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I. INTRODUCTION

When a femtosecond laser pulse with power above the critical for self-focusing propagates in air, a number of new
physical effects have been observed, such as long-range self-channeling [1, 2], coherent and incoherent THz and GHz
emission [3–5], asymmetric pulse shaping, super-broad spectra [6, 7, 10–12] and others. A remarkable effect is also
that some of the light pulses propagate over distances of several kilometers, preserving their spectrum and shapes
[1, 2, 8]. In one typical experiment in the near zone up to 1 − 3 m from the source, when the pulse’s intensity
exceeds I > 1012W/cm2, initial self-focusing and self-compressing starts, which leads to enlarging the kz spectrum
to super-broad asymmetric one 4kz ≈ k0. The process increases the core intensity up to 1014W/cm2, where a short
plasma column in the nonlinear focus is observed. Usually the standard model describing the propagation in the
near zone is a scalar spatio-temporal nonlinear paraxial equation including in addition terms with plasma ionization,
higher order Kerr terms, multiphoton ionization and others [14, 21]. The basic model works well partially in the near
zone because of the fact that paraxial approximation is valid only for pulses with narrow-band spectrum 4kz << k0.
In the far-away zone plasma generation and higher-order Kerr terms are also included as necessary for the balance
between the self-focussing and plasma defocussing and for obtaining long range self-channeling in gases. However,
the above explanation of filamentation is difficult to be applied in the far-away zone. The higher-order Kerr terms
for pulses with intensities of order of I ∼ 1012W/cm2 are also too small to prevent self-focussing. As reviewed in
[9, 15–17, 22] the plasma density at long distances from the source is much weaker. There are basically two main
characteristics which remain the same at these distances - the superbroad spectrum and the width of the core, while
the intensity in a stable filament drops to a value of 1012W/cm2. To explain existing of plasma free filamentation
some authors extend the basic model to a model, where hot spots can be formed from the energy reservoir onto the
plasma [15–17]. The experiments, where observation of long-range self-channeling without ionization was realized
[16, 17, 22–24], show the need to change the role of the plasma in the laser filamentation. In addition, there are
difficulties with the physical interpretation of the coherent THz radiation as a result of plasma generation. The light
pulse near the nonlinear focus emits incoherent and non-homogenous plasma [5, 9], while the coherent THz radiation
requires homogenous plasma with fixed electron density of the order of 1016 cm−13. Only homogenous plasma can
generate coherent THz emission, but such kind of plasma is absent in the process of filamentation. The contribution
from ionization in the far-away zone is negligible [9, 21] and this is the reason to look for other physical mechanism
which could lead to emission of coherent THz or GHz radiations. Our analysis of the third order nonlinear polarization
of pulses with broadband spectrum indicates that the nonlinear term in the corresponding envelope equation oscillates
with frequency proportional to the group and phase velocity difference Ωnl = 3(k0vph − vgr4kz). Actually, this is
three times the well-known Carrier-to Envelope Phase (CEP) difference [25]. This oscillation induces THz generation,
where the generated frequency is exactly ΩTHz = 93GHz for a pulse with superbroad spectrum 4kz ≈ k0 with a
carrier wavelength of 800 nm. All pointed above contradictions between the latest experiments and the standard
model make it necessary to look for other physical mechanisms and a new mathematical model for description of
these processes.

In this paper we try to answer the following main question: What will happen in the linear and nonlinear regime
of propagation, when the pulse obtains a super-broad spectrum? Solving this problem, we present a mathematical
model on the basis of the Amplitude Envelope (AE) equation, up to second order of dispersion, without using paraxial
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approximation. The diffraction of pulses with super-broad spectrum or pulses with few cycles under the envelope
is closer to wave type [26, 27]. Other important difference from the standard model is in the nonlinear part. We
show that if CEP is used, the third order nonlinear term for fs pulses cannot be separated into a self-action and
third harmonics (GHz) term. For such pulses, a new physical mechanism of balance between non-paraxial (wave-type
diffraction) and third order nonlinearity appears. Exact analytical three-dimensional soliton solution in this regime
is found.

II. LINEAR REGIME OF NARROW-BAND AND BROAD-BAND OPTICAL PULSES

The typical core of one single filament in the far-away zone is white and the pulse obtains a super-broad spectrum
4kz ' k0. Narrow-band pulses are called those, in which the spectral width ∆λz is much smaller than the main
wavelength of the laser source λ0. For spectrally narrow pulse the condition ∆kz << k0 is satisfied. The spectrum
and the phase of a pulse can be modulated with different optical devices and nonlinear elements. Thus, the width
of the spectrum of phase-modulated pulse can exceed the width of the spectrum of the spectrally-limited pulses and
can reach values in the range of the wave number of the fundamental laser radiation ∆kz ∼ k0. Broad-band pulses
are called the phase-modulated or spectrally limited ones, whose spectral width is of the order of the wavelength of
the laser radiation (∆λz ∼ λ0 or ∆kz ∼ k0).

The first problem we try to solve here is: what is the diffraction of broad-band optical pulses? The linearized AE,
governing the propagation of laser pulses when the dispersion is limited to second order, is [28]:
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Laplace operator . Equation (1) is obtained from the Maxwell’s equations for non-stationary optical response and is
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is strongly convergent. The convergence of the series (2) for spectrally limited pulses, propagating in the transparent
optical regions of solids materials, liquids and gases, depends on the density of the materials and on the spectral
broadening of the pulses. For narrow-band wave packets (more than 10 cycles under the envelope), the series of k2(ω)
is strongly convergent in air and the third derivative term is smaller than the second derivative term by five to six
orders of magnitude. In this case we can cut the series to second derivative in gases, as the next terms in the series
contribute very little to the Fourier integrals. When there are 1−6 cycles under pulse (broad-band spectra), the series
of k2(ω) is weakly convergent for solids and continue to be strongly convergent for gases. Then, for dielectrics we must
take into account the dispersion terms of higher order as small parameters, while in air the higher order dispersion
terms are still negligible [29]. One alternative approach the including while n(w) in the nonlinear equations for short
pulses was realized recently in [30] In addition, even if we use also the variation of second order of the dispersion
(from 400 nm up to 1000 nm) in air, the values of the dimensionless dispersion parameter β = k”k0v

2
gr continue to

be small in the range β < 10−4 and one averaged small value can be used. That is why we can use the AE equation
(1) in air up to the single-cycle regime.

There are mainly two approximations to the linear part of the standard model of filamentation. The first is simply
the paraxial spatio-temporal (PST) envelope equation
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where 4⊥ denotes the transverse (x, y) Laplace operator. The second add only a mixed zt term in ”local time”
coordinate system z′ = z, τ = t− z/v
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Both relies on one approximation realized after neglecting the second derivative in the propagation direction. In order
to compare our investigation with these results, we need to rewrite AE equation (1) and PST equation (3) in the
same coordinate system. Thus, Eq. (1) becomes:
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while Eq. PST (3) is transformed into:
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As a next step we try to find a fundamental solution of (5). Since this is a parabolic type equation with low
order derivative over z, we apply Fourier transformation to the amplitude function in the form: Â (kx, ky,4ω, z) =
FFF [A (x, y, z, t)], where FFF denotes the 3D Fourier transformation in the x, y, τ space and 4ω = ω − ω0; 4kz =
4ω/vgr are the spectral widths in the frequency and wave number domains correspondingly. The following ordinary
differential equation in the (kx, ky,4ω, z) space is obtained:
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Analyzing equation (7), we will estimate where we can reduce the diffraction and dispersion of (5) to the standard
spatio-temporal paraxial optics of Eq.(6) and where the paraxial optics does not work. The fundamental solution of
Eq.(7) is:

Â (kx, ky,4ω, z) = Â (kx, ky,4ω, 0)×

exp
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The analysis of the fundamental solution (8) of equation (7) is performed in two basic cases:
a: Narrow band pulses - from nanosecond up to 10− 20 femtosecond laser pulses, where the conditions:
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vgr
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gr
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y << k2
0, (9)

are satisfied, and the wave number’s difference k0 − 4kz can be replaced by k0. Using the low order of the Taylor
expansion and the minus sign in front of the square root from the initial conditions, the spectral kernel in equation
(8) is transformed in a spatio - temporal paraxial spectral kernel of the kind:

Â (kx, ky,4ω, z) = Â (kx, ky,4ω, 0) exp
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gr
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It is clearly seen that the spectral kernel (10), governing the evolution of narrow-band pulses, is simply the spectral
kernel of the PST equation (6). Thus, when k0 >> 4kz one spatio-temporal approximation can be used, while the
linear equation with mixed term (4) is not correct at all.

If we do not use an initially modulated pulse, the shaping becomes obvious: while the transverse projection of the
pulse enlarges by the Fresnel’s law, the longitudinal temporal shape will enlarge in the same away, proportionally to the
dispersion parameter β. Such transformation of a pulse with initially narrow band spectrum is demonstrated in Fig.1,
where the typical Fresnel diffraction of the intensity profile ((x, y) projection) is presented. The numerical experiment
is performed for 100 femtosecond Gaussian initial pulse at λ = 800 nm, ∆kz << k0, z0 = 30µm, r0(x, y) = 60µm,
with 37.5 cycles under the envelope propagating in air (β = 2.1×10−5). The result is obtained by solving numerically
the inverse Fourier transform of the fundamental solution (8) of the AE equation in the local time frame (5). The
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FIG. 1: Plot of the waist (intensity) projection |A(x, y)|2 of a 100 fs Gaussian pulse at λ = 800 nm, with initial spot r0 = 60
µm, and longitudinal spatial pulse duration z0 = 30 µm, as a solution of the linear equation in local time (5) over distance
expressed in diffraction lengths. The spot deformation satisfies the Fresnel diffraction law and on one diffraction length z = zdiff

the diameter of the spot increases twice, while the maximum of the pulse decreases by the same factor.

FIG. 2: Side (x, τ) projection of the intensity |A(x, τ)|2 for the same optical pulse as in Fig. 1. The (x, y) projection of the
pulse diffracts considerably following the Fresnel law, while the (τ) projection over several diffraction lengths preserves its initial
shape due to the small dispersion.

spot enlarges twice at one diffraction length zdiff = r2
0k0. Fig. 2 presents the intensity side (x, τ) projection of the

same pulse. We should note that while the spot ((x, y) projection) enlarges considerably due to the Fresnel law, the
longitudinal time shape (the τ projection) remains the same over several diffraction lengths due to the small dispersion
in air.

b: broad band pulses - phase modulated fs pulses or pulses with time duration from attosecond to 10 − 20 fem-
toseconds, where the conditions:

β4ω2

v2
gr

≤ k2
x ∼ k2

y ∼ (k0 −4kz)2; 4kz =
4ω

vgr
' k0, (11)

are satisfied.
In air the dispersion parameter is of the order of β = k”k0v

2
gr ' 2.1× 10−5 and can be neglected. That is why for

propagation over several kilometers in air AE (1) can be reduced to the following Diffraction Equation (DE):
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To find the real diffraction-dispersion picture in 3D space, we solve AE (1) and DE (12) in the same way as in
the previous case by applying spatial Fourier transformation to the amplitude functions A and V . The fundamental
solutions of the Fourier images Â and V̂ in (kx, ky,4kz, t) space are:
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FIG. 3: Evolution of the side (x, z) projection of the intensity |A(x, z)|2 of a 10 fs Gaussian initial pulse at λ = 800 nm,
4kz ' k0/3, z0 = r0/2, and only 3 cycles under the envelope (large-band pulse 4kz ≈ k0), obtained by numerical solving of
AE (15) in Galilean frame. At 3 diffraction lengths divergent parabolic type diffraction is observed. In the nonlinear regime a
possibility appears: the divergent parabolic type diffraction for large-band pulses to be compensated by the converged parabolic
type nonlinear focusing.

respectively. In air β ∼ 0, and the fundamental solution (13) of AE (1) is equal to the fundamental solution (14) of
DE (12). That is why in air the diffraction will determine the pulse deformation in the linear regime over a hundred
diffraction lengths from the source.

The difference between the main wave number and the spectral width of a large band pulse (k0 −4kz)2 is a small
number and is of the same order as k2

x ∼ k2
y. The first important conclusion becomes obvious: For broad-band pulses

we cannot replace (k0−4kz)2 with k2
0 and use Taylor expansion near k0 for obtaining PST (6) type equation from the

spectral kernels in Laboratory (13), Galilean (17) or local time (8) frames. Moreover, the spectral and dimmensionless
analysis of the amplitude equation in local time (8) point, that mixed z, t term is of order of second derivative on z
direction and one neglecting ∂2/∂z2 operator only to obtain Eq. (4) is not correct mathematically. And here appears
the first contradiction in the basic model: PST (6) as well as Eq. (4) are used in the linear part of the basic models
even when the pulse’s spectrum becomes super-broad.

Moreover, the spectral kernels (13), (14) (8) are in square root and we can expect evolution governed by wave
diffraction. That is why for broad-band pulses we can expect curvature (parabolic deformation) of the intensity profile
of the (x, z) or (x, τ) side projection. It is important to point out that the τ projection in local time coordinates
corresponds to the z projection in Laboratory and Galilean frames. The deformation of the pulse is equal in all of
these three coordinates with only one difference - while in Lab coordinates the pulse propagates in z direction with
group velocity, in Galilean and local frame it stays at one place. That is why, when we discuss the curvature in the
side (x, τ) projection of the pulse in local time, this is simply the curvature in (x, z) projection in the Lab and Galilean
frames. To investigate the evolution of optical pulses at long distances, it is convenient to rewrite AE (1) and DE
(12) in Galilean coordinate system t′ = t; z′ = z − vgrt respectively:
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and for DE we have:

−i
2k0

v2
gr

∂V

∂t′
= ∆⊥V − 1

v2
gr

(
∂2V

∂t′2
− 2v2

gr

∂2V

∂t′∂z′

)
. (16)

The corresponding fundamental solution of AE (15) in Galilean coordinates is:

ÂG(kx, ky,4kz, t) = ÂG(kx, ky,4kz, t = 0)×
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while the fundamental solution of DE (16) becomes:

V̂G = V̂G(kx, ky,4kz, t = 0)×
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FIG. 4: Fresnel diffraction in air for 330 femtosecond initially non-modulated Gaussian pulse (Fig. 4a) in the form of optical
bullet (t0 = 330 fs; z0 = vgrt0 = r0

∼= 100 µm) at a wavelength λ0 = 800 nm, obtained from the exact analytical solution
(19) of equation (12). Side projection (y,z) of the intensity of the pulse. At a distance of one diffraction length (Fig. 4b) the
amplitude is reduced twice and the half-width in the transverse (x, y) direction enlarges twice. Since dispersion is negligible
in the z direction, the pulse preserves its shape. As a result, there is a typical transverse-plane paraxial diffraction optics and
optical transformation of a bullet into an optical disk (Fig. 4c).

(18)

exp

{
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√
(k0 −4kz)
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x + k2

y

]
t

}
.

Fig 3. presents the evolution of the intensity (side (x, z) projection) of a normalized 10 fs Gaussian initial pulse at
λ = 800 nm; ∆kz ' k0/3; z0 = r0/2; and only 3 cycles under the envelope (broadband pulse), obtained numerically
from AE equation (15) in Galilean frame. The solution confirms the numerically [26] and experimentally [32] observed
parabolic type diffraction of broad-band attocecond pulses. And here appears the main physical question for stable
pulse propagation in nonlinear regime: Is it possible the divergent parabolic intensity distribution due to non-paraxial
diffraction to be compensated by the converging parabolic type nonlinear focusing? If this is the case, then a stable
soliton pulse propagation exists. As we show below, only for broad-band pulses one-directional soliton solution of the
corresponding nonlinear equations can be found.

We solve analytically the convolution problem (14) for initial Gaussian light bullet of the kind V (x, y, z, t = 0) =
exp

(−(x2 + y2 + z2)/2r2
0

)
. The corresponding solution is:

V (x, y, z, t) =
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exp
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2r2
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erfc

[
i√
2r0

(vgrt− r̂)
]}

,

where r̂ =
√

x2 + y2 + (z − ir2
0k0)2. The advantages of this analytical result (19) with respect to the paraxial spatio-

temporal approximation is that this solution governs the evolution not only of pulses with many optical cycles under
the envelope (paraxial evolution), but also the dynamics of pulses with few-cycles, one-cycle and also sub-cycle regime
of propagation. This depends on the values of the (longitudinal) spatial shape r0 and the main wave number k0.
When their product satisfies k0r0 >> 1 we are in the regime of typical paraxial Fresnel diffraction (see Fig. 4).

When we have k0r0 ' 2π (few or single-cycle regime) or k0r0 < 2π (sub-cycle regime), the evolution is closer to
wave type diffraction and the pulse shape becomes parabolic at a few diffraction lengths (see Fig. 5).

The analytical solution of DE in Galilean coordinates (16) for initial pulse in the form of a Gaussian bullet is the
same as (19), but with a new radial component r̃ =

√
x2 + y2 + (z + vgrt− ir2

0k0)2 translated in space and time. The
numerical and analytical solutions of AE (1) and DE (12) are equal to the solutions of the equations AE (15) and
DE (16) in Galilean coordinates with only one difference: in Laboratory frame the solutions translate in z-direction ,
while in Galilean frame the solutions stay in the centrum of the coordinate system.
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FIG. 5: A type of wave diffraction in air for initial Gaussian pulse with duration of two optical time period - (Fig. 5a) on
wavelength λ = 800 nm, obtained from the exact analytical solution (19) of equation (12). Side (y,z) projection of evolution
of the intensity profile is plotted. On a diffraction length (Fig. 5b) the amplitude decreases again as Fresnel diffraction. The
pulse shape takes parabolic profile on few diffraction lengths (see Fig. 5c)

III. A NEW METHOD FOR FINDING EXACT FINITE ENERGY SOLUTION OF THE WAVE
EQUATION

Recently in [34] a systematic study was performed on the different kinds of exact solutions and methods for solving
the wave equation (20). Here, as in [27], we propose another method. From the wave equation:

∆E =
1
v2

∂2E

∂t2
, (20)

starting with the ansatz:

E (x, y, z, t) = V (x, y, z, t) exp [− (ik0(z − vt))] , (21)

we separate the main phase and reduce (20) to 3D + 1 parabolic type equation.
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Thus, the initial value problem can be solved and fundamental (14), exact (19) or numerical solutions of the corre-
sponding amplitude equation (22) can be obtained. We find a solution of the amplitude equation (22) for initial pulse
in the form of a Gaussian bullet (19). Using this method and multiplying (19) with the main phase, we find an exact
solution of the wave equation (20):

E(x, y, z, t) =
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2
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2

)
×
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i√
2r0
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.

If substitute the time variable t = 0 in the solution of the wave equation (23) the initial function of the wave equation
transforms to the form E(x, y, z, 0) = exp(ik0z) exp

(−(x2 + y2 + z2)/2r2
0

)
. Our analytical and numerical calculations

discover that solutions of the wave equation (20) with initial conditions of kind of E(x, y, z, 0) = exp(ik0z)V (x, y, z)
and initial conditions of kind of V (x, y, z, 0) of the corresponding amplitude equations (1) and (22) where V is three
dimensional localized smooth function, produced a translation of the solutions in z direction. The wave equation
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(20) is hyperbolic type ones, while the amplitude equation (22) is of parabolic type and a initial value problems
can be solved (14). And here one method for finding spherically symmetric solutions of the wave equation appear.
We present the initial amplitude function V of the amplitude equation as a product of three dimensional localized
function, multiplied by plane wave with opposite direction

V (x, y, z, 0) = exp(−ik0z)G(x, y, z), (24)

where G is one spherically symmetric function. The corresponding initial amplitude function of the the wave equation
becomes E(x, y, z, 0) = G(x, y, z), and practically, solving initial value problem of (22) with initial conditions of kind
(24), we can found exact spherically symmetric solutions of the wave equation (20). Here we demonstrate how to
obtain with this method the finite energy solution for initial algebraic localized function of the kind

G (x, y, z, t = 0) = 1/[1 + r2/r2
0]. (25)

The 3D Fourier expression of (25) in spherical variables is

G (kr, t = 0) =
π

2kr
exp (−r0kr) . (26)

Hence, the corresponding solution of the amplitude equation after solving the spectral kernels (14) of (22) is

V (x, y, z, t) = exp [−ik0(z − vt)] /

[
r2

r2
0

+
(

1 +
ivt

r0

)2
]

. (27)

Now again by multiplying with the main phase, the corresponding finite energy solution of the wave equation (20)
becomes

E (x, y, z, t) = 1/

[
r2

r2
0

+
(

1 +
ivt

r0

)2
]

. (28)

A large number of localized finite energy solutions of the wave equation (20) using this method were obtained recently
in [35].

IV. NONLINEAR REGIME OF OPTICAL PULSES WITH INITIALLY NARROW BAND SPECTRUM

The laser pulses in a media acquire an additional carrier-to envelope phase (CEP), connected with the group-phase
velocity difference. In the linear amplitude equations AE (1) and DE (12) this phase is absent. It can be seen only
after multiplication of the solution of the amplitude equation with the main plane wave, propagating with the phase
velocity. In one dimensional approximation, an initially cosine wave can be written as:

E = A (z − vgrt) [exp ik0 (z − vpht) + c.c.] /2 = A (z − vgrt) cos[k0 (z − vpht)], (29)

where A is an arbitrary real localized function of z or t. Let us write the expression of the electrical field (29) in
Galilean frame z′ = z − vgrt; t′ = t:

E(z′) = A (z′) cos [k0z
′ − k0 (vph − vgr) t] =

A (z′) (cos k0z
′ − ωcef t) = A (z′) [cos(k0z

′) cos(ωcef t) + sin(k0z
′) sin(ωcef t)] , (30)

where the following Carrier to Envelope Frequency (CEF) ωcef , connected with the carrier to envelope phase CEP
ϕcep(t) can be determined:

ϕcep = ωcef t, (31)
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FIG. 6: Evolution of a nanosecond pulse governed by equation (38). The numerical simulation is performed for 1 ns Gaussian
pulse at carrying wavelength λ0 = 800 nm and intensity a little above the critical for self-focusing. The waist (intensity)
projection |V (x, y)|2 at initial distance z = 0 and distance z = 3zdif is plotted. Typical self-focusing with observing of
nonlinear focus and large base is obtained.

ωcef = k0 (vph − vgr) . (32)

CEF (32) determines the frequency of coincidence between the maximum of the amplitude function, with one of the
maxima of the main plane wave in the process of translation of these maxima with respect to the maximum of the
envelope with velocity equal to the group - phase velocity difference. When ϕcep(t) = 0 or ϕcep(t) = 2nπ, there is a
coincidence between these two maxima. Generally, the electrical field inside the pulse is not a cosine wave, rather it is
a superposition of cosine and sine waves, determinated by the group-phase velocity difference. It is easy to calculate
the CEF for a pulse of TiSa laser at λ0 = 800 nm, propagating in air. For standard atmosphere the result is:

ωCEF
∼= 31 GHz. (33)

As mentioned above, the linear complex amplitude equations AE (1) and DE (12) do not depend on this phase. Let
us see now what is the influence of this phase on the nonlinear polarization of third order. Following the old tradition
from the CW nonlinear optics, a cosine approximation of the third order polarization without considering CEF is
used:

n2E
3 (x, y, z, t) = ~xn2 exp [i(k0(z − vpht)]×

(34){
3
4
|A|2A +

1
4

exp [2i(k0(z − vpht)]A3

}
+ c.c.,

The second term in (34) in CW approximation corresponds to generation of third harmonics (TH). Most authors
neglect this term also in the equations governing the nonlinear pulse propagation, due to the absence of phase velocity
mismatching (which is simply CW terminology), and use only the nonlinearity proportional to the intensity (Kerr
type). As a further step, the nonlinear equation is usually written in ”moving time frame” (z′ = z; t′ = t − z/vgr),
which is only a time analog of the standard Galilean transformation (z′ = z − vgrt; t′ = t).

Let us first analyze what happens with the third polarization term in cosine approximation written in Galilean
frame (z′ = z − vgrt; t′ = t), before neglecting the TH. The CEF (32), being connected with the absolute phase [25],
is presented in the phase of the TH term:

n2E
3 (x, y, z′, t′) = n2 exp [i (k0(z′ − (vph − vgr)t′)]×
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(35){
3
4
|A|2A +

1
4

exp [2i (k0(z′ − (vph − vgr)t′)]A3

}
+ c.c..

Note that the absolute phase is connected with the relative movements with group-phase velocity difference and
transforms the TH term into a THz one, with a frequency shift of ωnl = 3k0(vph−vgr) ∼= 93GHz in air of the carrying
wavelength λ0 = 800nm. The nonlinear amplitude equation in cosine approximation in Laboratory and Galilean
frame is:

−2ik0

(
∂A

∂z
+

1
vgr

∂A

∂t

)
= ∆A− 1 + β

v2
gr

∂2A

∂t2
+

(36)

n2k
2
0

{
3
4
|A|2A +

1
4

exp [2i(k0(z − vpht)]A3

}
+ c.c.,

and

−i
2k0

vgr

∂V

∂t′
= ∆⊥V − 1 + β

v2
gr

(
∂2V

∂t′2
− 2vgr

∂2V

∂t′∂z′

)
+

(37)

n2k
2
0

{
3
4
|V |2V +

1
4

exp [2i (k0(z′ − (vph − vgr)t′)]V 3

}
+ c.c.,

respectively. As can be seen from (37), the absolute nonlinear frequency shift in air is of the order of ωnl ∼ 1011 Hz,
and lies in the spectrum of a fs pulse whose typical frequency width is of the order of ωfs

∼= 1013 − 1014 Hz. Thus,
in the fs region even in cosine approximation the TH term is transformed into a THz one and should not be ignored
in the corresponding envelope equation (37).

A. Nonlinear propagation of nano and picosecond pulses in air. Self-focusing

Let us first analyze the nonlinear propagation of nanosecond and picosecond pulses. Their frequency widths range
from ωns

∼= 107 Hz up to ωps
∼= 1010 Hz for hundred ps pulses if they are not initially modulated. The second

nonlinear term in (37) generates one frequency shift ωnl
∼= 1011 Hz, which is bigger than the spectral widths of the

pulses. Thus for such pulses the condition for frequency conversion or THz generation is not met, and the second
nonlinear THz term can be neglected. Using the results from the previous paragraph for the paraxial character of
diffraction for narrow band pulses, Eq.(37) can be written as:

−i
2k0

vgr

∂V

∂t′
= ∆⊥V − β

∂2A

∂z′2
− n2k

2
0|V |2V, (38)

where the factor 3/4 is included in n2. The coefficient in front of the second dispersion term from the right side in (38)
is of the order of β = k0v

2k” ∼ 10−5. It is easy to show, that the dispersion term can also be neglected, because the
dispersion length for ns and ps pulses in air is from tens up to hundred kilometers, while the diffraction length is of
the order of a few tens of centimeters. Naturally the evolution of such long pulses with fiber shape (their longitudinal
dimensions are from 0.3− 1 m (ps) up to 10− 100 m (ns) and their spot is of the order of 100 µm up to 1− 2 cm) can
be governed by a nonlinear equation similar to the equation governing the propagation of optical beams. In Galilean
frame there is a diffraction time tdif corresponding to the diffraction length zdif with the relation zdif=tdifvgr. We
investigate numerically the evolution of a nanosecond pulse governed by equation (38). The numerical simulation is
performed for a Gaussian pulse with time duration of 1 ns at carrying wavelength λ0 = 800 nm and intensity a little
above the critical for self-focusing. Fig 7. shows the nonlinear evolution of the waist (intensity) projection |A(x, y)|2.
Typical self-focusing with a nonlinear focus and a large base is obtained.
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FIG. 7: Nonlinear evolution of the waist (intensity) projection |V (x, y)|2 of a 330 fs initial Gaussian pulse (a1) at λ = 800
nm, with spot r0 = 400 µm, and longitudinal spatial pulse duration z0 = vgrt0 ∼= 100 µm at distances z = 0, z = 125 cm,
and z = 250, obtained by numerical simulation of the 3D+1 nonlinear AE equation (41). The power is above the critical for
self-focusing P = 2Pkr . Typical self-focal zone (core) surrounded by rings is obtained.

FIG. 8: Numerical simulation of the evolution of the (x,t=z) projection |A(x, z′)|2 of the same pulse of Fig. 7 at the same
distances, governed by the (3D+1) nonlinear AE equation (41) and the ionization-free model. A self-compression, splitting of
the initial pulse to several maxima and X shape deformation is observed.

B. Nonlinear propagation of femtosecond pulses in air. Conical emission and asymmetric spectral
broadening

The frequency width of one non-modulated fs pulse is in range ωfs
∼= 1012 − 1014 Hz. Comparing it with the

nonlinear shift ωnl
∼= 1011 Hz of the second nonlinear term in (37), it is clearly seen that the THz nonlinear generation

lies in the spectral band of a fs pulse and starts to enlarge its spectrum towards high frequencies and short wavelengths.
Such deformation of the spectrum of fs pulses in the nonlinear regime is indeed observed in experiments [12, 31].
The THz term emitted in the intensity spectrum of a fs pulse and change the intensity profile, while the cosine
approximation, separates the nonlinearity into two independent parts, one proportional to the intensity and other
response for THz generation. That is why we can expect that a superposition of cosine and sine wave under the
envelope describe more accurately the pulse propagation. The simplest presentation of such superposition is to write
down the the complex electrical field in the form:

E (x, y, z, t) = A (x, y, z, t) exp [−ik0(z − vpht)] =
A (x, y, z, t) {cos [k0(z − vpht)]− i sin [k0(z − vpht)]} . (39)

Substituting expression (39) in the Maxwell equations of an isotropic medium with non-stationary linear and nonlinear
response, following standard procedure, we obtain the envelope equations in Laboratory frame (β ∼= 0):
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FIG. 9: (a) Typical Fourier spectrum of the side (x, z) projection of the intensity of a pulse in the form of an optical bullet
|A(kx, kz)|2(r0 = z0 = 100 µm, t0330 fs). At several diffraction lengths the pulse enlarges asymmetrically towards the short
wavelengths (high kz wave-numbers).

−2ik0

(
∂A

∂z
+

1
vgr

∂A

∂t

)
= ∆A− 1

v2
gr

∂2A

∂t2
+ n2k

2
0 exp [2i (k0(z − vpht)]A3, (40)

and in Galilean frame:

−2i
k0

vgr

∂V

∂t′
= ∆⊥V − 1

v2
gr

(
∂2V

∂t′2
− 2vgr

∂2V

∂t′∂z′

)
+ n2k

2
0 exp [2i (k0z

′ − k0(vph − vgr)t′)]V 3, (41)

are obtained. The entire nonlinear term of these equations oscillates with ωnl and as suggested in the beginning of this
subsection, cannot be divided into two parts. Such type of nonlinearity for fs pulses was discussed earlier in [41]. This
nonlinear phase is not seen directly in Eq. (40) in Lab coordinates, but if we introduce the phase exp[ik0(z − vgr)t],
associated with the translation in z direction of the pulse, the exact expression of the nonlinear frequency shift is
immediately obtained. In our numerical solutions, obtained with equal initial conditions of the equations in Lab
(40) and Galilean frames (41), the deformation of the spectral and shape characteristics are the same, with only one
difference - translation of the pulse in Lab coordinates and stationarity in Galilean. This is an additional confirmation
of the existence of this absolute nonlinear phase in both coordinates. In nonlinear regime, the fs pulses at short
distances get super-broad spectra, so an additional approximation of these equations to spatio-temporal paraxial form
will not be correct. We use the AE equation (41) to simulate the propagation of a fs pulse, typical for laboratory-scale
experiments: initial power P = 2Pkr, central wavelength λ = 800 nm, initial time duration t0 = 330 fs, corresponding
to spatial pulse duration z0 = vgrt0 ∼= 100 µm, and waist r0 = 400 µm. In Fig.7 deformation of the spot |V (x, y)|2
at three different distances from the source, initial z = 0, z = 125 cm, and z = 250 cm is presented. As a result, we
obtain the well known self-focal zone (core) with colored ring around, observed in several experiments. The 3D + 1
nonlinear AE equation (41) gives an additional possibility for investigating the evolution of the side projection of the
intensity |A(x, z′|2 profile. The side projection |V (x, z′|2 of the same pulse is presented in Fig.8. The initial Gaussian
pulse begins to self-compress at about two diffraction lengths and an X shape deformation is obtained. Fig. 9 presents
the typical evolution of the Fourier spectrum of the side projection |V (kx, kz′ |2. At two diffraction lengths the pulse
enlarges asymmetrically towards the short wavelengths (high wave-numbers). As seen from our numerical calculations
and the comparison with experimental results of other authors [36–38], the non-paraxial ionization-free model (40)
and (41) is in good agreement with the experiments on spatial and spectral transformations of a fs pulse in a regime
near the critical P ≥ Pcr. Such transformation of the shape and spectrum of fs pulses is typical in the near zone, up
to several diffraction lengths, where the conditions for initially narrow-band pulse are satisfied 4kz << k0.
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FIG. 10: Numerical simulations for an initial Gaussian pulse with super-broad spectrum 4kz ≈ k0 governed by the nonlinear
equation (45). The power is slightly above the critical P = 2Pkr. The side projection |V (x, z′)|2 of the intensity is plotted.
Instead of splitting into a series of several maxima, the pulse transforms its shape into a Lorentzian of the kind V (x, y, z′) '
1/[1 + x2 + y2 + (z′ + ia)2 + a2].

V. NONLINEAR PROPAGATION OF BROAD-BAND OPTICAL PULSES. SOLITON REGIME

As demonstrated in the previous section, when a fs pulse with power a little above the critical for self-focusing
propagates in air, its spectrum enlarges considerably at short distances and approaches a value of ∆kz ' k0. One
of the basic experimental results in the far-field zone is the observation of stable single pulse with white spectrum.
In the experiments also a significant improvement of the pulse quality [39] was observed. The pulse preserves its
spectrum ∆kz = k0 − kz, ∆ω = ω0 − ω, ∆ω/∆kz = vgr and shape over significant distances of several kilometers
[2, 8]. The preservation of the spectral characteristics means existence of a constant phase during the propagation
- exp [i∆kz (z − vgrt)], when we look for a possible soliton regime of propagation. To see the difference between
the evolution of narrow-band ∆kz << k0 and broadband ∆kz ' k0 pulses, it is convenient to rewrite the amplitude
function, using this constant phase. In spite of the super-broad spectrum, the dispersion parameter in the transparency
region from 400 nm up to 800 nm continues to be small, in the range of β ≈ 10−4− 10−5. In Lab frame the phase is:

A (x, y, z, t) = B0B (x, y, z, t) exp (−i(4kz(z − vgrt)), (42)

while in Galilean coordinates it is equal to:

V (x, y, z′, t′) = B0G (x, y, z′, t′) exp (−i4kzz
′). (43)

The nonlinear amplitude equation for pulses with super-broad spectrum in Laboratory system becomes:

−2i(k0 −4kz)
(

∂B

∂z
+

1
vgr

∂B

∂t

)
= ∆B − 1

v2
gr

∂2B

∂t2
+

(44)
n2k

2
0 exp [2i ((k0 −4kz)z − (k0vph −4kzvgr)t)]B3,

and in Galilean frame it is:

−i
(k0 −4kz)

vgr

∂G

∂t′
= ∆⊥G− 1

v2
gr

(
∂2G

∂t′2
− 2vgr

∂2G

∂t′∂z′

)
+

(45)
n2k

2
0 exp [2i ((k0 −4kz)z′ − k0(vph − vgr)t′)]G3,

where 4kz − k0 is a very small number or zero. It can be seen that the nonlinear phases in both coordinate systems
are equal after the transformation z′ = z − vgrt; t′ = t:
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FIG. 11: The evolution of the spectrum |V (kx, kz)|2 of the same side intensity projection |V (x, z′)|2 . The spectrum enlarges
towards small kz wave-numbers (long wavelengths) - typical for Lorentzian profiles.

FIG. 12: Plot of the side projection |V (kx, kz|2 of the spectrum of a Lorentzian profile V (x, y, z) = 1/[1+x2+y2+(z+ia)2+a2],
a = 2 enlarging towards the small kz wave-numbers (compare with Fig. 8).

(k0 −4kz)z − (k0vph −4kzvgr)t = (k0 −4kz)z′ − k0(vph − vgr)t′. (46)

Fig. 10 shows a typical numerical solution of the nonparaxial nonlinear equation (45) (or (44)) for an initial Gaussian
pulse with super-broad spectrum4kz ≈ k0. It is obtained by using the split step method (4 step Runge-Kutta method
for the nonlinear part). These results are the same both in Laboratory and Galilean coordinate frames, and differ
only by a translation term. The side projection |V (x, z′|2 of the intensity profile is plotted for different propagation
distances. Instead of splitting into a series of several maxima, the pulse transforms its shape in a Lorentzian form of
the kind V (x, y, z) ' 1/[1 + x2 + y2 + (z′ + ia)2 + a2]. Here, the number a accounts for compression in z′ direction
and a spatial angular distribution. Fig. 11 presents the evolution of the spectrum |V (kx, kz′ |2 of the side intensity
projection for the same pulse. The spectrum enlarges forwards the small kz wave-numbers (long wavelengths) - typical
for Lorentzian type profiles. To compare with Fig. 11, Fig. 12 gives a plot of the side projection |V (kx, k′z|2 of the
spectrum of a Lorentzian profile V (x, y, z′) = 1/[1 + x2 + y2 + (z′ + ia)2 + a2], a = 2, enlarging towards the small
wave-numbers. The numerical experiments lead to the conclusion that a possible shape of the stable 3D + 1 soliton
can be in the form of a Lorentzian profile. Thus, if we take as an initial condition Lorentzian, instead a Gaussian one,
a relative stability in the shape and spectrum can be expected. Fig. 13 shows the evolution of the |V (x, z′|2 profile of
a pulse with initial Lorentzian shape V (x, y, z′, t = 0) = 1/[1 + x2 + y2 + (z′+ ia)2 + a2], a = 2. The pulse propagates
over a distance of several diffraction lengths, preserving its initial shape.

A. Spectrally asymmetric 3D+1 soliton solution

The numerical simulations in the previous section for broad-band pulses demonstrate a stable soliton propagation
with a specific initial Lorentzian shape. To find an exact soliton solution, we require that a condition of the kind
4kz = k0 is satisfied. The amplitude equation (44) can be rewritten as:
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FIG. 13: Evolution of the |V (x, z′|2 profile of a pulse with super-broad spectrum 4kz ≈ k0 and initial Lorentzian shape
V (x, y, z′, t = 0) = 1/([1 + x2 + y2 + (z′ + ia)2 + a2], a = 2, governed by the nonlinear equation (45). The pulse propagates
over one diffraction length with a relatively stable shape.

∆B − 1
v2

gr

∂2B

∂t2
+ k2

0n2B
2
0 exp [i (24ωnlt)]B3 = 0. (47)

To minimize the influence of the GHz oscillation ωnl, we use an amplitude function with a phase opposite to CEP:

B(x, y, x, t) = C(x, y, z, t) exp(−i4ωnlt). (48)

This corresponds to an oscillation of our soliton solution with a frequency ωnl ' 31 GHz. Thus, equation (47) becomes:

∆C − 1
v2

gr

∂2C

∂t2
+ k2

0n2B
2
0C3 = 2i

4ωnl

v2
gr

∂C

∂t
− 4ω2

nl

v2
gr

C (49)

To estimate the influence of the different terms on the propagation dynamics, we rewrite equation (49) in a dimen-
sionless form. Substituting:

t = t0t; z = z0z; x = r0x; y = r0y; (50)
r0/z0 = δ ∼ 1; z0 = vgrt0; t0 ∼= 2× 10−13 − 10−14sec, (51)

we obtain the following normalized equation:

∆C − ∂2C

∂t2
+ γC3 = iα

∂C

∂t
− βC, (52)

where γ̂ = r2
0k

2
0n2B

2
0 is the nonlinear constant, α = 24ωnlr

2
0/v2

grt0 and β = 4ω2
nlr

2
0/v2

gr. For a typical fs laser pulse
with a carrier wavelength 800 nm and a spot r0 = 100 µm, the constants of both terms in the r.h.s of equation (52)
are very small (α ∼ 10−2 and β ∼ 10−4) and can be neglected. Thus, equation (52) becomes:

∆C − ∂2C

∂t2
+ γ̂C3 = 0, (53)

or coming back to dimensional variables, (53) is simply:

∆C − 1
v2

gr

∂2C

∂t2
+ γC3 = 0, (54)

where γ = γ̂/r2
0. Furthermore, we shall assume that the new envelope wave equation (54) has solutions in the form:



17

C (x, y, z, t) = C(r̃), (55)

where r̃ =
√

x2 + y2 + (z + ia)2 − v2(t + ia/v)2. From the nonlinear wave equation (54), using (55), the following
ordinary nonlinear equation is obtained:

3
r̃

∂C

∂r̃
+

∂2C

∂r̃2
+ γC3 = 0. (56)

The number a counts for the longitudinal compression and the phase modulation of the pulse. When the nonlinear
coefficient is slightly above the critical and reaches the value γ = 2, equation (56) has exact particle-like solution of
the form:

C =
sech(ln(r̃))

r̃
. (57)

Using the fact that exp(ln(r̃)) = r̃ and exp(−(lnr̃)) = 1
r̃ , the solution (57) is simplified to the following algebraic

soliton:

C(r̃) =
2

1 + x2 + y2 + (z + ia)2 − v2(t + ia/v)2
(58)

Solution (58) gives the time evolution of the Lorentz initial shape, investigated in the previous section. As seen
from equation (54), the solution appears as a balance between the parabolic (not paraxial) wave type diffraction of
a broad-band pulse 4kz = k0, and the nonlinearity of third order. The maxima of this solution are at the points
where r̃2 = 0. If we solve the second order equation z2 + 2iaz − 2iavgrt − v2

grt
2 = 0 on the propagation axes (z, t),

only one real solution z = vgrt can be obtained. It corresponds to one-directional propagation with position of the
maximum on the z - coordinate z = vgrt. Recently, exact solutions of the equation (49) with GHz perturbation term
were obtained in [43].

VI. CONCLUSIONS

The femtosecond region is remarkable with the possibility for quick transformation of narrow-band pulses to broad-
band ones in nonlinear regime. On the other hand, following the tradition from ns and ps optics, the basic theoretical
studies continue to investigate the processes of fs pulses with the corresponding envelope equation for narrow-band
laser pulses, working in paraxial approximation and Kerr type nonlinearity. To cover the new effects in the fs region,
such as conical emission, coherent THz and GHz radiation, filamentation and long-range wave guiding, more of the
authors start to add to this paraxial nonlinear equation terms, corresponding to additional processes, like plasma
generation, higher order Kerr terms, optical rectification and others. It is easy to show that plasma generation and
higher order Kerr terms are negligible with respect to nonlinearity of third order for pulses with intensities of the
order of I ' 1012 W/cm2. This is the typical intensity for observing the above new processes. On the other hand,
optical rectification requires the presence of an additional high-power wave at the second harmonics frequency, which
is not observed in the experiments. That is why we start to look for theory and equations, which can cover the
evolution not only of narrow-band pulses, but also of broad-band ones. In the process of investigation we found also
that in the fs region it is not possible to reduce the nonlinearity of third order to Kerr type only (proportional to the
intensity). Therefore, as a first step we introduce new linear amplitude equations (1) and DE (12), allowing us to
solve numerically and analytically the problem with propagation of pulses with super-broad spectra. Different regimes
of diffraction are analyzed. The typical fs pulses up to 20 fs diffract following the Fresnel law in the near zone, in
a plane orthogonal to the direction of propagation, while their longitudinal shape is preserved in air or is enlarged
a little, due to dispersion. Broad-band pulses (only a few cycles under the envelope or phase-modulated pulses) at
several diffraction lengths obtain a parabolic form of the intensity. We solve the convolution problem of the diffraction
equation DE (12) for an initial pulse in the form of a Gaussian bullet, and obtain an exact analytical solution (19).
A new method for solving evolution problems of the wave equation is also proposed. In the nonlinear regime we
investigate more precisely the nonlinear third order polarization, taking the CEP into account. This additional phase
transforms the TH term into THz or GHz terms, depending on the spectral width of the pulse. Thus, we propose a new
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mechanism of THz and GHz generation from fs pulses in the nonlinear regime. For pulses with power a little above
the critical for self-focusing, we investigate two basic cases: pulses with narrow-band spectrum and with broad-band
spectrum. The numerical simulation of the evolution of narrow-band pulses (standard 100 fs pulses), gives a typical
conical emission and a spectral enlargement to the short wavelengths. Our study of broad-band pulses leads to the
conclusion that their propagation is governed by the nonlinear wave equation with third order nonlinear term (54),
when the THz oscillation is neglected as a small term. Exact soliton solution of equation (54) is obtained. The soliton
appears as a balance between parabolic divergent type wave diffraction and parabolic convergent type of nonlinear
self-focusing. Numerically, we demonstrate a relative stability of the soliton with respect to the THz oscillations.
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