# Angular Potential Energy 

Alejandro A. Torassa<br>Creative Commons Attribution 3.0 License<br>(2014) Buenos Aires, Argentina atorassa@gmail.com


#### Abstract

This paper presents an equation to calculate the angular potential energy of a particle.


## Angular Potential Energy

The angular potential energy $U_{a}$ of a particle A on which a resultant force $\mathbf{F}_{a}$ acts, is given by:

$$
U_{a}=-\int\left(\mathbf{r} \times \mathbf{F}_{a}\right) \cdot d\left(\mathbf{r} \times \mathbf{r}_{a}\right)
$$

where $\mathbf{r}$ is a position vector which is constant in magnitude and direction, and $\mathbf{r}_{a}$ is the position of particle A.

If $\mathbf{F}_{a}$ is constant and since $\mathbf{F}_{a}=m_{a} \mathbf{a}_{a}$, it follows that:

$$
U_{a}=-m_{a}\left(\mathbf{r} \times \mathbf{a}_{a}\right) \cdot\left(\mathbf{r} \times \mathbf{r}_{a}\right)
$$

where $m_{a}$ is the mass of particle A, and $\mathbf{a}_{a}$ is the constant acceleration of particle A.

