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Abstract

The photons within the box with the different edges generates pressure as the
analogue of the Casimir zero-energy vacuum photons, or, quantum mechanical pres-
sure of particles within such box. However, with regard to the fact that the photon
gas has the temperature T, it is necessary to perform the transformation to the ther-
modynamical situation in the box. Then, the so called finite-temperature Casimir
pressure on the wall of the thermal box is derived. The submitted approach can be
easily generalized to phonon thermal bath, magnon thermal bath and so on.

Introduction

The Casimir effect and the Casimir-Polder force are physical forces aris-

ing from a quantized field. They are named after the Dutch physicist

Hendrik Casimir who predicted it in 1948.
The Casimir effect is an interaction between disjoint neutral bodies

caused by the fluctuations of the electrodynamic vacuum. It can be ex-
plained by considering the normal modes of electromagnetic fields, which
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explicitly depend on the boundary (or matching) conditions on the inter-
acting bodies surfaces. Since electromagnetic field interaction is strong for
a one-atom-thick material, the Casimir effect is of interest for graphene
too.

At the most basic level, the field at each point in space is a simple quan-
tum harmonic oscillator. Excitations of the field (oscillator) correspond to
the elementary particles of particle physics. However, even the vacuum
has a complex structure, all calculations must be made in relation to such
model of the vacuum.

The Casimir effect at finite temperature is the integral part of the
finite-temperature (7" # 0) QED, QFT and also quantum chromodynam-
ics (QCD) which usually deal with the specific processes in the heat bath
of photons or other particles (Donoghue et al., 1985). The heat bath can
be formed by different kinds of elementary particles and so such different
hot media have a different influence on the same specific physical process
developing in the media. We consider here the influence of the heat bath
photons on the energy shift inside of the thermal box, leading to the at-
traction of the capacitor plates with a separation a .

The photons at the temperature T' form so called blackbody, which has
the distribution law of photons derived in 1900 by Planck (1900, 1901),
(Schopf, 1978). The derivation was based on the investigation of the statis-
tics of the system of oscillators inside of the blackbody. Later Einstein
(1917) derived the Planck formula from the Bohr model of atom where
electrons have the discrete energies and the energy of the emitted photons
are given by the Bohr formula hiw = F; — Ey, E;, E; are the initial and
final energies of electrons.

2 The Casimir effect at zero temperature

In order to understand the Casimir effect, we follow Holstein (1992) and
imagine two capacitor plates with a separation a. The field modes permit-
ted by the boundary condition have the electrical intensity vanishing on the
surface on the plates. If the normal to the surface defines the z-direction,
then for the propagation in this direction wavelength varies from zero to a.
If the zero point energy of the oscillators representing the quantum field is
hwy /2 (Berestetskii et al., 1999), then then the total energy between the
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plates is given by the formula

Ula) = ¥ ;hwk. (1)

k
When the plate separation is increased, more modes are permitted so the
energy is increasing function of separation a. In case that the separation
a is lowered, then the energy is also lowered which means that the change

of energy is force of the form:

_ 0U(a)
F=- P (2)

The force has been detected for instance by Sparnay (1958) and repre-

sents the macroscopic manifestation of the validity of quantum field theory.

The quantitative evaluation of the Casimir force is as follows. Let be
wave numbers k., k, in the z,y direction. Then the density of states is
given by the formula

A’k
4/ ®
where A is the area of the plates.
In the z-direction, on the other hand, the boundary conditions E(0) =
E(a) = 0 requires

E ~sin(k.z) (4)
with
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The frequencies are
J/& + k2 + <m>2 (6)
Wi = — .

The total vacuum energy of photons (with two polarizations) between
plates is evidently as follows:
x d’k 1
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Defining



k= k24 k2 (8)

we have from eq. (5)

kdk = wdw 9)

and the new mathematical form of the total intermediate vacuum energy
is

Ua) = Ale > du®. (10)

Using the cutoff operation with exp(—ew), we get the following formulas:
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After application the formula with the Bernoulli numbers B,, (Prudnikov
et al., 1984)

Ad2oolm Ad2(1 1)
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we get for € — 0 the final formula for the attraction of two plates immersed

in the quantum vacuum (Holstein, 1992):

_ 1
240a4 (13)

Now, we can approach the calculation of the attractive force due to the
photons of the blackbody sea.

3 The Casimir effect at finite temperature due to
blackbody photons

The blackbody photons are supposed in the box with the edges [;, lo, I3
and the situation is the analogue of the quantum mechanical particle inside
such box. However with regard to the fact that the photon gas has the



temperature T, it is necessary to perform the following transformation to
the thermodynamical system in the box:

Ua) =2 ;ﬁwk — Xk: (w,%g) thk (14)

k e FpT — 1

with

2 2 2
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So, the energy of photons in the photon sea is

2
w hw
U(CL) Z ni,N92,N3 hwnlz;ﬁ;,na . (16)
ni,ng,n3 e

7TC3 k.BT . 1

It is elementary statement that if [; — oo, ly — 00, l3 — 00, we get the
classical Planck distribution

with (Feynman, 1972; Isihara, 1971)

00 WQ(/CBT)4
U (blackbody) = /0 o(w)dw = oT* o= EET R (18)
The force in the x-direction is
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The force in the y-direction is
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and the force in the z-direction is
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The specific pressure on the unit area lsls, l1l3, l1ls. is
1 1 OU(ly,1y,13)
= —F,=— , 22
b5 =0 T (22)
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In case of the equal edges of the thermal bath i.e. [y =1y = [3 = [, the
specific pressures are equal and it means that

1 h nym\ 2 Nnom\ 2 nam\ 2
v=5.2, () [(z) (7)) + (%)
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eksT — ] (ekBT _ 1> B

Let us remark that the three-dimensional sums in egs. (16), (19-22),

X

(23-25) is not easy to calculate because they are not considered as the inte-
gral part of the standard mathematics. So, we can simplify the calculation
by the so called continual limit. In other words, we perform replacing of
the the sum by the w-integral and for eq. (25) we get:
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Now, we are prepared to evaluate the w-integral in the last formula.

Putting



ho  akgT ksT. kT
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we get equation in the following form:
1 33 xle®
= ~d 05 — . 28

According to textbook (Rumer et al., 1977)

/ dz——— =T(n+1){(n+1). (29)
and (Prudnikov et al., 1984)
/ > dmﬂ = 227174 By, |. (30)
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In case of the specification of n, we get (Rumer et al., 1977)
= 3 md
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and (Prudnikov et al., 1984)
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follows from the general formula (12).
So, the final formula for the so called Casimir effect at finite temperature
is the numerical form of the formula (28). Or,

) )] e

The last author formula is the original one and it was not published in
the scientific physical research journals. The submitted approach can be
easily generalized to phonon thermal bath, magnon thermal bath and and
so on, or astrophysical thermal bath.



4 Discussion

We have seen how the thermal photons with the Planck blackbody statis-
tics generated the Casimir effect at finite temperature. The motivation for
considering such problem can be seen in quantum mechanics with the elec-
tron confined in the box with the infinite barriers at point 0 and [. Then,
the energy levels of electron inside the box is (Sokolov et al. 1962)

772h2n2
2ml?

and the corresponding wave function is

Yy = \I?sin (7771?) : (36)

The quantum pressure caused by the quantum mechanical motion of

E, = (35)

particle is obtained by the same operation as in the Casimir effect. Or,

OFE,  7w2h’n?
F=— 5 = B (37)

In case that the thermal box is three dimensional, we get (Sokolov et

al., 1962 )
7T2h2 i 2 N9 2 ns
D 2m [(h) +<12> +<l3>] (38)

and the corresponding wave function is

n1,n2,n3 = SIN | 7TTNMN1— | SIN (7TNo— | S1INN | TNa— | .
2, 11503 ' 21y 31

The corresponding pressures are

~~
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Let us only remark that the quantum pressure derived here is the perfect
proof that the wave function in quantum mechanics is physical reality
independent on the human mind, and not only mathematical object. The
wave function is in such a way the objective form of matter, where matter
is continuum which forms Universe.

The article is the continuation of the previous and related problems in
the finite-temperature physics published by author (Pardy, 1989a; ibid.,
1989b; ibid., 1994; ibid., 2013a; ibid., 2013b).

Information on the systematic examination of the finite temperature
effects in quantum electrodynamics (QED) at one-loop order was given
by Donoghue, Holstein and Robinett (1985). They have treated the cal-
culation of mass, charge, wave function renormalization and so on, and
demonstrated the running of the coupling constant at finite temperature
and discussed the normalized vertex function and the energy momentum
tensor.

Serge Haroche (2012) and his research group in the Paris microwave
laboratory used a small cavity between two mirrors about three centimeter
apart. During the long life-time of photons many quantum experiments
were performed with the Rydberg atoms. We consider here the gas of
photons (at temperature T) as the preamble for new experiments for the
determination of the Casimir energy pressure of photon gas. It is not
excluded, that the experiments performed by the well-educated physical
experts will be the Nobelian ones.
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