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Abstract: This paper details a series of experiments in
searching for minimal energy configurations for knots and
links using the computer program KnotPlot.
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I. Introduction

This paper details remarkable experiments in simulated physical
movement of knots under self-repelling forces. We use the program
KnotPlot of Robert Scharein [4,5], making it possible for readers to
try these experiments themselves. The experiments are explained in
the sections below and they show computer-empirical instances of
local energy minima that are not global energy minima.

These examples are obtained by starting with knots or links in
particular geometric configurations and letting them evolve and
self-repel using the computer program. The paper is organized as
follows. Section II gives general background information for the
experiments. Section III describes an experiment with the trefoil
knot where the starting configurations for the (2,3) and (3,2)
versions of the knot lead to different local minima in the
experiment. In Section IV we do a similar experiment with a torus
link. In Section V we discuss ropelength and examine the behaviour
of the ropelength of the minimal energy configurations. Finally in
Section VI we show are very remarkable example with the (3,4)
torus knot where the undamped and unperturbed self-repulsion
leads to a local minimum that is highly symmetrical and not the
global minimum. A perturbation of this configuration leads to what
is apparently the global minimum. The section ends with discussion
and questions. It gives the author pleasure to thank Slavik Jablan for
the invitation to write this paper.

II. Introduction to the Experiment.

Recall that a knot is an embedding of a circle in three dimensional
space. The topological type of the knot is its equivalence class under
ambient isotopy where two knots are said to be ambient isotopic if



one can place them in a continuously varying family of knots
starting with one, and ending with the other. We say that a knot is
unknotted if its ambient isotopy class contains a simple planar
circle, the unknot.

In general it is a difficult problem to tell whether a knot is knotted
or unknotted. There are combinatorial algorithms that can
determine knottedness from a graphical representation of a knot.
On the other hand, there are physically motivated algorithms that
apparently can unknot a knot. One of these is motivated by the
following idea: Coat the knot with electrical charge and then let it
self-repel without changing its length. If it is unknotted, one hopes
that the self-repulsion will push it apart from itself into an obviously
unknotted form.

This paper recounts experiments that the author has performed
on self-repelling knots using the computer program KnotPlot [4, 5].
KnotPlot is a program written by Rob Scharein and it models knots
that self-repel with a (l/r)d force where the exponent d is
adjustable between 2 and 6. Here r stands for the radial distance
between two points on the embedded curve that represents the
knot.

In the computer model, the knot is represented by a string

of vectors (v], v2, ...., vpn) so that the embedding for the knot is
given by connecting the tips these vectors cyclically so that v] is
connected to v2, v2 to v3 and so on with vp connected to v]. Thus
the knot itself contains the points corresponding to the vectors vk.
To implement a self-repelling force on the knot, one computes the
forces between vk and v] for all distinct pairs k and 1 in the set
{1,2,..., n} and uses these forces to move the points by a small
amount that does not cause any of the connecting segments to cross
through one another. This process is iterated, and the knot moves
in a simulation of self-repulsion.

On can also calculate the Simon energy E(K) [l]for a given knot
embedding. This energy corresponds (by definition) to the energy
potential for a (l/r)2 force (d=2). E(K) is obtained by summing
1/lvi - vjl for all distinct pairs i and j in {1,2,...n}. The program
KnotPlot can be asked to display this energy. As the knot self-repels,
this energy function tends to a minimum but under certain
circumstances will oscillate or change quite slowly.



Part of the circumstances related to the behaviour of the energy
functional have to do with an additional feature of the program
KnotPlot. Along with implementing a repelling force, the program
also models the connections between the points vk and vk4] as
springs with restoring force behaving according to Hooke's law
(force proportional to the extension of the length of the distance
beyond a base distance corresponding to the length of the
contracted spring). One can operate the program so the the springs
are either damped or undamped. With damped springs the program
operates as though the springs are fully contracted, and no energy is
exchanged with the springs. In undamped mode, the knot exchanges
energy with its springs, moves around, oscillates and the energy
functional will be seen to go up and down. Putting a knot in this
process in the undamped mode is a way to subject it to perturbation
that may allow it more freedom of movement than it can have in the
damped mode. We will see how this plays out in the experiments.

III. The Trefoil Experiment

There are two versions of the trefoil knot when you regard it as a
torus knot. You view it as a (2,3) torus knot, winding twice around
the torus in the longitudinal direction and three times around in the
meridianal direction, as depicted in Figure 1.



Figure 1 - The (2, 3) torus knot with E = 169.04011473

In Figure 1, we have illustrated the image of the torus knot (2,3)
that results from running damped self-repulsion until the energy
stabilizes at a minimal value. There are 80 vector points in this
version of the knot.




The other version of the trefoil knot is the (3,2) torus knot as
shown in Figure 2. The (3,2) torus knot winds around three times in
the longitude direction for two times in the meridian direction. The
(2,3) and (3,2) torus knots are ambient isotopic as knots in three
dimensional space. They represent different starting points for the
self-repulsion program. Our experiment will proceed from the
versions of the (3,2) knot shown in Figure 2. It is at a much higher
energy than its eventual minimal configuration and we shall follow it
toward that minimal configuration. We will find that this minimal
configuration is still at a higher energy than the form shown in
Figure 1.

Figure 2 - The (3,2) torus knot at E= 212.49077.

Figure 3 shows KnotPlot's minimal energy form using damped self-
repulsion for the (3,2) torus knot.



Figure 3 - The end result for the (3,2) torus knot.
E = 175.074081.

In Figure 3 we see the result of running the self-repulsion program
for until the energy E has stabilized at a specific value and the
geometric evolution of the knot appears to be stopped. Figures 4, 5,



6 and 7 show the further evolution of this configuration when we
use undamped self-repulsion. The knot then exchanges energy with
the springs and goes into an unstable oscillation that results in a
descent to a lower energy level. The final result in Figure 7 is the
same as the level in Figure 1.

Figure 4 - E = 173. 034119.



Figure 5 - E = 171.196564



Figure 6 - E = 169.545120



Figure 7 - E = 169.041534

Note that this final result in Figure 7 has the same energy as the
configuration in Figure 1. In fact if rotated it would be identical with
Figure 1.

The apparently stable intermediate stage obtained from the (3,2)
torus link as shown in Figure 3 may be indicate a local minimum for
the energy for the trefoil knot or this configuration could be the
analog of an inflection point, where the rate of evolution becomes
very slow. What we can say is that it is for this particular computer
program an apparent local minimum, and it gives us a good graphic
demonstration of how a stable energy level may, under

perturbation, fall into an even lower energy level through further
evolution of the form.



IV. The Torus Link Experiment

For the (4,2) torus link, we find a very similar phenomenon.
Starting in the (4,2) configuration the link descends to the form
shown in Figure 8.

Figure 8 - (4,2) torus link with E = 199.353058.

And then on perturbation through the undamped repelling process,
this relatively stable form goes into oscillation and descends to the



form shown in Figure 10. The form in Figure 9 is the same as the
form that results from self-repelling the (2,4) torus link.

Figure 9 - Full Descent of the (4,2) Torus Link,
E = 185.343277.

V. Electrical RopeLength

We now turn to a way to geometrically measure configurations of
knots in three-dimensional space that is related to the concept of
minimum rope-length. The minimum rope length MinRL(K) of a
knot K is the minimum over all tubular embeddings of K in three-
space of the ratio of the length of the tube to its cylindrical radius.
For a specific embedding of a knot, we can increase the cylinder



radius until the tube just touches itself. The ratio of tubular length
to cylinder radius for such a cylinder is defined to be the ropelength
for this particular embedding. See [2,3] for more information about
these definitions. As in [3] programs have been written to
approximate the minimal ropelength for a knot by simulating the
process that one can perform on a rope of pulling the rope tight in
order to concentrate the knotting on the least amount of rope. The
natural question in terms of rope is: What is the least length of rope,
for a given diameter, needed to make a given knot-type?

Here we point out that since there is the ropelength RL(K) (defined
as above by taking the maximum cylinder radius for the embedding)
for any specific embedding K in three-space, we can consider RL(K)
as a measure of the complexity of an embedding and ask about the
value of RL(K) for an embedding of K that minimizes the knot energy
or that is an apparent minimum in a self-repelling process such as
considered in this paper. Thus we shall define ERL(K, d) to be the
ropelength of a configuration for K that is extremal for the self-

repelling process with a force field proportional to r-d. We call this
the electrical ropelength of the knot K. The electrical ropelength is
an interesting parameter to study and it may, only for large d, be
approximately equal to the standard ropelength. The program we
are using calculates the tubular length and the cylinder radius and
allows variation of the cylinder radius. Thus we can experiment with
the values of the electrical ropelength and the geometry of the
resulting tubular knots. In Figure 11 below we illustrate an
approximation for the electrical ropelength ERL(T,6) where T is a
trefoil knot and the force exponent is equal to 6.



Figure 10- ELR(T,6) ~ 32.68. Electrical Ropelength for the Trefoil
Knot.

In practice d=6 seems to be a good exponent both for force
repelling experiments and for the electrical ropelength. For smaller
d once finds that the ropelength increases. For example, see Figure
11 where we illustrate the trefoil with d = 3.5. There we have
ELR(T,3.5) ~ 40.45.



Figure 11 -- Trefoil with d = 3.5 and ERL(T, 3.5) ~ 40.45.

It is also clear that the electrical ropelength will not in general be
close to the minimal ropelength for a knot. When we work with a
complex knot it is often the case that the force/energy minimum for
the knot has some parts of the knot considerably closer to each
other than other parts. This creates an inequity that results in the
electrical ropelength being greater than the minimal ropelength.



VI. The Torus Knot (3,4) Experiment

Here is a remarkable phenomenon. When we start with a very
symmetrical version of the (3,4) torus knot and use an undamped
force evolution, the KnotPlot program retains the symmetry and
stabilizes with the image shown in Figure 12 below. However, on
perturbation via the undamped evolution, the knot falls into a lower
energy level as shown in Figure 13 below. Futhermore, the electrical
ropelength for d = 6 goes up when the energy falls in this example.
This shows that at the experimental level, the electrical ropelength is
not minimized by minimizing the Simon energy.

Figure 12- (3,4) Torus knot minimized via damped
evolution. E = 249.306610.



Figure 13 - (3,4) Torus knot minimized via undamped evolution.
E = 247.149597.

With this example, we end out survey of experiments with energy
and ropelength using the KnotPlot program.

These experiments leave many open questions. We would like to
know how to better explore the landscape of configurations of a



knot or link and to determine the pattern of relative and absolute
minima for the Simon energy. We would like to know if, in principle,
pursuing an unknot down its self-repelling evolution will unknot it
(with sufficiently many beads of course). We would like to better
understand the geometric configurations of the minima and their
relation to their ropelengths. We encourage the reader to carry out
experiments of the sort described in this paper.
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