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0 Introduction 
 
We can fix some Riemannian metric g on a manifold nM  of dimension n 

which defines the length of arc of a piecewise smooth curve and the continuous 
function  (x; y) of the distance between two points x, y nM . The topology 
defined by the function of distance (metric)  is the same as the topology of the 
manifold nM , [5]. 

We should mention that it will suffice to prove that 3M  and 3S  are 

homeomorphic since the existence of a homeomorphism between nM  and nS  
(n=dim nM , n6, n4) implies the existence of a diffeomorphism between them. If 
n=7 then there exist such 28 smooth manifolds that every one from them is 

homeomorphic to 7S  but any two from them are not diffeomorphic. 
The proof of the main theorem is based on some notions from [1], [2] and 

that will be considered step by step in the following sections. Some results can be 
useful in the case when 3M  is not simply connected or can be generalized for 
manifolds of dimension n3. 

In section 1, using a smooth triangulation and a Riemannian metric we see 
that every compact, connected, closed manifold nM  of dimension n can be 
represented as a union of a n–dimensional cell Сn and a connected union Kn–1 of 
some finite number of (n–1) –– simplexes of the triangulation. A sufficiently small 
closed neighborhood of Kn–1 we call a geometric black hole. In dimension 3 we 

have 233 KCM  . 
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In section 2, we get some technical results permitting to retract  
2–dimensional and 1–dimensional simplexes from K2 having boundaries i. e. to             

obtain a decomposition 233 ~~
KCM   where 2~

K  contains less simplexes than K2 

does. 
In section 3, we consider the proof of the main theorem consisting of the 

realization of several algorithms. The number of 2–dimensional simplexes of the 
complex K2 becomes less every step and finally we have a decomposition 

133 KCM   where K1 is a connected and simply connected union of some 1–
dimensional simplexes i. e. K1 is a tree. Using the section 2 we can retract complex 

K1 to a point х0 therefore a decomposition  0
33 xCM   is obtained and 3M  is 

homeomorphic to sphere. 
 
1. On extension of coordinate neighborhood  

 
1°. Let nM  be a connected, compact, closed and smooth manifold of 

dimension n and Cn be a cell (coordinate neighborhood) on nM . A standard 
simplex n of dimension n is the set of points x=(x1, x2, ..., xn) nR  defined by 
conditions 

0xi1,  i= n,1 ,  x1+x2+...+xn1. 
 

We consider the interval of a straight line connected the center of some face 
of n and the vertex which is opposite to this face. It is clear that the center of n 
belongs to the interval. We can decompose n as a set of intervals which are 
parallel to that mentioned above. If the center of n is connected by intervals with 
points of some face of n then a subsimplex of n is obtained. All the faces of n 
considered, n is seen as a set of all such subsimplexes. Let U(n) be some open 

neighborhood of n in Rn. A diffeomorphism φ :  nU Мп   nn   is called 
a singular n–simplex on the manifold M n. Faces, edges, the center, vertexes of the 

simplex n  are defined as the images of those of n with respect to . 
The manifold M n is triangulable, [6]. It means that for any nll 0,  such 

a finite set Фl of diffeomorphisms φ : l Мп is defined that  

a) M n is a disjunct union of images   llInt Ф,   ; 

b) if 
lФ  then 

1Ф  l
i   for every і where i : kk  1  is the 

linear mapping transferring the vertexes 10 ,..., kvv  of the simplex 1k  in 

the vertexes ki vvv ,...ˆ,...,0  of the simplex k . 

2°. Let 
n
0  be some simplex of the fixed triangulation of the manifold Мп. 

We paint the inner part 
nInt 0  of the simplex 

n
0   white and the boundary 

n
0  of 

n
0   black. There exist coordinates on 

nInt 0  given by diffeomorphism φ0. A 

subsimplex 
nn
0

1
01  

 is defined by a black face 
nn
0

1
01  

 and the center с0 of 
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n
0 . We connect с0 with the center d0 of the face 

1
01
n  and decompose the 

subsimplex 
n
01  as a set of intervals which are parallel to the interval с0d0. The face 

1
01
n  is a face of some simplex 

n
1  that has not been painted. We draw an interval 

between d0 and the vertex 1v  of the subsimplex 
n

1  which is opposite to the face 
1

01
n  then we decompose 

n
1  as a set of intervals which are parallel to the interval 

d0 1v . The set 
nn

101    is a union of such broken lines every one from which 
consists of two intervals where the endpoint of the first interval coincides with the 

beginning of the second interval (in the face 
1

01
n ) the first interval belongs to 

n
01  

and the second interval belongs to 
n

1 . We construct a homeomorphism (extension) 
1
01 :  nnn IntInt 10101   . Let us consider a point х

nInt 01  and let x belong to a 
broken line consisting of two intervals the first interval is of a length of s1 and the 
second interval is of a length of s2 and let x be at a distance of s from the beginning 

of the first interval. Then we suppose that  x1
01  belongs to the same broken line 

at a distance of s
s

ss




1

21
 from the beginning of the first interval. It is clear that 

1
01  is a homeomorphism giving coordinates on  nnInt 101   . We paint points of 
 nnInt 101    white. Assuming the coordinates of points of white initial faces of 

subsimplex 
n
01  to be fixed we obtain correctly introduced coordinates on 

 nnInt 10   . The set 
nn

101    is called a canonical polyhedron. We paint 

faces of the boundary 1  black.  
We describe the contents of the successive step of the algorithm of extension 

of coordinate neighborhood. Let us have a canonical polyhedron 1k  with white 
inner points (they have introduced white coordinates) and the black boundary 

1 k . We look for such an n–simplex in 1k , let it be 
n
0  that has such a black 

face, let it be 
1

01
n  that is simultaneously a face of some n–simplex, let it be 

n
1 , 

inner points of which are not painted. Then we apply the procedure described 

above to the pair 
n
0 , 

n
1 . As a result we have a polyhedron k  with one simplex 

more than 1k  has. Points of kInt  are painted in white and the boundary k  is 
painted in black. The process is finished in the case when all the black faces of the 
last polyhedron border on the set of white points (the cell) from two sides. 

After that all the points of the manifold Мп are painted in black or white, 

otherwise we would have that Мп = 
nn MM 10   (the points of 

nM 0  would be painted 

and those of 
nM1  would be not) with 

nM 0  and 
nM1  being unconnected, which 

would contradict of connectivity of Мп.  
Thus, we have proved the following 
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Theorem 1. Let Мп be a connected, compact, closed, smooth manifold of 

dimension n. Then Мп =  11, nnnn KCKC  , where Сп is an п–dimensional 
cell and Кп–1 is a union of some finite number of (п–1)–simplexes of the 
triangulation. 

3°. We consider the initial simplex 
n
0  of the triangulation and its center с0. 

Drawing intervals between the point с0 and points of all the faces of 
n
0  we obtain 

a decomposition of 
n
0  as a set of the intervals. In 2° the homeomorphism  : 

nInt 0 Сп was constructed and   evidently maps every interval above on a 
piecewise smooth broken line   in Сп. We denote  

nM
~

=Мп \{c0}. 
nM

~
 is a connected and simply connected manifold if Мп is that. Let 

І=[0;1], we define a homotopy F:
nM

~
×І

nM
~

: (х; t)  у=F(x;t) in the following 
way 

a) F(z; t)=z for every point zKn-1; 
b)  if a point x belongs to the broken line   in Сп and the distance between x 

and its limit point zKn-1 is s(x) then у=F(x; t) is on the same broken line   at a 
distance of (1–t)s(x) from the point z. 

It is clear that F(x;0)=х, F(x;1)=z and we have obtained the following 

Theorem 2. The spaces 
nM

~
 and Кп–1 are homotopy–equivalent, in 

particular, the groups of singular homologies Hk
 nM

~
 and Hk

 1nK  are 
isomorphic for every k.  

Corollary 2.1. The space Кп–1 is connected and if Мп is simply connected 
then Кп–1 is simply connected too. 

Remark. The white coordinates are extended from the simplex 
n
0  in the 

simplex 
n

1  through the face 
1

01
n  hence 

1
01
nInt  has also the white coordinates. 

On the other hand there exist two linear structures (intervals, the center etc) on 
n
01  induced from 

n
0  and 

n
1  respectively. Further, we set that the linear structure 

of 
1

01
n  is the structure induced from 

n
0 . 

 
2. On the complex 2K  
 
For a three–dimensional, connected, compact, closed, smooth manifold М 3 

we consider a decomposition 233 KCM   obtained in theorem 1. 
We call simplexes of dimension 3, 2, 1 by tetrahedrons, triangles, edges 

(intervals) respectively. 
1°. Definition 1. a) A triangle from the complex 2K  is called a  

f–triangle (free) if it has at least one free edge i. e. such an edge that it is not an 
edge of any other triangle from 2K . 
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b) A triangle from the complex 2K  is called a m–triangle if it has such an 
edge that is an edge of more than two triangle from 2K .  By definition, a  
m–triangle can not be a f–triangle. 

c) A triangle from the complex 2K  is called a s–triangle (standard) if every 
its edge is an edge of only one other triangle from 2K .  

 

Let us have a f–triangle 2  2K  with some free edge 1 . We consider such 

a polyhedron  which  is a set of all the tetrahedrons with 1  as their edge. 

Among them we have exactly two tetrahedrons, let they be 
3

1  and 
3

l  with 2  as 

their face. We call the output of 
3

1  the face 
2

1  with 1  as its edge. Inner points 

of the triangle 
2

1  are white because the edge 1  is free. The face 
2

1  is a face of 

another tetrahedron 
3

2  that has only one another face 
2

2  with the edge 1 , 

moreover, all inner points of the triangle 
2

2  are white. The faces 
2

1  and 
2

2  are 

called respectively the input and output (conversions) of the tetrahedron 
3

2 . The 

face 
2

2  is called the input of some tetrahedron 
3

3  etc. Taking a finite number of 

steps we come to the tetrahedron 
3

l  with an input 
2

1l  with 1  as its edge and all 

inner points of the triangle 
2

1l  are white. Thus, we obtain 
l

i
i

1

3



   (minimal 

possible meaning is l=3). We have to note that all inner points of the faces of 

conversions 
2

1 , ..., 
2

1l  in the tetrahedrons of the polyhedron   are white. It is 

clear that (Int)/ 2  is a cell. 
2°. We consider the closed cube Cu3  in the three – dimensional coordinate 

space R3 having the vertexes A(1; 1; 1), B(1; -1; 1), C(-1; 1; 1), D(-1; -1; 1),   
A1(1; 1; -1), B1(1; -1; -1), C1(-1; 1; -1), D1(-1; -1; -1). Let Rc be the intersection of 

Cu3 with the semiplane    ; ;M x y z  R3 0; 0z x   and τ be the intersection 
of   with the square ABB1A1. It is easy to construct such a homeomorphism 

   3 3
1 : \ \Cu Rc Cu   that 1 i d   on  3 \Cu  . 

Proposition 3. We can redistribute coordinates of white points of the 
polyhedron  and introduce white coordinates of points from Int 12    (construct 
the corresponding homemorphism ) in such way that the following conditions 
are fulfilled 

a) all the points of Int  are painted in white i.e. have white coordinates, 
b) white coordinates of points of boundary faces of the polyhedron  are not 

changed. 

Proof. There exists a homeomorphism 
3

2: Cu  ,   2

2 Rc   . Then 
1

2 1 2o o      is a required homeomorphism.  
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QED. 
 
Remark. Further, we set that the linear structure (intervals, the center etc.) 

of 2  is the structure induced from 1

3
  where 1

3
  was equipped with white 

coordinates earlier than 
3
l .  

3°. Definition 2. An edge 1 =x0x1 is called semi-isolated if it is not an edge 

of any triangle from 2K . A semi-isolated edge 1  is called isolated if one of the 

endpoints of the interval 1  (let it be x1) is free i.e. it is not an endpoint of any 
edge from 2K . 

An isolated edge 1  can appear as a result of painting white some 

neighboring  f-triangles containing 1 . We consider a polyhedrons   where   is 
the set of all tetrahedrons with x1 as their vertex. It is clear that all the points of  

Int are white with the exception of black points of 1 \{x0}. 
Proposition 4. We can redistribute coordinates of white points of the 

polyhedron  and introduce white coordinates of points from Int 1 {x1} 
(construct the corresponding homeomorphism) in such a way that the following 
condition are fulfilled) 

a) all the points of Int are painted in white i. e. have white coordinates, 
b)  white coordinates of points of boundary faces of the polyhedron  are 

not changed. 

Proof. It is clear that   1
\Int   is a cell. There exists a homeomorphism 

3
2 : Cu   ,  1

2   , where Cu2 was defined in 20 and 

    ; 0; 0 0;1x x    is a closed interval in Cu2. It is easy to construst such a 

homeomorphism      3 3
1: \ \Cu Cu E    that 1 id   on    3 \Cu E  where 

E  , E (1; 0; 0). Then 
1

2 1 1o o     is a required homeomorphism. 
 

  QED. 
 

4°. We assume that in the process of painting f-triangles white by the 
proposition 3 all the triangles from 2K  are white i.e. that we have a representation 

133 KCM  ,  13 KC , where 3C  is a three–dimensional cell and 1K  is a 
connected union of finite number of black edges of the triangulation. Since the 
process of painting f–triangles white does not influence simple connectedness of a 
space that is been obtained after every step then 1K  is a tree if the complex 2K  is 
simply connected. Painting isolated edges of 1K  in white by the proposition 4 as a 
result we have unique black point x0. Thus, we obtain a representation 

);( 0
33 xBCM  , where );( 0 xB  is an open geodesic ball with the center in 
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x0  and of radius . The manifold 3M  is homeomorphic to sphere 3S  by the 
following lemma 5.  

Lemma 5 [5]. If a topological manifold Mn is a union of two n–dimensional 

cells then Mn is homeomorphic to sphere nS . 
 
3. Proof of the main theorem 
 
The proof has a combinatorial nature and assumes the realization of a 

number of algorithms. We consider that step by step. The initial complex 2K  is 
assumed to be connected, simply connected and without free triangles. 

1°. We call a sequence of tetrahedrons (triangles, edges) a simple chain  
(s – chain) if every such a simplex participates in the sequence only one time and if 
every subsequent tetrahedron (triangle, edge) has a common face (edge, vertex) 
with the previous one. The number of elements of a s–chain is called the length of 
the s–chain. 

Let 
2
0  be a triangle from the complex 2K  with 

1
0 = x0x1 as its edge. The 

edge 
1
0  can also be an edge of some m–triangles other than 

2
0 . 

Lemma 6. We can rebuild the complex 2K  in such a way that as a result we 

have got a black triangle 
2
0  with the free edge 

1
0 = x0x1. A new rebuilt complex 

2K  is connected and simple connected. 

Proof. We consider the s–chain of tetrahedrons with 
1
0  as their edge the 

first of which has the upper part of 
2
0  as its face and the last of which has the 

lower part of 
2
0  as its face. In this s–chain we can find a tetrahedron, let it be 

3
1 , 

which is the first from the s–chain to have a black m–triangle 2
1  with the edge 

1
0  

as its face. The face 2
1  is the common face of 3

1  and 3
2 . Thus, we obtain a s-

chain 1

3 3
1, , l   of tetrahedrons (some of them have  

m-triangles as their faces) 1

3
l  has the lower part of 

2
0  as its face.  

We consider the graph G connecting by intervals the centers of all the 
tetrahedrons of the triangulation via the centers of all the white faces. There exists 
the maximal tree L connecting by intervals all the centers of the tetrahedrons of the 
triangulation via centers of some white faces. The tree L defines the maximal cell 
C3. Really, if we consider a maximal tree L and some tetrahedron 3  then we can 

extend white coordinates from 3  on the maximal cell C3 along the tree L as it was 

shown in section 1. We assume that the centers of all the tetrahedrons of the s-
chain from the first to the 3

1  are connected by the broken line via the centers of 
their common white faces and the broken line is a part of L.    
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We cancel the white painting of points of 
3
2  and paint the tetrahedron 

3
2  

black. The repainting of  
3
2  black brings to a gap of  L on three subtrees L1, L2, L 3 

or less where the center of  
3

1  belongs to L1. 
Further, we repaint inner parts of 2

1  and 3
2  white (extend white 

coordinates from 3
1  through the face 2

1  as it was shown in section 1) and 

connect the centers of 3
1 , 2

1 , 3
2  by intervals. Those centers belong to the 

subtree L1. Other faces of 3
2  are black and they are simultaneously faces of other 

tetrahedrons.  
          We consider the following cases. 
          a) L1 = L. The black faces of 3

2  remain black.  
          b) We have got two subtrees L1  and L2 where L2 defines a cell called a dead 
end.  We repaint the closure of the dead end black. Then we are looking for a black 
face of 3

2  which is simultaneously a face of other tetrahedron with the center from 

L2. We extend white coordinates from 3
2  through this face along the tree L2 as it 

was shown in section 1 and repaint inner points of this face and inner points of the 
dead end white. Then we connect by intervals the center of this face with the 
centers of 3

2  and other tetrahedron obtaining a new maximal tree L defining a new 

maximal cell C3. Two other faces of 3
2  remain black. 

          c) We have got three subtrees L1, L2, L3 where L2 and L3 define two cells 
called dead ends. We repaint the closure of each the dead end black. Then we are 
looking for a black face of 3

2  which is simultaneously a face of other tetrahedron 
with the center from L1. This face remains black. We extend white coordinates 
from 3

2  through two other black faces of 3
2  along the trees L2  and L3 as it was 

shown in section 1 and repaint inner points of this faces and inner points of the 
dead ends white. Then we connect by intervals the centers of this faces with the 
centers of 3

2  and two other tetrahedrons obtaining a new maximal tree L defining 
a new maximal cell C3. 

Further, we apply the process above to the tetrahedrons 
3
2 , 

3
3  etc. All the 

centers of the tetrahedrons 3
1 , 3

2 , 3
3 ;… are connected by broken line which is a 

part of the subtree L1 at every step. As a result we have got a black triangle 
2
0 with 

the free edge 
1
0 = x0x1. 

QED. 
 

Remark. We have obtained the s-chain of the tetrahedrons (with white inner 

part) having  
1
0  as their edge and all the centers of the tetrahedrons are 

connected by the broken line via the centers of their common white faces. The 
broken line can be considered as a part of a subtree L1 of some maximal tree L i.e. 
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this broken line can be extended to L. Really, we can apply the method considered 
in the proof of the lemma 6 to the s-chain above sequentially repainting the 

tetrahedrons from the second ( 3
1 ) to the last ( 1

3
l ) to get the broken line in the 

end. 
2°. We choose a small ball with the center in x0  which is diffeomorphic to a 

small ball in R3 and call a trace of a simplex with a vertex or an endpoint in the 
point x0 its intersection with the sphere which is the surface of the ball where the 
sphere is supposed to be transversal to all the triangles with the vertex x0 . Such a 
sphere exists because of the smoothness of the triangulation. All other vertexes of 
the triangles do not belong to the ball. The ball can be choosed in such a way that 
every edge with the endpoint x0 has only one point of the intersection with the 
sphere and every triangle with the vertex x0 is intersected with the sphere by only 
one segment of a curve. There exists one to one correspondence between the set of 
simplexes having a vertex (endpoint) x0 and the set of their traces therefore all steps 
of the algorithm below can be illustrated on the sphere.  

We continue a consideration of the edge 
1
0 =x0x1 and a set  Bt(x0) of black 

triangles with x0 as their vertex. We extract pyramids from the set Bt(x0). The trace 
of the surface of a pyramid formed by some black triangles is a maximal loop on 
the sphere i.e. a curve that divides the sphere into two parts. Any exterior white 

point of the sphere close to the loop can be connected with the trace of  
1
0  (a black 

point) by a white curve and any interior white point with respect of the loop 
cannot. Such loops can be connected among themselves by segments of black 
curves. See Fig.1 as a possible picture of such traces. 

 

 
 

          Further, we consider one of the pyramids and any s-chain (with the 
white inner part) of tetrahedrons having x0 as their vertex the first of which has 1

0  
as its edge and last of which (the first in the s-chain) has a black triangle from the 
surface of the pyramid as its face. All the centers of the tetrahedrons of any such a 
s-chain are supposed belonging to a subtree L1 of some maximal tree L. Really, we 
can apply the method considered in the proof of the lemma 6 to any such a s-chain 
above sequentially repainting tetrahedrons from the second to the last to get a 
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broken line in the end. The subtree L1 is the union of all such broken lines and the 
initial broken line considered in the remark in 1°, 3. The subtree L1 can be 
extended to L and L1 cannot get a gap by the procedure below. In the set of all 
possible similar s-chains we look for a s-chain of the minimal length. In the last 

tetrahedron 
3
l  of the s–chain we consider the subtetrahedron 

3
0l

  with the center 

of 
3
l  as its vertex and the mentioned above black triangle as its face. The latter 

belongs to tetrahedron 
3
1l

 . The inner points of 1

3
l  are simultaneously inner points 

of the pyramid. By definition, x0x1 cannot be an edge of such a tetrahedron 1

3
l . 

Canceling white painting of those inner points and painting the tetrahedron 
3
1l

  

black we extend white coordinates from 
3
0l

  into 
3
1l

  through their common face as 
it was described in section 1 and paint those inner points white again. A new one 
more length s–chain has been obtained (see Fig.2). If we obtain a gap of the 
maximal tree L then we eliminate it by the procedure described in lemma 6 using 
introduced above the subtree L1. Further, we iterate the algorithm above and so on. 

It is clear that we cannot get a new black triangle having 
1
0  as its edge by the 

procedure above. In the end any tetrahedron with a vertex in x0 can be considered 
as an element of some s-chain with the white inner part connecting this tetrahedron 
with the edge 1

0  i.e. all the loops on the sphere are annihilated and we have got a 
number of trees on the sphere (see Fig.3). Any endpoint of a tree is simultaneously 
the trace of a free edge of some f-triangle and we can paint the f-triangle white by 
proposition 3. As it has been noted in the proof of this proposition the painting of 
boundary points of a polyhedron containing a black f-triangle is not changed. 
Sequentially painting all those f-triangles white we retract all the trees on the 
sphere to a number of black points which are traces of some semi-isolated 
(isolated) edges. As a result we have got a situation when the set Bt(x0) becomes 
empty.  

Really, othervise if we have only one f-triangle 2
0  in Bt(x0) and 2

1  is an 
other triangle in Bt(x0) then we can construct some s-chain 2

1 , 2
2 , … , 2

n  of 
triangles from  Bt(x0) where 2

n  has some a common edge x0 xl with a previous 
triangle from this s-chain i.e. we have got a pyramid. There exists a tetrahedron 
containing inner white points of the pyramid which can not be connected by any s-
chain (with white inner part) of tetrahedrons having x0 as their vertex with the edge 

1
0   i.e. the contradiction to the situation above has been obtained. 

It is obvious that the set of all the white points is a three–dimensional cell at 
every step. It is clear that the last rebuilt complex K2 is connected and simple 
connected because of a homotopy–equivalence. 

Remark. Further, a structure consisting of a semi–isolated edge and a black 
subcomplex joined to it is called a «black flower» growing from the point x0.  Let 
bf1 and  bf2  be any two black flowers connected by a system of semi-isolated edges. 
The simple connectivity of K2 implies that if we paint the semi-isolated edge of bf1 
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white then the black subcomplex obtained can not be connected with bf2 by a black 
curve. 

 
 

                                

1
0

 
      3°. We consider a black flower consisting of a semi-isolated edge 1  with the 
endpoints  x0 , y0 and a black two-dimensional subcomplex of some black triangles 
having y0 as their vertex. Further, we apply the procedure considered in 2° to the 

point  y0  and the edge 1 . The simple connectivity of K2   implies that we cannot 
get a black loop in K2 having a semi-isolated edge as its part therefore the 
annihilation of black triangles of Bt(y0) cannot bring to an appearance of a black 
triangle in Bt(x0)  and Bt(x0) remains empty. Similarly, if we have a s-chain of 
semi-isolated edges 1

1 ,…, 1
k = xk yk then the process of the annihilation of black 

triangles in Bt(yk)  cannot bring to an appearance of a black triangle having a 
generic point with 1

i  (i<k). Really, otherwise such a black triangle gives an 
opportunity to connect the endpoints xk and yk of 1

k  by a black curve which is 
different from 1

k . As a result a black loop with the semi-isolated edge 1
k  has been 

obtained and the loop is not contractible that is a contradiction to the simple 
connectivity of K2. Thus, a number of the black isolated and semi-isolated edges is 
increased and the sets Bt(x0), Bt(y0 ), … remain empty. 
            It follows that a number of black triangles becomes less at every step. 
Finally, at some step of our algorithm the set of black triangles must be exhausted 
i.e. we come to 4°, 2. 
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Remark. The obtained complex can be imagined as a «tree with flowers» 
growing in the endpoints of the branches of the tree. An iteration of the algorithm 
can be interpreted as a sequential transformation of those flowers into branches to 
get a tree in the end. 

The main theorem is completely proved. 
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