Angular Potential Energy

Alejandro A. Torassa

Creative Commons Attribution 3.0 License (2014) Buenos Aires, Argentina atorassa@gmail.com

Abstract

This paper presents an equation to calculate the angular potential energy of a particle.

Angular Potential Energy

The angular potential energy U_a of a particle A on which a resultant force \mathbf{F}_a acts, is given by:

$$U_a = -\int (\mathbf{r} \times \mathbf{F}_a) \cdot d(\mathbf{r} \times \mathbf{r}_a)$$

where \mathbf{r} is a position vector which is constant in magnitude and direction, and \mathbf{r}_a is the position of particle A.

If \mathbf{F}_a is constant and since $\mathbf{F}_a = m_a \mathbf{a}_a$, it follows that:

$$U_a = -m_a(\mathbf{r} \times \mathbf{a}_a) \cdot (\mathbf{r} \times \mathbf{r}_a)$$

where m_a is the mass of particle A, and \mathbf{a}_a is the constant acceleration of particle A.