψ(pN). (73)
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The scalar product ⟨ψ|ϕ⟩ from [34]

⟨ψ|ϕ⟩ =
∫ +∞

−∞

dp

1 + βp2
ψ∗(p)ϕ(p) (74)

in the case of low energies 1 ≪ |N∆p| ≤ Ñ <∞ is replaced by the sum

⟨ψ|ϕ⟩ =
∫ +∞

−∞

dp

1 + βp2
ψ∗(p)ϕ(p) ⇒

⇒ ⟨ψ|ϕ⟩1≪|Np|≤Ñ =
∑

1≪|Np|≤Ñ

∆p(pN)ψ
∗(pN)ϕ(pN)

(1 + 1
(Np− 1

4Np
)2
)

≈

≈
∑

1≪|Np|≤Ñ

∆p(pN)ψ
∗(pN)ϕ(pN)

(1 + 1
N2

p
)

. (75)

And since |Np| ≫ 1 is a variable, in fact pN is continuously varying and,
proceeding from the above formulae, we can assume that to a high accuracy
the function ϕ(pN),(ψ

∗(pN)) is differentiable in terms of this variable.
On the other hand, at high energies, when for |Np| ≈ 1 the presentation

is fairly discrete, the scalar product Equation (74) is replaced by the sum

⟨ψ|ϕ⟩ =
∫ +∞

−∞

dp

1 + βp2
ψ∗(p)ϕ(p) ⇒

⇒ ⟨ψ|ϕ⟩|Np|≈1 =
∑

|Np|≈1

∆p(pN)ψ
∗(pN)ϕ(pN)

(1 + 1
(Np− 1

4Np
)2
)

. (76)

We consider only two cases: (a) 1 ≪ |Np| ≤ Ñ, “Quantum Consid-
eration, Low Energies” and (b) |Np| ≈ 1,“Quantum Consideration, High
Energies”. The case (c)

Ñ ≪ |Np| <∞ (77)

is omitted in this Section as it is associated with the “Classical Picture”.
Then at all the energy scales ⟨ψ|ϕ⟩Np may be formally represented as

follows:

⟨ψ|ϕ⟩Np = ⟨ψ|ϕ⟩1≪|Np|≤Ñ + ⟨ψ|ϕ⟩|Np|≈1. (78)
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However, with the formalism and terms proposed in this work, and also
with the use of the Formula (11) that in this case takes the form

(|Np| ≈ 1) → (1 ≪ |Np| ≤ Ñ), (79)

it seems more logical to consider the two components in Equation (78)
separately, the first component originating in the process of the low-energy
transition from the second component as follows:

⟨ψ|ϕ⟩|Np|≈1
|Np|≫1⇒ ⟨ψ|ϕ⟩1≪|Np|≤Ñ. (80)

We will return to the substantiation (80) in the next Section
Clearly, the first part of formula (13) from [34] holds as well in the general
case for each of the components in Equation (78)

⟨(ψ|p)|ϕ⟩ = ⟨ψ|(p|ϕ)⟩ (81)

The second part of formula (13) from [34]

⟨(ψ|x)|ϕ⟩ = ⟨ψ|(x|ϕ)⟩ (82)

takes place (to a high accuracy) for the low-energy case 1 ≪ |Np| ≤ Ñ <∞,
i.e., for the first component in Equation (78).

Indeed, in this case, due to the condition |Np| ≫ 1, we have

∆ppN ≈ dp; ∆−1
p ψ(pN) ≈ ∂pψ(pN)

or

lim
|Np|→∞,(Ñ→∞)

∆ppN = dp; lim
|Np|→∞,(Ñ→∞)

∆−1
p ψ(pN) = ∂pψ(pN). (83)

Then in this (low-energy) case there exists the analog of formula (15)
from [34]

⟨ψ|(x|ϕ)⟩ =
∑

1≪|Np|≤Ñ−1

∆p(pN)

(1 + 1
N2

p
)
ψ∗(pN)i~(1 +

1

N2
p

)∆−1
p (ϕ(pN)) =

=
∑

1≪|Np|≤Ñ−1

∆p(pN)ψ
∗(pN)i~∆−1

p (ϕ(pN)) ≈

≈ ⟨(ψ|x)|ϕ⟩ =
∑

1≪|Np|≤Ñ−1

∆p(pN)(i~∆−1
p ψ(pN))

∗ϕ(pN). (84)
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It is important to note the following remarks:
(1) The operator x is defined in the case of low energies only for the func-
tional space ϕ(pN)1≪|Np|≤Ñ−1. Really, because of the existence of the For-

mula (69), the extreme point Np, (such that (Np+1)(Np+2) > N) “moves”
this operator beyond the domain under study ∆pmin = p. Therefore, re-
placing Np 7→ Np + 1, Np + 1 7→ Np + 2 in Formula (71), one can easily get

the estimate of Ñ− 1 instead of Ñ as seen in Equation (84).

(2) Despite the fact that the operator x is also defined at high energies,
i.e., for ϕ(pN)|Np|≈1,in general the property Equation (82) in this case has
no place for lack of Formulae (83).

(3) In all the cases when we consider |Np| ≫ 1 (low energies) the “cut-
off” for some upper bound pmax,(pmax ≪ Ppl),1 ≪ Npmax < |Np|, p ̸= pmax

is determined by the initial conditions of the solved problem.

(4) It is clear that in the relativistic case ∆pmin = p leads to a minimal
variation in the energy

|∆Emin| = (∆p)minc =
p

N
c. (85)

(5) In this work a minimal variation of the momentum ∆pmin has been
introduced from the additional assumptions but, as shown in [53], a mini-
mal variation of the momentum may arise from the Extended Uncertainty
Principle (EUP) as follows:

∆xi∆pj ≥ ~δij[1 + β2 (∆xi)
2

l2
], (86)

where l is the characteristic, large length scale l ≫ lp and β is a dimension-
less real constant on the order of unity [53]. From Equation (86) we get an
absolute minimum in the momentum uncertainty

∆pi ≥
2~β
l
. (87)
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In [54] GUP and EUP are combined by the principle called the Sym-
metric Generalized Uncertainty Principle (SGUP):

∆x∆p ≥ ~
(
1 +

(∆x)2

L2
+ l2

(∆p)2

~2

)
, (88)

where l ≪ L and l defines the limit of the UV-cutoff (not being such up to
a constant factor as in the case of GUP).Then

∆xmin = 2l/
√
1− 4l2/L2 = ℓ,

whereas L defines the limit for IR-cutoff i.e., we have a

∆pmin = 2~/(L
√

1− 4l2/L2).

6 Quantum Theory in Terms of Measurable

Quantities. Curvature and Space-Time Quan-

tum Fluctuations

Now we consider the components (78)separately (as this seems more cor-
rect) and try to substantiate the low-energy transition (80).
In the previous Section (similar to [34]) the background space curvature
has not been treated – implicitly it has been implied that quantum theory
is considered in flat space-time. This assumption is sufficiently correct at
low energies which are far from the Planck energies E ≪ EP . In this case
the space-time curvature may be disregarded as the modern experimental
cosmology demonstrates that the space-time geometry at the well-known
energies E ≪ EP is a geometry of flat space to a high accuracy [55].
However, at high energies E ≈ EP this space is different from the flat
space and there is no possibility to disregard this fact. According to the
present-day knowledge, at Planck’s scales the space exhibits high Space-
Time Quantum Fluctuations (STQF) of the fundamental quantities: length,
time, metric, and so on [56]–[78].
Let us briefly revert to STQF. The definition (STQF) is closely associated
with the notion of ≪space-time foam≫. The notion ≪space-time foam≫,
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introduced by J. A. Wheeler about 60 years ago for the description and in-
vestigation of physics at Planck’s scales (Early Universe) [56],[57], is fairly
settled. Despite the fact that in the last decade numerous works have been
devoted to physics at Planck’s scales within the scope of this notion, for
example [58]–[77], by this time still their no clear understanding of the
≪space-time foam≫ as it is.
In accordance with the modern concepts, the space-time foam [57] notion
forms the basis for space-time at Planck’s scales (Big Bang). This object
is associated with the quantum fluctuations generated by uncertainties in
measurements of the fundamental quantities, inducing uncertainties in any
distance measurement. A precise description of the space-time foam is still
lacking along with an adequate quantum gravity theory. But for the de-
scription of quantum fluctuations we have a number of interesting methods
(for example, [78],[67]–[77]).
In what follows, we use the terms and symbols from [69]. Then for the

fluctuations δ̃l of the distance l we have the following estimate:

(δ̃l)γ ∼> lγP l
1−γ = lP (

l

lP
)1−γ = l(

lP
l
)γ = lλγl , (89)

or that same

|(δ̃l)γ|min = βlγP l
1−γ = βlP (

l

lP
)1−γ = βlλγl , (90)

where 0 < γ ≤ 1, coefficient β is of order 1 and λl ≡ lP/l.
From (89),(90), we can derive the quantum fluctuations for all the primary

characteristics, specifically for the time (δ̃t)γ, energy (δ̃E)γ, and the metrics

(δ̃gµν)γ. In particular, for (δ̃gµν)γ we can use formula (10) in [69]

(δ̃gµν)γ ∼> λγ. (91)

But due to GUP (8), in the case under consideration the theory involves a
minimal length on the order of the Planck length

ℓ ∝ lP

or that is the same
ℓ = ξlP , (92)
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where the coefficient ξ is on the order of unity too.
Evidently,that in this case replacement of Planck’s length by the minimal
length in all the above formulae is absolutely correct and is used without
detriment to the generality [7],[1]

lP → ℓ. (93)

Thus, λl ≡ lmin/l and then (89)– (91) upon the replacement (93) are read
unchanged.
So, (90) may be written as

|(δ̃l)γ|min = βlλγl = βNl(N
−γ
l )ℓ = βN1−γ

l ℓ. (94)

Here one should take into account the following consideration: due to the
(Integrality Condition) (9) in the right-hand side of (94) for the factor
βN1−γ

l before ℓ its integer part is always meant

βN1−γ
l 7→ [βN1−γ

l ] (95)

and this goes without special mentioning for the whole text.
As noted in the overview [69], the value γ = 2/3 derived in [78] is totally
consistent with the Holographic Principle [79]–[82].
The following points of importance should be noted [7],[1]:
6.1)It is clear that at Planck’s scales, i.e. at the minimal length scales

l → ℓ (96)

models for different values of the parameter γ are coincident.

6.2) In fact, the parameter λl is nothing else but

λl =
√
αl, (97)

where αl is defined in formula (12) for a = l.
It is important that the parameter αl initially introduced in [36]–[43] is not
given at the limiting point l = lmin due to the appearance of singularity [37]
and hence we have

0 < αl ≤ 1/4. (98)
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It is obvious that nothing precludes λl to be variable over the interval

0 < λl ≤ 1. (99)

At the same time, for complete conformity to the domain of definition (99)
and to the formula of (97), at the limiting point l = ℓ the parameter αl may
be redefined (regularized).
It should be noted that the parameter αl has the following clear physical
meaning:

α−1
l ∼ SBH , (100)

where

SBH =
A

4l2p
(101)

is the well-known Bekenstein-Hawking formula for the black hole entropy
in the semiclassical approximation [83],[84] for the black-hole event horizon
surface A, with the characteristics linear dimension (≪radius≫) R = l. This
is especially obvious in the spherically-symmetric case.

Reverting to the beginning of this Section, we can state the following:
as background spaces of the first and of the second components in (78) have
absolutely different curvatures (the space is nearly flat for the first compo-
nent and has a higher curvature for the second component), it is better to
consider these components separately, the transition (80) being absolutely
natural.

Considering this, the transition (80) from high to low energies may be
given differently – as a transition from the high-curvature background space
K ≫ 0 to the asymptotically flat space [11]

⟨ψ|ϕ⟩K≫0
K→0⇒ ⟨ψ|ϕ⟩K≈0. (102)

As this takes place, the curvature K in (102) is understood as the Gaussian
curvature K(l) [85] corresponding to the scale l:

K ≡ K(l) =
1

l2
=

1

N2
l ℓ

2
= αlℓ

−2. (103)
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Because of this, the transition (102) is in complete conformity with the for-
mula (79) from the previous Section.
The problem is, which models for space-time foam at the Planck scale ade-
quately agree with the transition (102).
It is clear that this feature is attributed to the models considered by Fabio
Scardigli in [62]–[64] and based on micro-black holes with the radius r that
equals several Planck’s lengths lP or, in much the same way, several mini-
mal lengths ℓ (within the scope of this paper) r = Nrℓ, where Nr – integer
number on the order of 1.
Then, due to (103), in fact the transition (102)for l = r takes the form

⟨ψ|ϕ⟩ 1

N2
r
≫0

Nr→∞⇒ ⟨ψ|ϕ⟩ 1

N2
r
≈0. (104)

Is it possible to correct the results of the previous Section due to STQF?
6.3) At high (Planck’s) energies, according to 6.1) and the formula of (96),
all fluctuations of the length l have the characteristic dimension ≈ ℓ. Be-
cause of this, we should take into consideration all components of the sum

⟨ψ|ϕ⟩|Np|≈1 =
∑

|Np|≈1

∆p(pN)ψ
∗(pN)ϕ(pN)

(1 + 1
(Np− 1

4Np
)2
)

. (105)

from the right-hand side of (76).

6.4)The situation is cardinally different at low energies E ≪ EP . According
to formulae (90),(94) and considering (95), in the sum from the right-hand
side of the formula (75)

⟨ψ|ϕ⟩1≪|Np|≤Ñ =
∑

1≪|Np|≤Ñ

∆p(pN)ψ
∗(pN)ϕ(pN)

(1 + 1
(Np− 1

4Np
)2
)

≈

≈
∑

1≪|Np|≤Ñ

∆p(pN)ψ
∗(pN)ϕ(pN)

(1 + 1
N2

p
)

. (106)

we select not all the components but only those corresponding to the points
lattice “sites” LatP−E[LE] from Section 3 defined by (94), (??) In this case
the lattice spacing in the sum from the right-hand side of (106) is not single
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and equal to ℓ, being variable, determined by the scale l, and dependent on
the energies present

Ñlℓ = [βN1−γ
l ]ℓ, (107)

where β, γ is taken from formulae (90),(94),(95).
The situation is quite natural. Indeed, the transition (106) from the point
with the number N to the point with the number N + 1 means that the
length l = ℓ corresponding to the “difference” of these points is a measurable
quantity. By Definition 2, the minimal length ℓ is actually a measurable
quantity but only for the energies E ≈ EP , and in this point we consider
the case E ≪ EP .

Of course, Sections 5,6 of this paper are only the first step to resolve the
Quantum Theory in terms of measurable quantities using Definition 2. It is
necessary to study thoroughly the low-energy case E ≪ EP and the correct
transition to high energies E ∝ EP taking into account STQF. The author
is planning to treat these problems in his further works.

7 Measurable and Nonmeasurable Transitions

in Gravity and Quantum Theory [6]

7.1 Measurable and Nonmeasurable Transitions in Grav-
ity

First, using the formalism of this work, it is required to construct a measur-
able deformation of the General Relativity (GR) at low energies (Formula
(60)). This deformation is denoted in terms of Grav[LE]ℓ

Grav[LE]ℓ
ℓ→0⇒ GR. (108)

Next, we should construct the high-energy deformation (denoted in
terms of Grav[HE]ℓ), this time for Grav[LE]ℓ (the first arrow in the For-
mula (61))

Grav[HE]ℓ
αl→0⇒ Grav[LE]ℓ. (109)
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At the present time the majority of the proposed approaches to quan-
tization of gravity are associated with the construction of the following
transition:

GR⇒Grav[HE]ℓ. (110)

But, by author’s opinion, this is impossible. It seems that for correct
quantization of gravity one needs reversal of the arrow from Equation (109)

Grav[LE]ℓ(αl ≈ 0, αl ̸= 0)
αl→1⇒ Grav[HE]ℓ(αl ≈ 1). (111)

The above results indicate that the low-energy “measurable” gravity
variant Grav[LE]ℓ should be very close to GR but different at the same
time.

The author is hopeful that the correct construction of a low-energyGravℓ

close to GR allows for a more natural transition to quantum (Planck) grav-
ity. Besides, within the notion of measurability, gravity could be saved from
some odd solutions, from wormholes in particular.

7.2 Measurable and Nonmeasurable Transitions in Quan-
tum Theory

The situation is similar for a quantum theory too. In the general case, based
on the parameter αa (Formula (17) of Section 2.2), this means that there
exists the following correct limiting high-energy transition:

lim
ℓ ̸=0,|Na|≫1

αa
High Energy⇒ lim

ℓ ̸=0,|Na|≈1
αa (112)

and there is no correct limiting high-energy transition

lim
ℓ=0

αa
High Energy⇒ lim

ℓ ̸=0,|Na|≈1
αa. (113)

The first of them corresponds to the transition from a measurable
theory at low energies to a measurable theory at high energies

QT [LE]ℓ
Na→1⇒ QT [HE]ℓ. (114)
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Whereas the second

QT
Na→1⇒ QT [HE]ℓ (115)

(hereQT [LE]ℓ, QT [HE]ℓ, QT are quantum theories with the minimal length
ℓ ̸= 0 at low energies E ≪ Ep, at high energies E ≈ Ep, and the well-known
(continuous) quantum theory with lmin = 0).

However, the whole theoretical physics, where presently at low energies
E ≪ EP the minimal length ℓ is not involved at all (i.e., lmin = 0), is framed
around a search for the nonexistent limits Equation (113) (correspondingly
Equation (115)).

Of course, in this case the low-energy “measurable” variant QT [LE]ℓ of
QT by its results will be very close to the initial theory QT , as indicated
in [1, 2], and Section 5 of the present work. But these theories are different
by nature: the first of them is discrete and the second one is continuous.
Nevertheless, it is clear that the main requirement in this case is associated
with the “Compatibility Principe”:

at low energies the resolved variant QT [LE]ℓ must, to a high accuracy, repre-
sent the well-known approved results of the corresponding continuous theory
QT .

These theories should be differing considerably at least on going to high
energies E ≈ Ep.

The hypothesis set by the author is that correct construction of the
“measurable” transition to high energies (Formula (114)) should naturally
lead to solution of the ultraviolet divergences problem (initially in terms of
the finite measurable quantities).

8 Conclusion

In several works [2, 6] the main points have been formulated and the prob-
lems associated with the suggested approach have been indicated. They
may be concluded as follows.

8.1 When in the theory the minimal length lmin ̸= 0 is actualized (in-
volved) at all the energy scales, a mathematical apparatus of this theory
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must be changed considerably: no infinitesimal space-time variations (in-
crements) must be involved, the key role being played by the definition of
measurability (Definition 2 from Section 2.2).

8.2 As this takes place, the theory becomes discrete at all the energy scales
but at low energies (far from the Planck energies) the sought for theory must
be very close in its results to the starting continuous theory (with lmin = 0).
In the process a real discreteness is exhibited only at high energies which
are close to the Planck energies.

8.3 By this approach the theory at low and high energies is associated
with a common single set of the parameters (NL from Formula (9)) or with
the dimensionless small parameters (1/NL =

√
αL) which are lacking if at

low energies the theory is continuous, i.e., when lmin = 0.
The principal objective of my further studies is to develop for quantum

theory and gravity, within the scope of the considerations given in points
8.1–8.3, the corresponding discrete models (with lmin ̸= 0) for all the
energy scales and to meet the following requirements:
8.4 At low energies the models must, to a high accuracy, represent the re-
sults of the corresponding continuous theories.
8.5 The models should not have the problems of transition from low to high
energies and, specifically, the ultraviolet divergences problem. By author’s
opinion, the problem associated with points 8.4 and 8.5 is as follows.
8.6 It is interesting to know why, with the existing lmin ̸= 0, tmin ̸= 0 and
discreteness of nature, at low energies E ≪ Emax ∝ EP the apparatus of
mathematical analysis based on the use of infinitesimal space-time quan-
tities (dxµ,

∂φ
∂xµ

, and so on) is very efficient giving excellent results. The

answer is simple: in this case lmin and tmin are very far from the available
scale of L and t, the corresponding NL ≫ 1, Nt ≫ 1 being in general true
but insufficient. There is a need for rigorous calculations.

Based on Section 6 of the present paper, the points 8.1–8.6 should be
supplemented with points 8.7 – 8.9.

8.7 Is the exponent of γ in formulae (89),(90), and so on constant γ ≡ const.
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or is it dependent on the existent energies γ = γ(E)?

8.8 The Gaussian curvature K(r) considered in Section 6 leads to the sim-
plest geometry that, to a high accuracy, is flat at low energies. Besides, it
is readily expressed in terms of measurable quantities.
The problem is to suggest a constructive description for a maximally wide
class of the geometries which are asymptotically flat in the limit of low en-
ergies E ≪ EP . In this context the word constructive is used in terms of
measurable quantities. Solving of this problem is directly associated with
the constructive description of space-time at Planck’s scale or of space-time
foam.

8.9 And, finally, is there a direct relation between the preceding point and
the expression of the main gravity components Rν

µ(αl), R(αl), T
ν
µ (αl),Λ(αl)

from Section 4 in terms of measurable quantities?

Conflict of Interests

The author declares that there is no conflict of interests regarding the pub-
lication of this article.

References

[1] A.E.Shalyt-Margolin, Minimal Length and the Existence of Some In-
finitesimal Quantities in Quantum Theory and Gravity, Adv. High
Energy Phys., 2014 (2014), 8. doi:10.1155/2014/195157.

[2] A.E.Shalyt-Margolin, Holographic Principle, Minimal Length and
Measurability, J. Adv. Phys., 5(3) (2016), 263–275.

[3] Alexander Shalyt-Margolin, Minimal Length, Measurability, Con-
tinuous and Discrete Theories. Chapter 7 in Horizons in World
Physics. Volume 284, Reimer, A., Ed.,Nova Science, Hauppauge, NY,
USA,2015, pp.213–229.

33



[4] Alexander Shalyt-Margolin, Chapter 5 in Advances in Dark En-
ergy Research, Ortiz,Miranda L., Ed.;Nova Science, Hauppauge, NY,
USA,2015, pp.103–124

[5] Alexander Shalyt-Margolin, Minimal Length at All Energy Scales
and Measurability,Nonlinear Phenomena in Complex Systems, 19(1)
(2016),(in press).

[6] Alexander Shalyt-Margolin, Minimal Length, Measurability and Grav-
ity,Entropy, 18(3) (2016), 80. doi:10.3390/e18030080

[7] A.E.Shalyt-Margolin, Space-Time Fluctuations, Quantum Field The-
ory with UV-cutoff and Einstein Equations,Nonlinear Phenomena in
Complex Systems, 17(2) (2014), 138–146.

[8] Joseph Polchinski,String Theory, Vol. I,II, Cambridge University
Press, 1998.

[9] A. Messiah, Quantum Mechanics, North Holland Publishing Com-
pany: Amsterdam, The Netherlands, 1967, Volumes 1,2.

[10] M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field The-
ory, Addison-Wesley Publishing Company, 1995.

[11] R. M. Wald, General Relativity, Chicago,The University Chicago
Press,USA,1984.

[12] G. Amelino-Camelia, Quantum Spacetime Phenomenology. Living
Rev. Relativ., 17(2) (2013), 5–129.

[13] Penrose, R. Quantum Theory and Space-Time, Fourth Lecture in
Stephen Hawking and Roger Penrose, The Nature of Space and Time;
Prinseton University Press, Princeton, NJ, USA, 1996.

[14] L. Garay, Quantum gravity and minimum length. Int. J. Mod. Phys.
A, 10 (1995), 145–146.

[15] G. Amelino-Camelia, L. Smolin, Prospects for constraining quantum
gravity dispersion with near term observations. Phys. Rev. D (2009),
doi:10.1103/PhysRevD.80.084017.

34



[16] G.Gubitosi et al., A constraint on planck-scale modifications to elec-
trodynamics with CMB polarization data. J. Cosmol. Astropart.
Phys., 908 (2009), 21–34.

[17] G. Amelino-Camelia, Building a case for a planck-scale-deformed
boost action: The planck-scale particle-localization limit. Int. J. Mod.
Phys. D, 14 (2005), 2167–2180.

[18] S. Hossenfelder et al., Signatures in the Planck Regime. Phys. Lett. B,
575 (2003), 85–99.

[19] S. Hossenfelder, Running Coupling with Minimal Length. Phys. Rev.
D (2004), doi:10.1103/PhysRevD.70.105003.

[20] Hossenfelder, S. Self-consistency in Theories with a Minimal Length.
Class. Quantum Gravity, 23 (2006), 1815–1821.

[21] S. Hossenfelder, Minimal Length Scale Scenarios for Quantum Gravity.
Living Rev. Relativ. (2013), doi:10.12942/lrr-2013-2.

[22] W. Heisenberg, Uber den anschaulichen Inhalt der quantentheoretis-
chen Kinematik und Mechanik. Z. Phys., 43 (1927), 172–198. (In Ger-
man)

[23] V.B. Berestetskii,E.M. Lifshitz,L.P.Pitaevskii, Relativistic Quantum
Theory, Pergamon, Oxford, UK, 1971.

[24] G. A. Veneziano, Stringy nature needs just two constants, Europhys.
Lett., 2 (1986), 199–211.

[25] D.Amati, M. Ciafaloni and G. A. Veneziano, Can spacetime be probed
below the string size? Phys. Lett. B, 216 (1989), 41–47.

[26] E.Witten, Reflections on the fate of spacetime, Phys. Today 49 (1996),
24–28.

[27] R. J. Adler and D. I. Santiago, On gravity and the uncertainty prin-
ciple, Mod. Phys. Lett. A, 14 (1999), 1371–1378.

35



[28] D.V.Ahluwalia, Wave-particle duality at the Planck scale: Freezing of
neutrino oscillations, Phys. Lett. A, A275 (2000), 31–35.

[29] D.V.Ahluwalia, Interface of gravitational and quantum realms, Mod.
Phys. Lett. A, A17 (2002), 1135–1145.

[30] M. Maggiore, The algebraic structure of the generalized uncertainty
principle, Phys. Lett. B, 319 (1993), 83–86.

[31] M. Maggiore, Black Hole Complementarity and the Physical Origin of
the Stretched Horizon, Phys. Rev. D, 49 (1994), 2918–2921.

[32] M. Maggiore, Generalized Uncertainty Principle in Quantum Gravity.
Phys. Rev. D,304 (1993), 65–69.

[33] S.Capozziello,G.Lambiase and G.Scarpetta, The Generalized Uncer-
tainty Principle from Quantum Geometry, Int. J. Theor. Phys., 39
(2000), 15–22.

[34] A. Kempf, G. Mangano and R.B. Mann, Hilbert space representation
of the minimal length uncertainty relation, Phys. Rev. D, 52 (1995),
1108–1118.

[35] K.Nozari,A.Etemadi, Minimal length, maximal momentum and
Hilbert space representation of quantum mechanics, Phys. Rev. D,
85 (2012), 104029.

[36] A.E.Shalyt-Margolin, J.G. Suarez, Quantum Mechanics of the
Early Universe and Its Limiting Transition. Available online:
http://arxiv.org/abs/gr-qc/0302119 (accessed on 30 August 2003).

[37] A.E.Shalyt-Margolin, J.G. Suarez, Quantum mechanics at Planck
scale and density matrix, Int. J. Mod. Phys. D, 12 (2003), 1265–1278.

[38] A.E. Shalyt-Margolin and A.Ya. Tregubovich, Deformed density ma-
trix and generalized uncertainty relation in thermodynamics, Mod.
Phys. Lett. A, 19 (2004), 71–82.

36



[39] A.E.Shalyt-Margolin, Non-unitary and unitary transitions in general-
ized quantum mechanics, new small parameter and information prob-
lemsolving, Mod. Phys. Lett. A, 19 (2004), 391–403.

[40] A.E.Shalyt-Margolin, Pure states, mixed states and Hawking prob-
lem in generalized quantum mechanics, Mod. Phys. Lett. A,19 (2004),
2037–2045.

[41] A.E.Shalyt-Margolin, The universe as a nonuniform lattice in finite-
volume hypercube: I. Fundamental definitions and particular fea-
tures,Int. J. Mod. Phys. D, 13 (2004), 853–864.

[42] A.E.Shalyt-Margolin, The Universe as a nonuniformlattice in the
finite-dimensional hypercube. II. Simple cases of symmetry breakdown
and restoration, Int. J. Mod. Phys. A, 20 (2005), 4951–4964.

[43] A.E.Shalyt-Margolin, The density matrix deformation in physics of the
early universe and some of its implications. In Quantum Cosmology
Research Trends; Reimer, A., Ed.; Nova Science: Hauppauge, NY,
USA, 2005; pp. 49–92.

[44] L.Faddeev, Mathematical view of the evolution of physics, Priroda, 5
(1989), 11–16.

[45] L.D. Landau, E.M. Lifshits, Theoretical Physics,vol.2. Field The-
ory,Nauka, Moskow,1988.

[46] A.N. Tawfik, A.M. Diab, Generalized Uncertainty Principle: Ap-
proaches and Applications, Int. J. Mod. Phys. D, 23 (2014), 1430025.

[47] E.C.Vagenas, B.R.Majhi, Modified Dispersion Relation, Photon’s Ve-
locity, and Unruh Effect, Phys. Lett. B., 725 (2013), 477–483.

[48] K.Nozari, A.S.Sefiedgar, Comparison of Approaches to Quantum Cor-
rection of Black Hole Thermodynamics, Phys. Lett. B, 635 (2006),
156–160.

37



[49] K.Nozari, B. Fazlpour, Generalized Uncertainty Principle, Modified
Dispersion Relations and Early Universe Thermodynamics, Gen. Rel-
ativ. Gravit., 38 (2006), 1661–1679.

[50] A.E.Shalyt-Margolin, Entropy in the present and early universe: New
small parameters and dark energy problem, Entropy, 12 (2010), 932–
952.

[51] A.E.Shalyt-Margolin, Quantum theory at planck scale, limiting values,
deformed gravity and dark energy problem, Int. J. Mod. Phys. D, 21
(2012), 1250013.

[52] M.A. Markov, Ultimate Matter Density as the Universal Low of Na-
ture, JETP Lett., 36 (1982), 214–216.

[53] M.I. Park,The Generalized Uncertainty Principle in (A)dS Space and
the Modification of Hawking Temperature from the Minimal Length,
Phys. Lett. B, 659 (2008), 698–702.

[54] W. Kim, E.J. Son, M. Yoon, Thermodynamics of a black hole
based on a generalized uncertainty principle, JHEP, 8 (2008),
doi:10.1088/1126-6708/2008/01/035.

[55] Steven Weinberg,Cosmology,Oxford University Press, 2008.

[56] J. A. Wheeler, Geometrodynamics, Academic Press, New York and
London, 1962.

[57] C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation, Freeman,
San Francisco,1973.

[58] Remo Garattini, Spacetime Foam approach to the cosmological con-
stant and entropy,Int. J. Mod. Phys. D., 4 (2002), 635–652.

[59] Remo Garattini, Spacetime Foam Approach to the Schwarzschild-de
Sitter Entropy, Entropy, 2 (2000), 26–38.

[60] Remo Garattini, Entropy and the cosmological constant: a spacetime-
foam approach, Nucl.Phys.Proc.Suppl., 88 (2000), 297–300.

38



[61] Remo Garattini, Entropy from the foam, Phys.Lett.B., 459 (1999),
461–467.

[62] Fabio Scardigli, Black Hole Entropy: a spacetime foam approach,
Class.Quant.Grav., 14 (1997), 1781–1793.

[63] Fabio Scardigli, Generalized Uncertainty Principle in Quantum Grav-
ity from Micro-Black Hole Gedanken Experiment, Phys.Lett.B., 452
(1999), 39–44.

[64] Fabio Scardigli, Gravity coupling from micro-black holes,
Nucl.Phys.Proc.Suppl., 88 (2000), 291–294.

[65] Luis J. Garay, Thermal properties of spacetime foam, Phys.Rev. D.,
58 (1998), 124015.

[66] Luis J. Garay, Spacetime foam as a quantum thermal bath,
Phys.Rev.Lett., 80 (1998), 2508–2511.

[67] Y. J. Ng and H. van Dam, Measuring the foaminess of space-time with
gravity-wave interferometers, Found. Phys., 30 (2000), 795–805.

[68] Y. J. Ng, Spacetime foam, Int. J. Mod. Phys. D., 11 (2002), 1585–
1590.

[69] Y. J. Ng, Selected topics in Planck-scale physics, Mod.Phys.Lett.A.,
18 (2003), 1073–1098.

[70] Y. J. Ng, Quantum Foam, arxiv.org/abs/gr-qc/0401015.

[71] Y. J. Ng, H. van Dam, Spacetime Foam, Holographic Principle, and
Black Hole Quantum Computers, Int.J.Mod.Phys.A., 20 (2005), 1328–
1335.

[72] W.A. Christiansen, Y. Jack Ng, H. van Dam, Probing spacetime foam
with extragalactic sources, Phys.Rev.Lett., 96 (2006), 051301.

[73] Y. J. Ng, Holographic Foam, Dark Energy and Infinite Statistics,
Phys.Lett.B., 657 (2007), 10–14.

39



[74] Y. J. Ng, Spacetime Foam and Dark Energy, AIP Conf.Proc., 1115
(2009), 74–79.

[75] A. Wayne Christiansen, David J. E. Floyd, Y. Jack Ng, Eric S. Perl-
man, Limits on Spacetime Foam, Phys.Rev.D., 83 (2011), 084003.

[76] G. Amelino-Camelia, An interferometric gravitational wave detector
as a quantum-gravity apparatus, Nature, 398 (1999), 216–218.

[77] L. Diosi and B. Lukacs, On the minimum uncertainties of space-time
geodesics, Phys. Lett. A., A142 (1989), 331–334.

[78] E.P. Wigner, Relativistic Invariance and Quantum Phenomena, Rev.
Mod. Phys.,29 (1957), 255–281; H.Salecker and E.P. Wigner, Quan-
tum Limitations of the Measurement of Space-Time Distances,
Phys.Rev., 109 (1958), 571–584.

[79] G. ’T.Hooft, Dimensional reduction in quantum gravity.Essay dedi-
cated to Abdus Salam (1993),arXiv:gr-qc/9310026.

[80] G. ’T.Hooft,The Holographic Principle,(2000),arXiv: hep-th/0003004.

[81] L.Susskind, The World as a hologram, J. Math. Phys,36 (1995), 6377–
6396 .

[82] R. Bousso, The Holographic principle, Rev. Mod. Phys, 74 (2002),
825–874 .

[83] J. D. Bekenstein, Black holes and entropy, Physical Review D., 7
(1973), 2333—2346.

[84] S. W. Hawking, Black holes and thermodynamics, Physical Review D.,
13 (1976), 191—197.

[85] S. Kobayashi, K. Nomozu, Foundations of Differential Geometry, V.II,
nterscience Publishers, New York-London-Sydney, 1969.

40


