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Abstract

The photons within the box with the different edges generates pressure as the
analogue of the Casimir zero-energy vacuum photons, or, quantum mechanical pres-
sure of particles within such box. However, with regard to the fact that the photon
gas has the temperature T, it is necessary to perform the transformation to the ther-
modynamical situation in the box. Then, the so called finite-temperature Casimir
pressure on the wall of the thermal box is derived. The submitted approach can be
easily generalized to phonon thermal bath, magnon thermal bath and so on.

1 Introduction

The Casimir effect and the Casimir-Polder force are physical forces aris-

ing from a quantized field. They are named after the Dutch physicist

Hendrik Casimir who predicted it in 1948.

The Casimir effect is an interaction between disjoint neutral bodies

caused by the fluctuations of the electrodynamic vacuum. It can be ex-

plained by considering the normal modes of electromagnetic fields, which
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explicitly depend on the boundary (or matching) conditions on the inter-

acting bodies surfaces. Since electromagnetic field interaction is strong for

a one-atom-thick material, the Casimir effect is of interest for graphene

too.

At the most basic level, the field at each point in space is a simple quan-

tum harmonic oscillator. Excitations of the field (oscillator) correspond to

the elementary particles of particle physics. However, even the vacuum

has a complex structure, all calculations must be made in relation to such

model of the vacuum.

The Casimir effect at finite temperature is the integral part of the

finite-temperature (T ̸= 0) QED, QFT and also quantum chromodynam-

ics (QCD) which usually deal with the specific processes in the heat bath

of photons or other particles (Donoghue et al., 1985). The heat bath can

be formed by different kinds of elementary particles and so such different

hot media have a different influence on the same specific physical process

developing in the media. We consider here the influence of the heat bath

photons on the energy shift inside of the thermal box, leading to the at-

traction of the capacitor plates with a separation a .

The photons at the temperature T form so called blackbody, which has

the distribution law of photons derived in 1900 by Planck (1900, 1901),

(Schöpf, 1978). The derivation was based on the investigation of the statis-

tics of the system of oscillators inside of the blackbody. Later Einstein

(1917) derived the Planck formula from the Bohr model of atom where

electrons have the discrete energies and the energy of the emitted photons

are given by the Bohr formula h̄ω = Ei − Ef , Ei, Ef are the initial and

final energies of electrons.

2 The Casimir effect at zero temperature

In order to understand the Casimir effect, we follow Holstein (1992) and

imagine two capacitor plates with a separation a. The field modes permit-

ted by the boundary condition have the electrical intensity vanishing on the

surface on the plates. If the normal to the surface defines the z-direction,

then for the propagation in this direction wavelength varies from zero to a.

If the zero point energy of the oscillators representing the quantum field is

h̄ωk/2 (Berestetskii et al., 1999), then then the total energy between the
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plates is given by the formula

U(a) =
∑
k

1

2
h̄ωk. (1)

When the plate separation is increased, more modes are permitted so the

energy is increasing function of separation a. In case that the separation

a is lowered, then the energy is also lowered which means that the change

of energy is force of the form:

F = −∂U(a)
∂a

. (2)

The force has been detected for instance by Sparnay (1958) and repre-

sents the macroscopic manifestation of the validity of quantum field theory.

The quantitative evaluation of the Casimir force is as follows. Let be

wave numbers kx, kz in the x, y direction. Then the density of states is

given by the formula

A
∫ d2k

(2π)2
, (3)

where A is the area of the plates.

In the z-direction, on the other hand, the boundary conditions E(0) =

E(a) = 0 requires

E ∼ sin(kzz) (4)

with

kz =
nπ

a
n = 1, 2, .... (5)

The frequencies are

ωk =

√√√√k2x + k2y +

(
nπ

a

)2
. (6)

The total vacuum energy of photons (with two polarizations) between

plates is evidently as follows:

U(a) = 2
∞∑
n=1

A
∫ d2k

(2π)2
1

2
ωk. (7)

Defining
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k =
√
k2x + k2y, (8)

we have from eq. (5)

kdk = ωdω (9)

and the new mathematical form of the total intermediate vacuum energy

is

U(a) = A
∞∑
n=1

1

2π

∫ ∞
nπ
a

dωω2. (10)

Using the cutoff operation with exp(−εω), we get the following formulas:

U(a) =
A

2π

∞∑
n=1

∫ ∞
nπ
a

dωω2e−εω =
A

2π

d2

dε2

∞∑
n=1

∫ ∞
nπ
a

dωe−εω =

A

2π

d2

dε2

∞∑
n=1

1

ε
e−

nπε
a =

A

2π

d2

dε2
1

ε

(
1

1− e
επ
a
− 1

)
. (11)

After application the formula with the Bernoulli numbers Bn (Prudnikov

et al., 1984)

1

1− e−t
= −

∞∑
n=1

Bn
tn−1

n!
, (12)

we get for ε→ 0 the final formula for the attraction of two plates immersed

in the quantum vacuum (Holstein, 1992):

1

A
F = − ∂

∂a

1

A
U(a) = − π2

240a4
. (13)

Now, we can approach the calculation of the attractive force due to the

photons of the blackbody sea.

3 The Casimir effect at finite temperature due to

blackbody photons

The blackbody photons are supposed in the box with the edges ll, l2, l3
and the situation is the analogue of the quantum mechanical particle inside

such box. However with regard to the fact that the photon gas has the
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temperature T , it is necessary to perform the following transformation to

the thermodynamical system in the box:

U(a) =
∑
k

1

2
h̄ωk →

∑
k

 ω2
k

πc3

 h̄ωk

e
h̄ωk
kBT − 1

(14)

with

ωk = ωn1,n2,n3
=

√√√√(n1π
l1

)2
+

(
n2π

l2

)2
+

(
n3π

l3

)2
. (15)

So, the energy of photons in the photon sea is

U(a) =
∑

n1,n2,n3

ω2
n1,n2,n3

πc3

 h̄ωn1,n2,n3

e
h̄ωn1,n2,n3

kBT − 1
. (16)

It is elementary statement that if l1 → ∞, l2 → ∞, l3 → ∞, we get the

classical Planck distribution

ϱ(ω) →
 ω2

πc3

 h̄ω

e
h̄ω
kBT − 1

(17)

with (Feynman, 1972; Isihara, 1971)

U(blackbody) =
∫ ∞

0
ϱ(ω)dω = σT 4; σ =

π2(kBT )
4

15h̄3c3
. (18)

The force in the x-direction is

Fx = −∂U(l1, l2, l3
∂l1

=
∑

n1,n2,n3

(
h̄

πc3

) (
n1π

l1

)2 1

l1
×

 3ω

e
h̄ω
kBT − 1

− ω2e
h̄ω
kBT(

e
h̄ω
kBT − 1

)2 h̄

kBT

 . (19)

The force in the y-direction is

Fy = −∂U(l1, l2, l3)
∂l2

=
∑

n1,n2,n3

(
h̄

πc3

) (
n2π

l2

)2 1

l2
×

 3ω

e
h̄ω
kBT − 1

− ω2e
h̄ω
kBT(

e
h̄ω
kBT − 1

)2 h̄

kBT

 (20)
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and the force in the z-direction is

Fz = −∂U(l1, l2, l3)
∂l3

=
∑

n1,n2,n3

(
h̄

πc3

) (
n3π

l3

)2 1

l3
×

 3ω

e
h̄ω
kBT − 1

− ω2e
h̄ω
kBT(

e
h̄ω
kBT − 1

)2 h̄

kBT

 . (21)

The specific pressure on the unit area l2l3, l1l3, l1l2. is

p23 =
1

l2l3
Fx = − 1

l2l3

∂U(l1, l2, l3)

∂l1
, (22)

p13 =
1

l1l3
Fy = − 1

l1l3

∂U(l1, l2, l3)

∂l2
, (23)

p12 =
1

l1l2
Fz = − 1

l1l2

∂U(l1, l2, l3)

∂l3
. (24)

In case of the equal edges of the thermal bath i.e. l1 = l2 = l3 = l, the

specific pressures are equal and it means that

p =
1

3l5
∑

n1,n2,n3

(
h̄

πc3

) (n1π
l

)2
+

(
n2π

l

)2
+

(
n3π

l

)2 ×

 3ω

e
h̄ω
kBT − 1

− ω2e
h̄ω
kBT(

e
h̄ω
kBT − 1

)2 h̄

kBT

 . (25)

Let us remark that the three-dimensional sums in eqs. (16), (19–22),

(23–25) is not easy to calculate because they are not considered as the inte-

gral part of the standard mathematics. So, we can simplify the calculation

by the so called continual limit. In other words, we perform replacing of

the the sum by the ω-integral and for eq. (25) we get:

p =
1

3l5

(
h̄

πc3

) ∫ ∞

0
dωω2

 3ω

e
h̄ω
kBT − 1

− ω2e
h̄ω
kBT(

e
h̄ω
kBT − 1

)2 h̄

kBT

 . (26)

Now, we are prepared to evaluate the ω-integral in the last formula.

Putting
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x =
h̄ω

kBT
; ω =

xkBT

h̄
; dω = dx

kBT

h̄
; C =

kBT

h̄
, (27)

we get equation in the following form:

p =
1

3l5

(
h̄

πc3

) ∫ ∞

0
dxC5

 3x3

ex − 1
− x4ex

(ex − 1)2

 . (28)

According to textbook (Rumer et al., 1977)

∫ ∞

0
dx

xn

ex − 1
= Γ(n+ 1)ζ(n+ 1). (29)

and (Prudnikov et al., 1984)

∫ ∞

0
dx

x2nex

(ex − 1)2
= 22n−1π4|B2n|. (30)

In case of the specification of n, we get (Rumer et al., 1977)

∫ ∞

0
dx

x3

ex − 1
= Γ(4)ζ(4) = 3!

π4
90

 (31)

and (Prudnikov et al., 1984)

∫ ∞

0
dx

x4ex

(ex − 1)2
= 23π4

∣∣∣∣∣− 1

30

∣∣∣∣∣ = 23π4
1

30
, (32)

where

|B4| =
∣∣∣∣∣− 1

30

∣∣∣∣∣ = 1/30 (33)

follows from the general formula (12).

So, the final formula for the so called Casimir effect at finite temperature

is the numerical form of the formula (28). Or,

p =
1

3l5

(
h̄

πc3

) (
kBT

h̄

)5 3.3!
π4
90

− 23
π4
30

 . (34)

The last author formula is the original one and it was not published in

the scientific physical research journals. The submitted approach can be

easily generalized to phonon thermal bath, magnon thermal bath and and

so on, or astrophysical thermal bath.
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4 Discussion

We have seen how the thermal photons with the Planck blackbody statis-

tics generated the Casimir effect at finite temperature. The motivation for

considering such problem can be seen in quantum mechanics with the elec-

tron confined in the box with the infinite barriers at point 0 and l. Then,

the energy levels of electron inside the box is (Sokolov et al. 1962)

En =
π2h̄2n2

2ml2
(35)

and the corresponding wave function is

ψn =

√√√√2

l
sin

(
πn
x

l

)
. (36)

The quantum pressure caused by the quantum mechanical motion of

particle is obtained by the same operation as in the Casimir effect. Or,

F = −∂En

∂l
=
π2h̄2n2

ml3
. (37)

In case that the thermal box is three dimensional, we get (Sokolov et

al., 1962 )

En1,n2,n3
=
π2h̄2

2m

(n1
l1

)2
+

(
n2
l2

)2
+

(
n3
l3

) (38)

and the corresponding wave function is

ψn1,n2,n3
=

√√√√ 8

l1l2l3
sin

(
πn1

x

l1

)
sin

(
πn2

x

l2

)
sin

(
πn3

x

l3

)
. (39)

The corresponding pressures are

p23 = − 1

l2l3

∂En1,n2,n3

∂l1
(40)

p13 = − 1

l1l3

∂En1,n2,n3

∂l2
(41)

p12 = − 1

l1l2

∂En1,n2,n3

∂l3
. (42)

8



Let us only remark that the quantum pressure derived here is the perfect

proof that the wave function in quantum mechanics is physical reality

independent on the human mind, and not only mathematical object. The

wave function is in such a way the objective form of matter, where matter

is continuum which forms Universe.

The article is the continuation of the previous and related problems in

the finite-temperature physics published by author (Pardy, 1989a; ibid.,

1989b; ibid., 1994; ibid., 2013a; ibid., 2013b).

Information on the systematic examination of the finite temperature

effects in quantum electrodynamics (QED) at one-loop order was given

by Donoghue, Holstein and Robinett (1985). They have treated the cal-

culation of mass, charge, wave function renormalization and so on, and

demonstrated the running of the coupling constant at finite temperature

and discussed the normalized vertex function and the energy momentum

tensor.

Serge Haroche (2012) and his research group in the Paris microwave

laboratory used a small cavity between two mirrors about three centimeter

apart. During the long life-time of photons many quantum experiments

were performed with the Rydberg atoms. We consider here the gas of

photons (at temperature T) as the preamble for new experiments for the

determination of the Casimir energy pressure of photon gas. It is not

excluded, that the experiments performed by the well-educated physical

experts will be the Nobelian ones.

References

Berestetzkii, V. B., Lifshitz, E. M. and Pitaevskii, L. P., Quantum electro-

dynamics, (Butterworth-Heinemann, Oxford, 1999).

Donoghue, J. F., Holstein, B. R. and Robinett, R. W. (1985).Quantum

electrodynamics at finite temperature, Ann. Phys. (NY), 164, No. 2, 233.

Einstein, A. (1917). Zur Quantentheorie der Strahlung, Physikalische

Zeitschrift, 18, 121.

Feynman, R. P. Statistical mechanics, (W. A. Benjamin, Inc., Reading,

Massachusetts, 1972).

9



Haroche S. (2012). The secrets of my prizewinning research, Nature, 490,

311.

Holstein, B. R. Topics in advanced quantum mechanics, (Addison-Wesley

Publishing Company, Redwood City, CA, USA, 1992).

Isihara, A. Statistical mechanics, (Academic Press, New York,London,

1971).

Pardy, M. (1989a). Finite-temperature Čerenkov radiation, Phys. Lett.
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