
Perseus Technology: New Trends in

Information and Communication Security∗

Eric Filiol
Laboratoire de virologie et de cryptologie opérationnelles

France
http://sites.google.com/site/ericfiliol

ffiliol@gmail.com

January 4, 2011

Abstract

Using cryptography to protect information and communication has
bacically two major drawbacks. First, the specific entropy profile of en-
crypted data makes their detection very easy. Second, the use of cryptog-
raphy can be more or less regulated, not to say forbidden, according to
the countries. If the right to freely protect our personal and private data
is a fundamental right, it must not hinder the action of Nation States
with respect to National security. Allowing encryption to citizens holds
for bad guys as well.

In this paper we propose a new approach in information and com-
munication security that may solve all these issues, thus representing a
rather interesting trade-off between apparently opposite security needs.
We introduce the concept of scalable security based on computationnally
hard problem of coding theory with the Perseus technology.

The core idea is to encode date with variable punctured convolutional
codes in such a way that any cryptanalytic attempt will require a time-
consuming encoder reconstruction in order to decode. By adding noise in
a suitable way, that reconstruction becomes untractable in practice except
for Intelligence services that however must use supercomputers during a
significant, scalable amount of time. Hence it limits naturally any will to
unduly performs such attacks (eg. against citizens’ privacy).

On the users’ side, encoder and noise parameters are first exchanged
through an initial, short https session. The principles behind that ap-
proach have been mathematically validated in 1997 and 2007. We present
the Perseus library we have developed under the triple GPL/LGPL/MPL
licences. This library can be used to protect any kind of data.

Keywords: Communication security - Coding theory - Code reconstruction
- Traffic eavesdropping - Encryption.

∗This work has been presented at iAWACS 2010.

1

http://sites.google.com/site/ericfiliol
ffiliol@gmail.com

1 Introduction

A necessary – but not sufficient – condition for cryptographic security lies in the
secret key size. Cryptography is itself defined as the use of a secret quantity –
the key – while coding uses open, widely known mathematical objects without
any secret quantity.

The main issue is then: can cryptography be characterized by the presence
of a secret quantity only? While it is a necessary condition, it is not a sufficient
one. The deep and careful analysis of cryptographic laws of most countries (and
international organizations) shows that the “legal” definition of what crypto
really is and what is not, relates directly to following (noise) probability

P [ct = mt ⊕ et] = P [et = 1]

where ct and mt are the ciphertext and plaintext bits respectively and where
et can be defined as the noise bit produced by the key the cryptosystem1 (at
time instant t). Then, if P [et = 1] = 1

2 ± ε with ε very close to zero, then it
is cryptography, otherwise (ε significantly different from 0) it is coding theory.
But are differences between cryptography and coding theory so easy to define?
Known cryptanalysis techniques intend to deal with the first case more or less
efficiently. On the other side, there are a lot of decoding problems that are
computationally hard.

In this paper we are going to consider such a computationally hard problem
in order to provide a new information and communication protection scheme
whose security level is scalable. We have called it Perseus2 technology and we
present here the open source library we have developped to protect any kind of
data and protocols.

Perseus technology’s core idea is to encode data with punctured convolu-
tional codes. Those codes are commonly used in telecommunications (GSM,
satellite...) due to their very high encoding speed and their high correcting
power. After this encoding layer and right before transmission, an artificial
noise is applied to the data flow (as would any channel do). The noise is gen-
erated according to noise parameter p = P [et = 1] where et is the noise bit at
time instant t. The value of p is around 0.3. Since the convolutational encoder
is changing very frequently the attacker always has first to reconstruct the en-
coder in order to be able to decode. This reconstruction has been proven to be
a computationally hard problem [3, 6, 7, 8]. By scalable we mean that if it is
always possible to break Perseus-protected data, the difficulty can be tuned up
in order to require more or less computational efforts: from a few days to a few
months on a supercomputer. In addition, only an equivalent, non-punctured
encoder can be recovered [7]. However this problem may still remain tractable
to solve for any intelligence agency with a suitable computing power.

1This holds also for block ciphers where the “effect” of the key on the plaintext block can
formalized in this way.

2Perseus is the mythic hero of Greek mythology who killed the Gorgon Medusa [20]. The
botnets – against which Perseus technology has been designed initially [5] – are themselves
often compared to Medusa and its long tentacles.

2

The different parameters of the variable encoders are randomly generated:
polynomial size constraint, encoding rate, matrix puncturing, noise parameter p,
encoder polynomials... Then a short https initial session allows to communicate
those parameters to the recipient (about 256 bytes). The recipient and only him
is able first to get rid of the artificial deterministic noise and then to set up the
suitable Virberi algorithm for data decoding.

What the interest of using scalable security while generally only strong,
unbreakable cryptography offers real security? Why would users prefer Perseus
technology instead of strong cryptography? On the other side, why existing
national or international regulations would tolerate the use of this technology?
There are on the contrary many reasons to favour the Perseus approach over
strong encryption.

• The use of encryption, besides the fact that it would lead to severe con-
straints (encryption overhead, key management...) poses problems in
terms of legal regulations, especially in the context of transnational streams
with respect to the different national regulations. Then a critical issue
arises: how can we protect our personal and private data while still allow-
ing the necessary action of States (for national security for instance) in the
field of communication surveillance and whithout lessening the transmis-
sion rate significantly? Scalable security offered by Perseus provides such
a trade-off very efficiently. Any Perseus-protected data can be broken
provided that a significant amount of time of supercomputer is spent. This
limits any States’ intents to spy innocent people not involved in terrorism,
mafia activities, child pornography... and making them focusing on really
bad guys. Moreover the generalization of encryption is not a good thing
as pointed out by the US National Security Agency [16, 14] and British
MI-5 [11] about HADOPI’s French questionable initiative. Favouring the
use of encryption to protect illegal downloading can severely hinder the
cryptanalysis activities of States for national security purposes.

• Why use noisy encoded data instead of encrypted data? Encrypted data
by nature exhibit a maximal entropy profile. It is then easy to detect
encrypted data. On the contrary, noisy encoded data can exhibit a lower
entropy profile which remains closer to that of plain, unencoded data.
This lower statistical profile enables to bypass any detection by entropy
test or any other statistical detection while encrypted data do not.

To summarize these two strong points of Perseus technology, let us consider
an illustrative example. John Doe is a US journalist in China. He wants to
send a serie of papers about China’s Human Rights infringements (and about
the 2010 Chinese Peace Nobel Prize). Sending his papers to his agency in USA
would be blocked by Chinese authorithies whenever encrypted. On the contrary,
using Perseus will require a significant time to detect (due to the low entropy
profile) and to break. The journalist will have time to go back and safe to USA.

This paper is organized as follows. Section 2 recalls basic facts about convo-
lutional codes and their reconstruction. Section 3 presents the Perseus library

3

structure while Section 4 deals with its detailed implementation. Section 5
presents the different experimental results we have obtained with respect to
final data entropy and performance while Section 7 concludes by considering
future evolution of this library.

2 Theoretical Background

In this section, we are going to recall what a (punctured or not) convolutional
code is as well as the main results with respect to their reconstruction. The
aim is just to provide the reader with the required background to understand
the interest of those codes and why they are particularly suitable for our ap-
proach. The interested reader will refer to [13] for a more detailed presentation
on convolutional codes.

2.1 Convolutional Codes

A convolutionnal encoder can be seen as an encoding system (based on a set of k
shift-registers without feedback) such that, at each time instant, k information
digits (typically the bits of data) enter the encoder (one per register). Each
information digit remains in the encoder for K time units and may affect each
output during that time. The constant K is the constraint length or the memory
of the encoder.

At each time instant, n information digits are output, each of them result-
ing from the xor of k digits produced by the action of n polynomials on each
register. The encoder is thus said to be of rate k

n . The action of the kn poly-
nomials and the shift are easily described by polynomial multiplications [8]. So
the polynomial representation will be used to represent the different streams.

A message will be composed of k interlaced input streams, each of them
represented as a polynomial of degree N + t denoted ai(x), i = 1, . . . , k. The kn
polynomials are of degree N (hence N = K−1) and will be noted fi,j(x). Then
the encoder produces n output streams (of length t) represented as polynomials
of degree t, cj(x), j = 1, . . . , n and we then have:

k∑
i=1

ai(x)fi,j(x) = uj,1(x) + xNcj(x) + xN+tuj,2(x) (1)

The polynomials uj,1(x) (resp. uj,2) (the filling (resp. the emptying) of the
registers) are of degree at most N − 1. Then the coded sequence is composed
of the n interlaced output streams.

Thus the parameters of a convolutionnal encoder are:

• k and n defining the rate and the number of polynomials,

• K the constraint length (in fact it is related to internal memory of the
encoder),

4

• the kn polynomials fi,j(x) of degree N = K − 1.

The convolutionnal encoder then describes a (n, k,N)-code. Generally, n and
k are small integers with k < n. The most frequent case is k = n − 1. On the
contrary, N must be made large enough to achieve low residual decoding error
probabilities. The symbols are usually elements of GF (2) but generalization to
GF (q) where q is some prime power (q = pm for some positive integer m) can
be easily done. We will only consider the case q = 2 but all the implementation
and results can be generalized to any other prime q. This could be interesting
in increasing the encoding speed.

Figure 1 describes a convolutional encoder of rate 1
2 .

+ +

+

u , u , ...0 1

v , v ,...
1 1
0 1

 v , v ,...
2 2
0 1

v , v , v , v ,...
1 2 1 2
0 0 1 1

Figure 1: Convolutional encoder of rate 1
2

In the context of Perseus, we will add an artificial noise of parameter p to

the (encoded) output sequence v = v
(1)
0 , v

(2)
0 , v

(1)
1 , v

(2)
1 , . . .

The decoding step is performed through the classical Viterbi algorithm whose
complexity is exponential in k.N . Hence, generally their use is limited to codes
of short lengths and to reduced encoding rate k

n . However in our case since we
completely master the noise (we exactly know where the noise bits are applied
while any botnet agent does not), we can work with far higher values.

2.2 Punctured Convolutional Codes

Punctured convolutional codes were introduced by Cain et al. [4] as means of
greatly simplifying both Viterbi and sequential decoding of high rate convolu-
tional codes at the expanse of a relatively small performance penalty.

A punctured convolutional code C is obtained by periodically deleting output
symbols from a (base) (n, k,N)-convolutional code Cb. Output symbols from Cb
are deleted according to a periodic puncturing pattern (or perforation pattern)
which can be described by its puncturing matrix:

P =

 p1,1 . . . p1,M

...
...

pn,1 . . . pn,M

A very important problem is that of the reconstruction of such codes (punc-

tured or not). In an attack context, a monitor wants to have access to the

5

transmitted information (the message) without any knowledge on the encoder
which produces the intercepted stream (the coded sequence). The only way is to
reconstruct the encoder, that is to say to recover all its parameters. A simple
decoding then gives access to the message provided that the channel noise is
not too high (less than a very few percents).

Let us consider a (n, k,N)-(base) convolutional code Cb. A given puncturing
pattern P is a n×M 0− 1 matrix with a total of I 1’s and nM − I 0’s where
pi,j = 0 indicates that the i-th symbol of every branch in the j-th treillis section
(of the treillis diagram of Cb) is to be deleted.

Then the original code Cb, after being punctured with pattern P , has become
a (I, kM,m)-(punctured) code 3 C [15].

Let us consider an illustrative, simple example.

Example 1 Let us take the (2, 1, 3) code with polynomials

(1 + x2, 1 + x+ x2)

The two output streams can be denoted as follows:(
x0 x1 x2 x3 x4 x5 . . .
y0 y1 y2 y3 y4 y5 . . .

)
By using the following puncturing pattern:

P =

(
1 0
1 1

)
we then obtain the two following output streams:(

x0 x2 x4 . . .
y0 y1 y2 y3 y4 y5 . . .

)
that we can rearrange as follows: x0 x2 x4 . . .

y0 y2 y4 . . .
y1 y3 y5 . . .

It becomes then obvious that this puncturing produces a new encoder producing
three output streams.

By use of polycyclic pseudo-circulant matrices [7], the new parameters are
easily defined and we have the 6 following polynomials

f1,1(x) = 1 + x f1,2(x) = 1 + x f1,3(x) = 1

f2,1(x) = 0 f2,2(x) = x f2,3(x) = 1 + x

where fi,j denotes the j-th parity-check polynomial applied on input message
stream i.

As for Perseus is concerned, the puncturing pattern P is the last parameter
to exchange during the initial https session.

3In fact, the degree of the punctured code may be less than N , but for most interesting
punctured codes no degree reduction will take place

6

2.3 Reconstruction of Convolutional Codes

Since any punctured convolutional code is equivalent to a non punctured convo-
lutional encoder, we will thus focus on the reconstruction of the latter codes. As
far as code reconstruction is concerned, it is worth mentioning that the use of
punctured codes make it more complex since we have equivalent non punctured
codes whose parameters have higher values, for suitable values of I, k and M .

It is always possible to reconstruct convolutional codes in offline mode. This
is basically not a problem since for most real cases, convolutional encoders do not
change very often since they are hardwired (as an example, two convolutional
encoders of constraint length of 9 are embedded in the UMTS standard [1]).
Consequently we can spend a lot of time to reconstruct them since the work
is done just once. However, there are only a very few known cases (most of
them are for tactical, military communications like in the Czech army at least
during the 90s) where the encoders are randomly generated right before the
transmission. The aim is clearly to hinder the code reconstruction strongly,
which therefore cannot be performed online. In this latter case, except for very
small values of parameters and noise probability, the reconstruction is too much
time consuming.

The reconstruction of convolutional codes is a very mathematical stuff and
consequently we will not present it here (see [6, 3] for an exhaustive study).
For our purposes, it is just necessary to recall the most significant results with
respect to convolutional codes reconstruction.

While it is always possible to make the probability of false alarm (i.e. to
reconstruct a wrong encoder) tends towards zero, the probability of success de-
pends on many factors but the noise parameter has the most significant impact.
Beyond 2-3 % the reconstruction will fail unless having a large amount of en-
coded sequence or/and accepting to spend a lot of time/machine ressources. In
most practical cases, the Viterbi decoding itself is likely to fail for a few percent
of noise (less than 0.05) long before the reconstruction process does. Expressing
the reconstruction probability of success is not easy from a mathematical point
of view and we advise the reader to refer to [6, 3]. Experiments have confirmed
that the reconstruction is bound to fail as soon as p > 3% unless spending a lot
of time and computing power.

As for the computational complexity of the reconstruction, the general result
[6, 3] states that for a (n, k,N)-convolutional code, the lower bound is equal to
O(α × n5 × N4) where α(p) is a quantity which grows exponentially with the
noise probability p [3, Section 2.3.2].

To illustrate that general result, Table 1 gives a few experimental results
[6, 3] for a few encoders in the case of a noise level of 10−2 and 2.10−2 (Additive
White Gaussian noise).

7

Encoder Reconstruction time Reconstruction time
(p = 10−2) (p = 2.10−2)

(4, 3, 8) 7 min 12 sec Non detected
(4, 3, 9) 6 min 16 sec Non detected

Table 1: Example of reconstruction time (on Pentium IV 2.0 Ghz) for two noise
levels

As a consequence, considering a rather high level of noise prevents the re-
construction to succeed unless we devote a huge computing time (several hours)
at least. We then will choose a noise level ranging from 0.15 to 0.35.

Let us mention that Perseus technology considers (and implements) the
worst case of communication channel model with respect to the reconstruction
problem: the Additive White Gaussian model in which the noise is applied uni-
formly (in other words the noise variable is a random, identically distributed,
independent variable). In real communications (for instance satellite communi-
cations) the noise occurs by burst and different channel models must be consid-
ered (e.g. Gilbert-Elliot model [12]).

3 Presentation of the Perseus Library

The library includes two main files:

• A header file perseus.h which contains the parameters settings, new type
definitions and function prototypes.

• A function file perseus.c which contains the C code of the different func-
tions: random encoder generation, encoding procedure, decoding proce-
dure. . .

Additionally, different files are also provided with the library:

• A test program perseus test.c which presents how to implement and
use the Perseus library.

• A makefile to compile the previous test file.

• A documentation file howto libperseus.pdf and a comprehensive de-
scription of library structure and functionalities produced from the source
code by means of the doxygen utility.

The official code repository is located on code.google.com/p/libperseus. The
current stable version is 1.0.0.

8

code.google.com/p/libperseus

3.1 Setting Perseus Parameters

Perseus parameters are optimally defined in the perseus.h file to provide the
best trade-off between security and performance. The reader who would desire
to modify those parameters must keep in mind that some of them have an impact
on the decoding residual error. So any modification should be envisaged only
for programmers having a rather good knowledge in convolutional encoding and
Viterbi decoding theory [13].

The main parameters are generated randomly during the encoder generation.
So only lower XMIN and upper bounds XMAX are set in order to define a value
interval [XMIN ;XMAX +XMIN].

3.1.1 Encoder inputs

The number of encoder inputs is given by (default values [1; 6]).� �
1 #define KMIN GEN 1

2 #define KMAX GEN 5� �
3.1.2 Encoder ouputs

The number of encoder outputs is defined by (default values [5; 11]).� �
1 #define NMIN GEN 5

2 #define NMAX GEN 6� �
3.1.3 Constraint length (encoder memory)

The size of the encoder memory (which also determines the degree of encoder
polynomials) are defined by (default [20; 30]).� �

1 #define MIN CONT 10

2 #define MAX CONT 20� �
3.1.4 Puncturing matrix width

The width of the puncturing matrix whose height is defined by the value N ∈
[NMINGEN ;NMINGEN +NMAXGEN] (default [6; 21]).� �

1 #define MIN MATWIDTH 6

2 #define MAX MATWIDTH 16� �
The puncturing level is defined by the number of null entries of that matrix.
This number is defined as follows

9

� �
1 ∗ Random generation of the puncturing matrix weight ∗/
2 /∗ (code−>mN∗code−>mMatWidth − nbzero) ∗/
3 /∗ where nbzero = (code−>mN∗code−>mMatWidth/8) ∗/
4 nbzero = (int)((float)((code−>mN∗code−>mMatWidth) >> 3));
5 code−>mMatDepth = (code−>mN∗code−>mMatWidth) − nbzero;� �

Let us notice that it is possible to adapt the weight of the punctured matrix
according to the values of N and mMatWidth. For rather large values of their
product it is possible to divide by 16 or even 32 to avoid decoding error arising on
low memory computers. Perseus library 2.x will implement such optimizations
along with combinatorial puncturing patterns.

3.2 Perseus Security Parameters

There is only one parameter which has a direct impact on the Perseus security
with respect to the encoder reconstruction problem from noisy sequences. This
parameter ensures that this problem remains hard in practice requiring a huge
supercomputing power during several days or even weeks for a single encoder.

This parameter is defined in the Gen Noise Generator function located in
the perseus.c file.� �

1 /∗ Noise probability generation ([0.15, 0.35])∗/
2 aNGen−>proba = 15 + (int)(20.0 ∗ alea());� �

A noise probability close to 0.15 will in average require a reconstruction time
in days while a probability close to 0.35 will require weeks or even months of
computing time.

The reader must be aware that whenever a noise probability close to 0.50 is
not possible in the context of Perseus. Such a probability relates to cryptog-
raphy not to noisy communications.

3.3 Perseus Noise Generator

In Perseus library 1.0.0, the random generator is fixed (it will be random from
versions 2.x). This generator is a biased stream cipher (combining generator [8]
class). It is initialized by a random 102-bit key which fills up the four linear
feedback shift registers (LFSR) at time instant t = 0. It is worth noticing
that the size of the key prevents exhaustive search (to remove the noise by the
attacker) only. Hence the only possible approach is to reconstruct the encoder
in the context of a noisy communication.

The four LFSR polynomials are defined in the perseus.h file as follows:� �
1 /∗ Noise generator feedback polynomial 1 ∗/
2 #define POLY1 0x47E07L

3 #define MASK1 0x7FFFFL

10

4 #define LR1 19

5

6 /∗ Noise generator feedback polynomial 2 ∗/
7 #define POLY2 0x1772AFL

8 #define MASK2 0x7FFFFFL

9 #define LR2 23

10

11 /∗ Noise generator feedback polynomial 3 ∗/
12 #define POLY3 0x1C95269L

13 #define MASK3 0x1FFFFFFFL

14 #define LR3 29

15

16 /∗ Noise generator feedback polynomial 4 ∗/
17 #define POLY4 0x43E98841L

18 #define MASK4 0x7FFFFFFFL

19 #define LR4 31� �
The biased filtering Boolean function which outputs the additive noise to com-
bine with the encoded sequence is then defined by� �

1 /∗ Noise probability generation ([0.15, 0.35])∗/
2 aNGen−>proba = 15 + (int)(20.0 ∗ alea());
3

4 /∗ Boolean filtering function generation ∗/
5 w = 0;
6 aNGen−>Bf = (unsigned char ∗)calloc(16, sizeof(unsigned char));
7 for (w = 0; w < 16; w++)
8 {
9 val = (int)(99.0 ∗ alea()) ;

10 if (val < aNGen−>proba) aNGen−>Bf[w] = 1;
11 }� �

4 Implementation of the Perseus Library

Using and implementing the Perseus library is almost straightforward and
easy (Figure 2). In order to illustrate things, a sample test file perseus test.c

is provided with the library [18]. We are going to detail the whole process
as it is in the library howto file. Let us mention that since the library uses
dynamic Viterbi decoding (which may be memory consumming depending on
the instances of Perseus parameters, the decoding may fail if you choose to
process large amount of data on a computer with limited memory. We strongly
advise to split data into chunks of less than 2 Kb. The next version of the
library (from versions 2.x) will consider polynomial time decoding anf therefore
this limitation will no longer exist.

Let us suppose that the data to protect are stored into the array data. John
Doe from USA wants to send them to Jean Martin in France in a secure way.

11

Decode data

John Doe Jean Martin

Communication set up

Processing data

Parameter generation Get parameters

Encode data

HTTPS

Figure 2: Implementation structure of the Perseus library

On John Doe’s side, the main steps are (in the following order):

1. First generating the encoder, the noise generator and the noise generator
secret key randomly.� �

1 /∗ Generate the PCC encoder ∗/
2 Pcc = generateCode();
3 ...
4 /∗ Noise generator secret key generation ∗/
5 aKey = (INIT NOISE GEN ∗)calloc(1,
6 sizeof (INIT NOISE GEN));
7 ...
8 aKey−>INIT1 = (unsigned long int)((float)
9 (0xFFFFFFFFL)∗alea());

10 aKey−>INIT2 = (unsigned long int)((float)
11 (0xFFFFFFFFL)∗alea());
12 aKey−>INIT3 = (unsigned long int)((float)
13 (0xFFFFFFFFL)∗alea());
14 aKey−>INIT4 = (unsigned long int)((float)
15 (0xFFFFFFFFL)∗alea());
16

17 /∗ Noise generator variable allocation ∗/
18 NGen = (NOISE GEN ∗)calloc(1, sizeof(NOISE GEN));
19 ...
20 /∗ Noise generator init ∗/
21 if (!Gen Noise Generator(NGen, aKey))
22 {
23 perror(”Noise encoder generation on error!”);
24 free (NGen);
25 exit(0);
26 }
27 ...� �
2. Sending the secret elements to Jean Martin through a HTTPS session (or

12

any equivalent secure channel). This part is not played in the perseus test.c
file (obvious to implement). The secret elements are the PCC encoder and
the noise generator secret key. It consists in three structures (defined in
file perseus.h)� �

1 /∗ Generic type for Punctured
2 Convolutional Code ∗/
3 typedef struct
4 {
5 unsigned int mN;
6 /∗ Number of output bits ∗/
7 unsigned int mK;
8 /∗ Number of input bits ∗/
9 unsigned int mM;

10 /∗ Encoder memory size ∗/
11 unsigned long ∗ ∗ mPoly;
12 /∗ Encoder polynomials ∗/
13 unsigned int mMatWidth;
14 /∗ Puncturing matrix width ∗/
15 unsigned char ∗ mMatrix;
16 /∗ Encoder puncturing matrix ∗/
17 unsigned int mMatDepth;
18 /∗ Puncturing matrix weight ∗/
19 } PUNCT CONC CODE;
20

21 /∗ Generic type for a noise generator ∗/
22 typedef struct
23 {
24 unsigned long int Reg1;
25 /∗ Linear Feedback Shift Register 1 ∗/
26 unsigned long int Reg2;
27 /∗ Linear Feedback Shift Register 2 ∗/
28 unsigned long int Reg3;
29 /∗ Linear Feedback Shift Register 3 ∗/
30 unsigned long int Reg4;
31 /∗ Linear Feedback Shift Register 4 ∗/
32 unsigned int L1;
33 /∗ Length of LFSR 1 ∗/
34 unsigned int L2;
35 /∗ Length of LFSR 2 ∗/
36 unsigned int L3;
37 /∗ Length of LFSR 3 ∗/
38 unsigned int L4;
39 /∗ Length of LFSR 4 ∗/
40 unsigned char ∗ Bf;
41 /∗ Combining Boolean function ∗/
42 unsigned int proba;
43 /∗ Noise probability ∗/
44 } NOISE GEN;

13

45

46 /∗ Generic type for noise generator
47 secret key ∗/
48 typedef struct
49 {
50 unsigned long int INIT1;
51 unsigned long int INIT2;
52 unsigned long int INIT3;
53 unsigned long int INIT4;
54 } INIT NOISE GEN;� �
3. Encoding the data� �
1 encoded data size = 0L;
2 if (!pcc Code(Pcc, data, data size, &encoded data,
3 &encoded data size, NGen, aKey))
4 {
5 perror(”Encoding error\n”);
6 exit(0);
7 }
8

9 printf(”Data after encoding = %s\n”, encoded data);� �
The PCC encoding includes all basic steps (character to binary encoding,
the PCC coding itself, data puncturing right after the encoding, the binary
to hex nibbles encoding, the addition of deterministic noise). The final
result of the PCC encoding is contained in the array encoded data.

4. John Doe sends the encoded data to Jean Martin.

On Jean Martin’s side, the steps are:

1. Reception of the secret elements through a HTTPS session (PCC encoder
and the noise generator secret key) from John Doe. The three correspond-
ing data structures (see above John Doe’s step 2) are then initialized. This
part is not played in the perseus test.c file (obvious to implement).

2. Decode data� �
1 dataLength = 0L;
2 if (!pcc decode(Pcc, NGen, aKey, encoded data,
3 encoded data size, &dataDecoded, &dataLength))
4 {
5 perror(”Decoding error\n”);
6 exit(1);
7 }� �

14

The PCC decoding step includes all basic processings (remove the de-
terministic noise, hex nibble to binary transcoding, data unpuncturing
and Viterbi decoding). Encoded data are in the array dataCoded while
Decoded data are contained in the array dataDecoded.

5 Experimental Results

We have tested our implementation of the Perseus library on a 2 Gb RAM,
Intel Core2 Duo CPU P8400 (2.26GHz). Data have been processed by chunks
of 1 or 2 Kb. Of course the performance are depending on the random instances
of encoders. The main bottleneck remains the dynamic Viterbi decoding which
takes most of the processing time (more than 70 % of the total time) and of
the available memory. However average performances are rather good. Let us
notice that the current release (1.0.0) has not been optimized to preserve the
code readibility.

The next version of the Perseus library will consider a polynomial time
decoding while requiring a negligible amount of memory.

5.1 Perseus Entropy Profile

In order to illustrate the fact that Perseus-protected data may exhibit an
entropy profile which is close to that of plain (unprotected) data, we have com-
puted the average entropy per byte on several files (on different Indo-European
languages). Table 2 summarizes the results.

Noise Plain data Perseus-protected data Encrypted
probability average entropy data data

5 % 4.21 4.96 8.00
10 % 4.21 6.19 8.00
15 % 4.21 6.46 8.00
20 % 4.21 7.11 8.00
25 % 4.21 7.39 8.00
30 % 4.21 7.45 8.00
35 % 4.21 7.71 8.00

Table 2: Average entropy profile for plain, Perseus-protected and AES en-
crypted data

These results clearly show that the entropy profile depends on the noise level
(which is quite obvious). Our tests have also confirmed that the more complex
the encoder is (in terms of redundancy added) the lower the entropy profile is.

Let us recall that the convolutional code reconstruction is untractable (in
reasonable amount of time) as soon as noise probability is higher than a few
percents (practically > 0.02). So if we want to lower the entropy profile, we can

15

consider noise probability of 5% while preserving the scalable-security provided
by the Perseus approach.

5.2 Secure Programming

Throughout the programming process, the code security was a priority. We
have paid a maximal attention to this point. Once the Perseus library has
been achieved, we have performed code auditing with respect to security.

We have first applied the Flawfinder utility [10] which tracks unsecure
programming. It helps preventing buffer overflows, heap overflows... by checking
the nature and use of common functions. In a second step, we have analyzed how
efficiently and correctly the Perseus library uses memory. For that purpose,
the Valgrind utility [19] has been considered.

As a result, the C code of the Perseus library complies with the existing
rules of secure programming and hence does not introduce weakness or flaws
that could be exploited for attack purposes.

6 Applications and Implementations

At the present time, a few implementations and application of the Perseus
technology are known. We hope that new contributors will volunteer to give
birth to new ones.

The DFT Technologie company (http://www.dft-techno.com) has decided
to provide the industry support to the Perseus technology and to help and
promote the research and development effort around it.

6.1 Firefox Plug-in

This project is managed by Eddy Deligne [17]. He has applied the Perseus
technology to protect http protocol (get and post methods) while using Fire-
fox [5]. This solution is materialized in the form of a C++ Firefox plug-in
developed under the triple GPL/LGPL/MPL licences and complying with the
specifications of Mozilla development, thus allowing the code to be merged to
the Firefox engine code directly. This plug-in is available with the correspond-
ing server (Linux, Windows) thus providing an all-round solution (client/server
architecture).

At the present time, all Firefox versions 3.x are covered (Windows, Linux,
Apple). The new Firefox 4.x should be also protected very soon (many structural
changes have occured with this new version thus requiring significant changes
in the Perseus plug-in).

16

http://www.dft-techno.com

6.2 Andromeda Library: Protecting the Torrent Protocol

Fabien Jobin [2] has developped the Andromede library4 which implements
the bittorrent protocol in its original version (e.g. without any additional third-
party functionality except one devoted to the extension management). In the
Andromede library, the bittorrent traffic is protected by the Perseus tech-
nology.

7 Conclusion and Future Works

The Perseus technology intends to propose a new trend in information and
communication security. The concept of scalable security should help to make
converge the needs for National Security and citizens’ natural rights for privacy.
This technology preserves the ability of state intelligence agencies to have access
to the Perseus-protected data. Indeed the noisy encoding layer can always be
processed at the price of an offline, time-consuming computing step. Only na-
tional security agencies and specialized police departments have such a suitable
computing power. But since it requires a lot of time to break this technology,
the number of attempts will be limited to process the communication of really
bad guys only and not those of any ordinary citizen.

Current research and development activities around Perseus technology
consider the protection of voice and phone communications as well as file pro-
tection:

• development and implementation of VoIP platforms;

• development of Android modules and apps to provide communication pro-
tection for various kind of data: voice, sms, mms. . .

• development of Linux/Windows application to protect files on hard disk.

The main difficulty here lies in the Viterbi decoding which is the most time-
consuming part. However our recent research results to develop a new decoding
algorithm which has polynomial complexity are more than very promising. This
is of nature to speed up the decoding step significantly, thus opening a lot of
opportunities with respect to the Perseus technology.

Finally, our current work focus on additional plug-ins which enable first to
lower the entropy profile of Perseus-protected data in order to make it far
closer to plain data and second to make their entropy profile and statistical
features look like to those of arbitrary data (image files, PDF files...).

Acknowledgement

I would like to thank Olivier Ferrand for his guru skills with Valgring and
Flawfinder as well as Eddy Deligne for his help to review the library code.

4In the Greek mythology, Andromede is Perseus’ wife.

17

References

[1] 3rd Generation Partnership Project (2003). Technical Specification Group
Radio Access Network Group - Multiplexing and Channel Coding (FDD), re-
lease 5, TS 25.212, v5.0.0, http://www.mumor.org/public/background/
25212-500.pdf

[2] Andromede library website http://code.google.com/p/andromede (soon
available).

[3] J. Barbier (2007). Analyse de canaux de communication dans un con-
texte non coopératif - Application aux codes correcteurs d’erreurs et à la
stéganalyse (Communication Channel Analysis in a non-cooperative con-
text - Application to Error-correcting Codes and to Steganalysis). Thèse de
Doctorat (Ph D Thesis), Ecole Polytechnique.

[4] J.B. Cain, G.C. Clark Jr., J.M. Geist (1979). Punctured convolutional codes
of rate n−1

n and simplified maximum likelihood decoding. IEEE Transac-
tions on Information Theory, vol. IT-25, No.1, pp. 97-100, January 1979.

[5] Eddy Deligne and Eric Filiol (2009). Perseus: A Coding Theory-based
Firefox Plug-in to Counter Botnet Activity. Hack.lu 2009 Conference, Lux-
embourg. Paper and slides are available at http://archive.hack.lu/

2009.

[6] Eric Filiol (1997). Reconstruction of Convolutional Encoders over GF (q).
In: Proceedings of the 6th IMA Conference on Cryptography and Coding,
Lecture Notes in Computer Science, #1355, Springer Verlag, 1997. All
results can also be found in [8].

[7] Eric Filiol (2000). Reconstruction of Punctured Convolutional Encoders. In:
Proceedings of the 2000 International Symposium on Information Theory
and Applications (ISITA), IEICE Publishing, 2000.

[8] Eric Filiol (2001). Techniques de reconstruction en cryptologie et théorie
des codes (Reconstruction Techniques in Coding Theory and in Cryptology).
Thèse de Doctorat (Ph D Thesis), Ecole Polytechnique.

[9] Eric Filiol and Eddy Deligne (2010). The Perseus lib: Open Source Li-
brary for TRANSEC and COMSEC Security. In: iAWACS 2010, http:

//www.esiea-recherche.eu/iawacs2010.html

[10] Flawfinder Website http://www.dwheeler.com/flawfinder

[11] P. Foster (2009). MI-5 comes out against cutting off internet pirates. The
Times, October 23rd, 2009. Retrieved on http://www.timesonline.co.

uk/tol/news/crime/article6885923.ece

[12] E. N. Gilbert (1960). Capacity of a Burst-noise Channel. Bell System Tech-
nical Journal, 39, pp. 1253–1265.

18

http://www.mumor.org/public/background/25212-500.pdf
http://www.mumor.org/public/background/25212-500.pdf
http://code.google.com/p/andromede
http://archive.hack.lu/2009
http://archive.hack.lu/2009
http://www.esiea-recherche.eu/iawacs2010.html
http://www.esiea-recherche.eu/iawacs2010.html
http://www.dwheeler.com/flawfinder
http://www.timesonline.co.uk/tol/news/crime/article6885923.ece
http://www.timesonline.co.uk/tol/news/crime/article6885923.ece

[13] R. Johannesson et K. Sh. Zygangirov (1999). Fundamentals of Convolu-
tional Coding. IEEE Press.

[14] J. M. Manach (2010). La NSA n’aime pas Hadopi (NSA does
not like Hadopi). http://bugbrother.blog.lemonde.fr/2010/10/02/

frenchechelon-la-dgse-en-1ere-division/#more-819

[15] R. J. McEliece (1998). The Algebraic Theory of Convolutional Codes. In
Handbook of Coding Theory, V.S. Pless and W.C. Huffman editors, North-
Holland, 1998.

[16] Ownilive Website (2010). Hadopi vs Crypto. http://ownilive.com/2010/
10/03/hadopi-et-crypto

[17] Perseus Firefox websites http://code.google.com/p/perseus-firefox

and http://www.mozdev.org/source/browse/perseus

[18] Perseus Library Official website (2010) http://code.google.com/p/

libperseus

[19] Valgind website http://valgring.org

[20] Wikipedia, the free encyclopedia. Perseus http://en.wikipedia.org/w/

index.php?title=Perseus&oldid=298156617.

19

http://bugbrother.blog.lemonde.fr/2010/10/02/frenchechelon-la-dgse-en-1ere-division/#more-819
http://bugbrother.blog.lemonde.fr/2010/10/02/frenchechelon-la-dgse-en-1ere-division/#more-819
http://ownilive.com/2010/10/03/hadopi-et-crypto
http://ownilive.com/2010/10/03/hadopi-et-crypto
http://code.google.com/p/perseus-firefox
http://www.mozdev.org/source/browse/perseus
http://code.google.com/p/libperseus
http://code.google.com/p/libperseus
http://valgring.org
http://en.wikipedia.org/w/index.php?title=Perseus&oldid=298156617
http://en.wikipedia.org/w/index.php?title=Perseus&oldid=298156617

	1 Introduction
	2 Theoretical Background
	2.1 Convolutional Codes
	2.2 Punctured Convolutional Codes
	2.3 Reconstruction of Convolutional Codes

	3 Presentation of the Perseus Library
	3.1 Setting Perseus Parameters
	3.1.1 Encoder inputs
	3.1.2 Encoder ouputs
	3.1.3 Constraint length (encoder memory)
	3.1.4 Puncturing matrix width

	3.2 Perseus Security Parameters
	3.3 Perseus Noise Generator

	4 Implementation of the Perseus Library
	5 Experimental Results
	5.1 Perseus Entropy Profile
	5.2 Secure Programming

	6 Applications and Implementations
	6.1 Firefox Plug-in
	6.2 Andromeda Library: Protecting the Torrent Protocol

	7 Conclusion and Future Works

