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Abstract

Cloning, or approximate cloning, is one of basic operations in quantum
information processing. In this paper, we deal with cloning of classical
states, or probability distribution in asymptotic setting. We study the
quality of the approximate (n,rn)-clone, with n being very large and r
being constant.

The result turns out to be [N (0,r1) — N (0,1)||,, where N (y,3) is
the Gaussian distribution with mean g and covariance ¥. Notablly, this
value does not depend on the the family of porbability distributions to be
cloned.

The key of the argument is use of local asymptotic normality: If the
curve § — Py is sufficiently smooth in 8, then, the behavior of Pg’” where
0 —0=o0 (\/1/n)7 is approximated by Gaussian shift. Using this, we

reduce the general case to Gaussian shift model.

1 Introduction

Cloning, or approximate cloning, is one of basic operations in quantum informa-
tion processing. It is related to optimal eavesdropping of quantum key distribu-
tion, and also to optimal estimation efficiency. The quality of the approximate
clone, thus, has been studied extensively [8].

In this paper, we deal with cloning of classical states, or probability distri-
butions in asymptotic setting. The study of (approximate) cloning of classical
states had started even earlier than the proposal of no-cloning theorem, to give
a measure of information contained in additional observations : they studied
the quality of approximate (n + r)-copies made from n-copies ((n,n + r)-clone,
hereafter), with n being very large and r being constant [2][5][6].

This paper explores another direction: we study the quality of the approx-
imate (n,rn)-clone with n being very large and r being constant, since its ex-
tension to quantum system seems to be easier.



In the argument, we make full use of local asymptotic normality: If the curve

0 — P, is sufficiently smooth, then, the family Pf" e is approxi-
+hn=1/2 [ egm

mated by Gaussian shift {N (h, Jy 1) }h crm> Where Jp is the Fisher information
matrix of {Pp}, o at 0. Using this fact , we reduce the general case to the

Gaussian shift model . More concretely, letting D, 5, be the loss of optimal
(1,7)-cloner of the Gaussian shift {N (h,¥)}, cgm, We show

sup lim inf  sup [A(PR) ~ Bil, 2 D, o, 1)

a>0n—oo A |6/—f||<an—1/2

where A moves over all the Markov maps. In other words, the loss of the
optimal asymptotic (n,nr)-cloner is asymptotically lower-bounded by DT_J;l,
at each 6 € ©. This loss turns out to be achievable: we construct a cloner A?’Er
with
limlim lim HA" Py — Py
510 el0 n—oo || 0 () = Fg

=D, (2)

Also, we find more explicit expression of D, s;, which is
D, s = |IN(0,71) = N (0,1)]|, .

It is notable that D, s does not depend on X. This means that D, gt

the smallest asymptotic loss of (n,rn)-cloner, does not depend on the family
{Ps}yce to be cloned.

Since there is a (finite dimensional) quantum version of local asymptotic
normality, this argument may be extended to finite dimensional quantum case.

The paper is organized as follows. First, we give the optimal approximate
cloners for Gaussian shift families, and find some properties of them. Second, we
state local asymptotic normality of smooth family of probability distributions,
and its uniform version. Finally, we give asymptotic analysis of approximate
(n,rn)-clone of smooth families. The paper is concluded by discussions.

2 Gaussian shift family

2.1 Reduction of cloning to amplification

The contents of the subsection is well-known, but added for the sake of comple-
tion.

Consider the Gaussian shift family {N (h,X)}, gm. Then, the problem of
optimum approximate (1, r)-clone, or finding a map achieving

— 3 _ ®r
Crz =\ ink 2o [ 0909 =N )

1
is equivalent to finding the optimum r-amplifier, or a Markov map achieving

Dy = inf S |A(N(h,%)) =N (vrh, )|, - (3)



To see this, let X7, -+, X, ~ N (h,X), and
X[ =>0i;X;
j=1
where O is an orthogonal matrix with O1; = O12 =+ = Oq, =

X{ ~N(y/rh,X) and X5, -+, X/ ~N(0,%).
Therefore, if

. Then,

=

sup [ Ao (N (1, 3)) = N (h, )"
heR™

1:: n2'+57

then

sup [|¥oAg (N (h,%)) =N (Vrh,S)||, < Crx +e.,
heR™

where VU is a Markov map corresponding to application of O followed by restric-
tion to the first variable. Hence,

Crs > Dys.
On the other hand, let ¥’ be a Markov map corresponding to the map
X = (X, X5, , X)), X5, , X, ~N(0,%)
followed by O~1. If

sup [[As (N (h, %)) = N (V7h, B)[|, = Drs + ¢,

heR™
then
sup ny’ oAy (N(h,2)) =N (h,2)%| <Ds+e.
heR™ 1
Hence,

C»QJSADnE-
After all, we have Cy 5z = D, 5.

2.2 Amplifier for Gaussian shift families

In this subsection, we find the optimum r-amplifier (r > 1) and its loss D,y =
Cy,x for the Gaussian shift family {N (2, %)}, cgm-
Observe first that

V- (N(h,X)) =N (\/Fh,rE) , Uomiy2 (N (\/Fh,rE)) =N(h,X).
where U, describes the Markov map corresponding to scale change. Hence,

D,y <inf sup |[Ao ¥ 7 (N(h X)) —N(Vrh,I)|
A herm !

=inf sup [[A (N (vrh,rS)) = N (Vrh, D),
heR™



and

D, s —1nf sup HAO\IIT 12 (N (Vrh,rE)) —N(\/Fh,E)Hl

heR™
> inf sup [|A (N (Vrh,7%)) = N (Vrh, Z)|,
heR™
Thus,
Drz = inf sup [A (N (vrh,rE)) = N (Vrh, D), (4)
i

and Ay, achieving (3)) and A™ achieving (4] are, if exists, related by
A;mp = AT oW NG

Now, we refer to Theorem 3 of [I1]: applying to our case, it says that

D,s = sup {/f )po,s (v) dy—SUP/f y+\/7:v)p0rz()dy}

frsup, | f(2)|<1

- s wl [0 px,rzw)}dy}

frsup, | f()|<1 ¥

= sup inf {/ f @) {po.1 (v) — par1 (y)} dy} ) (5)

frsup, | f(2)|<1 ¥

where p, » is probability density function of N (z, X).
The right most side of ({) is evaluated as follows. Observe

D, 5 < irzlf lPo.1 — parall;y

= |lpo,x — por1ll; - (6)

(The proof of (@) is in the appendix.) On the other hand, define B, :=
{y;p1(y) > pr1(y)}, which is a ball centered at origin. Then,

Doz int { [ (I, ()= 1) (ma (0) = e ()
=/(2IBT (y) = 1) po1 (y) dy—sgp/@la (y) = 1) pora (y) dy
= / (21B, (y) — 1)poa (y) dy — / (215, (y) = 1) po,r1 (y)dy

= [po,1 _pO,rlHl . (7)
(N.B. in the case of r < 1, sup,, [ (21p, (y) — 1) ps,r1 (y) dy is achieved as ||z|| —
00.)
After all, we have, if r > 1,
Dy.s = [lpoa = posall, = [IN(0,1) = N(0,71)[]; . (8)
Obviously, corresponding A" is the identity map. Thus,
Aoy =V 7 (9)



2.3 Bounded shifts

Define

Dyx.q:=inf sup ||A(N(h,X)) =N (h,v/rX)

A h)<a I

Then, if a’ > a and

H:ﬁlp [A(N(h,%)) =N (h,v/rX)|, = Drs.a +,
<a’

then

sup ||[A(N(h,%)) =N (h,vrE)||, < Drsar +¢.
InlI<a

Since € > 0 can be arbitrary, therefore,

Dr,E,a < Dr,Z,a’-

Hence, since D, 5, <2, limgy00 Dy 5 o exists.

Lemma 1

lim Drygﬁa = Dryg.
a— 00

Proof. Let us consider a decision problem taking values in [—1, 1]Rm. Let p be
a Markov kernel from R™ to [—1, I]Rm, and F (h,:) : R™ — [—1,1] be a lower
continuous function. Also, we define P, be the set of probability distributions
over {z; ||z|| < a} with finite support. Then, we define, for = € P,,

R (X, F,p) = //F (h,a) p(da,z) pprs () dedr (h).

Due to the randomization criteria (Theorem 1.10 of [9], Theorem 55.9 of [10]),

D, s = sup sup {inf R, (r¥, F,p) —inf R (%, F, p)} ,
TEPs F P P

and

D, 5, = sup sup {inf R, (rX,F,p) —inf R, (X, F, p)} .
n€Ps F P P

Comparing the right hand sides of them,

D,s =supD,x,= lim D,5,.
a>0 a—r 00



3 Smooth family

3.1 Settings and description of results

Consider a family of probability distributions {Pp; 6 € ©} over the measurable
space (£2, X), where © is an open region in R™, ) is a Polish space (a separable
completely metrizable topological space, e.g. R¥, ZF, etc. ) , and Py has density
py with respect to a measure p. Define P := Pg)", Py = pg)@”, Qo= QX"
X" = X" and

noo.__ pg+hn—1/2

0,h * 7}93 .
Also, Eg and Ej refers to expectation with respect to Py or Py, respectively.
Wy (k = 1,---,n) are the random variables with Wy, ~ Py, and define

Wy == (Wa,- -, Ws.rn), which obeys P}
Under this setting, we investigate the quality of (n,nr)-clone of {Py; 0 € O}.
More specifically, we show
. . n,r n TN _
wp lim s B B2 D, = Do
(10)
which means the loss of the optimal asymptotic (n, nr)-cloner is lower bounded
by D, It at each 6 € ©. Also, we show this loss is achievable: we construct a

cloner A" with

=D .. (11)

lim lim lim HA?; (Pg') — Pg" . rJ;

610 €0 n—o0

3.2 Local asymptotic normality and its uniform version

The map 0 — pg is differentiable in quadratic mean, if

KT 2
/ (x/p9+h —V/Po — 7€e\/p_9> dp =0, V0 € ©. (12)

lim ——
h=0 A
If the map 6 — /y is continuous, we say 6 — pg is continuously differentiable in

quadratic mean.
We define, with w™ € Q™ and w, € (),

1 n
0y (Wh) = — by (wi),
QB Do
J9 = [E9£971‘€97j], and
Zon (x) :==exp <th — %hTJ9h> .

The following Lemma is recasting of Remark 1 of [3] and Theorem 7.2 of
[12].



Lemma 2 Suppose © is an open region in R™ and 0 — pg is continuously
differentiable in quadratic mean. Then, Egly = 0, and, for any compact set
K CO and K' CR™,

lim sup sup P {|InZ3, —InZy (¢5)| > e} =0, Ve > 0.
N0 heK' 0EK '

The following Lemma is recasting of Remark 1 of Theorem 7.2 of [12].

Lemma 3 Suppose © is an open region in R™ and 0 — py is differentiable in
quadratic mean. Then, Egly =0, and, for any compact set K' C R™,

lim sup Py {‘ngh —InZyp (63)’ >e}=0,Ve>0.
n—00 K ’

In addition, we assume the following conditions:

Jp is continuous in 6, (13)
inf g > 0, (14)
6€o

where ay is the minimum eigenvalue of Jy, and

sup EgehTe" < oo, Yh € R™, for any compact set K C O. (15)
feK

Observe that

g (hT05)*" < (2k)!||h]|** Eg cosh (¢7£y) ,
Bo A7 o™ < IR {14 B (7 06)™ ) < IRIP {1+ (28)1Bg cosh (e79) },
where e = h/ ||h]|, implying

sup Ey |hT€9|k < oo, Yh € R™, for any compact set K C O. (16)
0K

Also, one can show that, for any compact set K C © and K’ C R™,

sup Ege' % <" b g e ©,Vh e K’ Ink (17)

n2>2ng g

The proof of (7)) is as follows. Observe, since Egly = 0 due to Lemmal3]

WTgn e\
Ege" Yo = [ Ege™ v@™

hT Joh "
= (1 + 2710 + frcm (97 h’a n)) ) (18)



where

|frem(9=hvn)|

S AL ——
SZE <—n E9’€ 59‘

k=3

1 (R
<5 > (—> Eg coshe™ (g

2k23,k:cvcn \/ﬁ

> 1 |h||)’“ <k+1>!(||h||>’“ T
+ Z {—<— + — | Egcoshe” ¥y
k>3,k:odd k! \/ﬁ k! \/ﬁ

i (k+1) (|\|/ﬂ> {Egcoshe’ly + 1}

k>3

_<M)34—5|hll/\/ﬁ
Vi) T-Jall/va

Therefore, for each compact set K C © and K’ C R™, there is nk k- such that

(Eg cosh eTly + 1). (19)

hT Jah

n

n
T pm T
Egeh & < (1 + ) < el Jﬂh, Yn > nk k.

Hence, we have ().
Also, we use the following identity :

. T jn T yn
lim sup sup sup Ej [eh b el te > a} =0, (20)
GO n>ng xr he K/ 0eK

which is proved as follows.

T yn T pn
lim sup sup sup Ej [ hits . el to > a}
a—00 n>ng g heK' 0€K

T ypn Tpn
< lim sup sup sup \/E" ] Py {eh™ i > a}
a—o0 n>nK k! he K’ 0eK

< lim sup sup sup e2h” J"hw/P” {eh G > a}
a—o0 n>ng g he K 0€K
. T 1 T
< lim sup sup supe?? J"hq/ —Egeh &
a—o0 n>np r heK' €K a

1 55T
< lim — sup sup ezh"Joh — g,

=0 4 heK' e K

Lemma 4 Suppose random variables X, , and Y, ¢, n > 1, t € T, taking
values in R* satisfies

lim sup Pr{|| Xn:—Yn.ll >¢} =0, (21)



Let f be a continuously differentiable function from RF to R such that,

sup [V f (z)] < oo, (22)
wif(2)<a
and
lim lim supE[f (X,) : f(Xnt) > a] < o0, (23)
a—r 00 N—r00 tGT
lim lim supE[f (X)) : f (Vo) > a] < . (24)
a—0o0 N— 00 teT
Then,

lim sup |Ef (Xpnt) —Ef (Yn:)] =0

n—oo teT

Proof. Define
fo (@) = f (2) Aa.

Then,

lim sup [Ef (Xp:) —Ef (Vo)

< lim sup |[Ef*(Xpn1) — Ef* (Xy)]
n—oo teT

+ lim sup |E[f (Xpnz) : f (Xnyt) > al|
n—oo teT

+ lim sup |E[f (Ya) : f Vo) > all. (25)
n—oo teT

The first term of the right hand side is evaluated as follows.
|fa (Xn,t) - fa (Yn,t)| S C ”Xn,t - Yn,t” 7Vt SA

where
C< sup ||Vaf ()| < oo.
z:f(z)<a
Therefore,
lim sup |[Ef* (Xn:) —Ef* Yn)| <e+ax lim supPr{|f* (Xn.) — f* Yn.)| >}
n—oo teT n—oo teT
=c+ax lim supPr{C|X,, — Y, >¢}
n—oo teT
=ec.

This can be made arbitrarily small, since € > 0 is arbitrary.
The second and the third terms of the right hand side of (23] can be made
arbitrarily small by taking a large. Hence, we have the assertion. m

Lemma 5 Suppose 8 — pg is continuously differentiable in quadratic mean,
and (I3) holds. Then, for any compact set K C © and K' C R™,

lim sup sup Ej | Zg,, — Zon (£5)] = 0.
N0 heK 0K ’



Proof. We apply Lemmal, with f (z) := e®, t = (0,h), Xpn+ = InZy, and
Y.+ =1InZyp (l}) = hTﬁg - %hTJgh. Then, the premises ([2I)) and [22) are
obviously satisfied.

Due to 20), [23) is satisfied:

lim sup sup Ey [Zo.n (45) : Zop (£) > a] = 0,a — o0.
N0 heK' 0eK

24) is proved as follows. Let g, (z) be a continuous function on Ry such
that g, () =1 for x <a—1 and g, () = 0 for > a. Then,

lim sup sup Ej [Z3), : Z3), > al
N he K ek

< ILm sup sup {1 — Ej [Zéfh Ja (Z;I,h)”
n—00 he K1 e K

< lim sup sup {1 —Eg [Zon (¢5) ga (Zo.n (£y) )]}

nN—=X heK'cK

+sup{(z +¢)ga(z+¢) — 290 ()}

+ anli_)n;Osz {‘Z;h — Zon (eg)| > 5}

< lim sup supE} (Zo (43) < Zon((3) > a—1]
N2 pheK 0K

+sup{(z +¢)ga(z+¢) — 290 ()}

t+a lim Py {| 25, — Zon (45)] > ¢}

= lim sup sup Ey [Zo, (€5) : Zon (L) > a—1]
nN=X heK'cK

+ Sl;p{(x +¢€)ga(z+e) —2ga (2)}.

Since € > 0 is arbitrary and g, is continuous,
: n n . 7n
lim sup sup Ey [Zeyh VA a]
n—oo heK’' becK

< lim sup sup Eg [Zon (€5) : Zon (0g) > a—1]
n—oo heK'’' feK

— 0, a — o0.
So, we have the assertion. m

Lemma 6 Suppose 0 — py is differentiable in quadratic mean, and (I3) holds.
Then, for any compact set K' C R™,

lim sup Ej |2, — Zo,, (£3)] = 0.

n—00 heK'’ ’
Proof. The proof is almost parallel with the one of Lemmalhl except that
Lemmal3 is used instead of Lemma[2] and that supyc at each step is removed.
]

Below, we denote by C (h,r) the closed m-dimensional hypercube which is

centered at h € R™, parallel to the coordinate axis, and of edge length 2r. Also,
27F7Z™ is an element of R™ whose coordinates are integer multiple of 27*.

10



Lemma 7 Let Oy be a countable subset of © and ¢, be a positive constant.
Then, to every ordered correction (iq, 12, - ,i)) associate a Borel set S(irin,in)
in R™ such that

S(i17i27”'7ik) n S(jl;j27”'7jk) = ij (ilvi% T 7ik) 7£ (jl,jQ, to a.]k) ) (26)
Diameter of S, iy, i) < Vm27E2 (k> 1), (27)
Pgn {gg S 8S(i17i27.,,7ik)} =0, Vo € @o,Vn (28)
Ny,
U S 2 [=enenl™, Nu i= (260 + 1) (29)
j=1
S, —R™, (30)
j=1
U S(ilv“ vik—1,J) S(ilw“ Vik—1) (31)

Proof. Since O is a countable set, we can choose an rg with ¢, < ro < ¢, + %
and

Py {ty € C(0,m0)} =0, V0 € Og,Vn. (32)
Also, we can choose 1, with 27% < r, < 27%+1 and
Py {3 € C (h,r)} = 0, Y6 € O, Vn, (33)

for all h € 27k+17zm,
First, we compose Sy, S, ---. Define h; € Z™ so that hq,--,hn, €

n

[—c n] , and that {h;; j=1,2,---} = Z™. Then, recursively define, for
.7 = 1 Y N’ﬂu

Slz_c(o,ro)mc(hl,n),Sj:—O(O,ro)ﬁ{ (hj,r1) = US}

and, for j > N, + 1,

Sj = C (hj,m) — US

Since Ujv:’"”l C (hj,271) =C (0,¢, + 3), we have Ujv:’"”l C(hj,r1) D C(0,70).
Also,

N, Np,
U Sj 0 7‘0 ﬁ C hJ,Tl
j=1 j=1
Therefore,
Ny,
U Si=C(0,m0) O [~cnren]™,
j=1

11



indicating (29). Similarly, we have

o0

US_ 00U |J S=C0m)u U C (hj,m)
J=Nn+1 J=Nn+1
D [—cn,cn]™ U U ( —) R™,
J=Nnp+1

which is (B0).

Next, we compose S(;, ... ;,) - Foreach k > 2,let h;, ... ;, (ix =1,---,5™) be
an element of 27 *+H1Z™ with h;, ... 5, € C (hiy .. iy 1,27 ¥F2). Then, we define,
recursively,

S(i17”'7ik—1>1) = S(ilv”'vik—l) nc (hib'")ik*lvl’ Tk) )
ip—1

S(h,“',ik) = S('L.lf"ﬂ.k—l) nqcC (hi17”'7ik—lyik7rk) - U S(ilv"'aik—hj)
Since

US(hwwk 1.4) 2 UO 11,5 ie—1,0) k)

:C( i1 27+2 4+ 27h)

Jik—1)
and
C (hil,--- 1ik71,27k+2 + 2716) oC (hil,--- 1ik71,’l”k71) D S(il,--- Jik—1)

we have
5m
U S(ilwwik—l»j) - S(ily"'yik—l)’
Jj=1

which implies (3TI).
(24 is trivial by composition. (27) is due to

ik
0 iy iy rvie) C OS(iy e sinsy U\ J OC (hiy iy o) -
j=1

Hence, by B2) and B3], recursively we have (28). (7)) is obvious from that
S(ir,e- i) 18 a subset of C' (hy, ... i\, 7%). ™

Jik)

Lemma 8 Suppose 8 — pg is continuously differentiable in quadratic mean,
and (I43) holds. Also, let ©g be a countable subset of ©. Then, there are ran-
dom variables ng and ny (n > 1) over ([0,1],B([0,1] x R™),v), such that v is
Lebesgue measure,

L(nglv) =N (0, Jg), L(nglv) = L(5F), (34)

lim  sup v {[lng —nel =} =0. (35)
n_)OOQGKm@()

12



Proof. Let S(;, ... ;,) be as of Lemmal[l and for each k, and order
lexicographically. For 6 € O, define intervals A} (i1, -+ ,ix) of the form [a, b)
in [0, 1) such that the length of A} (i1, - ,ix) is Py {6}} € Sy, ,in)}, and that,

with (j1, -+, %) > (i1, , k), the left end point of A} (j1,--- ,jx) lies to the
right of A} (41, ,4x). Then, we have

U A% i) =1[0,1).
i1EN,1<i;<5™

If Py {63 € S(i17.,.7in)} is non-zero for some n, by ([28), its interior is non-
empty. Thus we may take a point z(;, y in its interior. For w € [0,1],
define

Zk

¥ (@) = @iy i)y @ €AY (i1, yig) -

making the sequence {ng’k (w)} Cauchy for each w,n, and 6. Hence, ;) (@) =

Then,

™ (@) =gt ()| < vm2k, (36)

limy o0 757" (w) exists.

Define the intervals Ag (i1, - ,ix) of the form [a,b) in [0,1) such that the
length of Ag (i1,--- ,ix) is Pno,J) (S’(Z—h_.’in)), and that, with (j1,---,jk) >
(i1, ,ix), the left end point of Ag (41, - , ji) lies to the right of Ag (i1, - ,ix).
Also, one can define 1% () and 7y () in the parallel manner with ng’k (w) and
1y (@).

Then, by 28) and the multi-dimensional Berry Esseen theorem (Corollary
11.1 of [1]), we have

: . . : B
AT (i1 N < =
eeS}?rE@[)W( (i) =w (Do (i, k)] < V'

where 3 := 400m!/* supge g Eo ||J‘971€9||3 .Therefore,
; : , . 235k
I/(Ag(zh...7zk)AA9(117...7lk))§%'

Also, by Markov’s inequality,

oo oo

. sup tr Jy . sup, tr Jy
S v(ap () < TR ST (4, (j)) < TReeK
j=Nn+1 n j=Nn+1 n
Thus,
sup Z v(AY (i1, yik) A D (41, i)

0€KNO0 ;) eN, 1< <5m

_ 25Wper s B52ME ((2¢, + 1)™ + 1)
c2 LD '

13



Here, set
Inn

1
=k = s T
Then,
sup Z V(A (i1, ik, ) A Dg (i, yig,))
PEKNO0 ;) N 1<, <5m
=0 (n_ﬁ) +0 (n_1/4) — 0, n — oo.
Therefore,

lim sup V{n"’k" @) # nkn w}
B AL (@) # " (@)

< lim sup > v (Af(in, ik, ADg (in, - ik,)) =0. (37)

n—oo
OEK ; en,1<i;<5m

Observe, due to ([B0)

K kn —k,
Jim | (@) =t ()| < vim2 e,
—00

1o (@) =l (@) = Jim_ |0’ () = o (@) < vim2Het2,

k' —o0

wj (@) = i (@) = tim

Therefore, due to

95 () = o ()
< | @) —mp @) + |

np (@) = e @)|| + [ (@) =m0 ()
and ([31), we have

sup v {|ng —nell > ¢}
€ KNBg

< sup u{‘

n,kn k
< ,,70 _ ,,7071
0c KNBg

+ 2¢y/m2 P2 > a}
— 0, n — oo,

which is (33l).

To prove (B4)), observe that every open set in R™ can be expressed as a
disjoint countable union of S(;, ... 4,)’s. Therefore, for any open set G, by Fatou’s
lemma,

lim y{ng”“ec}zpy{egec}.

k—o00

Hence, by Portmanteau theorem (Lemma 2.2 of [12]), limp_ oo £ (ng’k|y> =

L (€5 P}). Since limy_,o0 ng’k = ny almost surely, we have the second identity
of (34). The first identity is proved parallelly. m
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Lemma 9 Suppose 8 — pyg is continuously differentiable in quadratic mean, and
(I3) holds. Also, let ©¢ be a countable subset of ©. Then, there are probability
measure P} over a measurable space (Q" x QX" @ X'), where (V,X') :=
(R™ x [0,1],B(R™ x [0,1])), n > 1, and random wvariables N, n > 1 over

(Q" x QX" X, Ij’gl), such that, ]551 is an extension of Py and

A"~ N(0, p) (38)

lim sup Pp{||t§ —\"|| >e} =0, (39)
N0 ge KNOo

for any compact set K C ©.

Proof. The proof much draws upon the second proof of Lemma 2.2 of [9]. Define
a kernel KJ (z,dy) from (R™, B (R™)) to ([0,1],8([0,1])) by the identity

Oy (y) (dz) v (dy) = Ry (dz) K7 (2,dy), (40)
where 0, is Dirac measure, v is the Lebesgue measure, 1y is as of Lemmal8] and
Ry = L (3|Py) = L (ny|v). (Since [0,1] is Polish, such K} exists, see 342E of
[4]. ) Define, with @™ = (w™, x,y) € Q" x ',

Py (da™) == Pg (dw™) Spp (o) (dz) K (2,dy)
AT (@) =m0 (y),

where 7 is as of Lemmal8
Since the restriction of Pj* on ([0, 1],B([0,1])) is v,

£ (X" @)1P3) = £ (n0 () 1B5) = £ (0 () [0) = N (0, Ju)

Hence, (B8) is shown.
By abusing the notation, we denote the extension of £ : Q" — R™ to
Q" x Q' — R™ also by ¢£j: in other words,

g (W™, z,y) =Ly (W").
To verify ([39), we show
by @") =5 (v), Pj-as. (41)

Observe that restriction of Py to (Q/,&’) = (R™ x [0,1],B(R™ x [0,1])) is
Q). Therefore, we have

B @ =oD = [ [ T g B @) e (o)

- / g (dwn)/ 2 epam=ay o em (d7)
=1

3
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and

B =D = [ [ It @ @)

= v (dy / I . Y S da
[0,1] ( ) [0,1] {779 (y)= } g (y) ( )
= 1'

Thus, I is shown.
By (@) and the definition of A",

sup Py {[|ty — X" | >e} = sup P {|lng — ol > e}
0 KNOBg € KNOBg

= sup v{|ng —nell > e}
€ KNBy

— 0, n — o0.

Lemma 10 Suppose 0 — py is differentiable in quadratic mean, and (I3) holds.
Then, there are probability measure P} over a measurable space (2" x ', X" @ X'),
where (', X") := (R™ x [0,1],B(R™ x [0,1])), n > 1, and random variables
AN n > 1 over (Q” x QX" ® X’,I:’gl), such that, ]551 is an extension of Py

and

A"~ N (0, Jp) (42)
lim P {[|ty — X"|| > €} =0, (43)

for any compact set K C ©.

Proof. This is only the combination of Lemma 2.2 of [9] and the central limit
theorem. m

Theorem 11 Suppose 8 — py is continuously differentiable in quadratic mean,
and [I3) holds. Also, let ©¢ be a countable subset of ©. Then, there are probabil-
ity measures Pj' over measurable spaces (" x ', X" @ X'), where (U, X') :=
(R™ % [0,1],B(R™ x [0,1])), n > 1, and random variables A}, n > 1 over

(Q” x QA X"® X',Pg“), such that, PQ" is an extension of Py and

lim sup sup || B, 1/ —nghH =0,
N0 he K’ 0€KNOg 1

L) =N (h,J; "),
Qin (A) ==EY Ry (A|N}).

Here, K is an arbitrary compact set in ©, K' is an arbitrary compact set in
R™, and Ry (-|\") is a measure on (2" x ', X" @ X'), which may depend on
0, but is independent of h.

16



Proof. We use Lemmal, with f (z) = e, t = (6,h), Xps :== h"XN™ — 1T Jgh
and Yy, ; := hT0} — 2h" Jyh. Obviously, 2I) and ([22) are satisfied.
Due to (20), we have [23)):

lim sup sup Ey[Zon(Cy): Zon(Ly) > al = 0,a — co.
N0 he K’ 0e KNBg

Due to (38) , we have

lim sup sup EZ[Zon (N™): Zo.n (N) > d
n—=o0 he K1 9EKNO,

= sup sup EX [Zon (X): Zgp(X)>al =0, a— oo,
heK’ 0 KNGy

where £ (X) =N (0,J,7"). Thus @24). Therefore, we have

lim sup sup EZ|Zon (02) — Zo.n (N™)| = 0.
N0 he K 0 KNOg

Therefore, combining Lemmal5],

sup sup Bf | 23, — Zo.u (™)

heK’ e K

< sup sup By |2y, — Zo.n (45)| + sup sup Ef [Zo,n (05) — Zo.n (N'™)]
heK’' e K heK’' e K

— 0.

Let ng be the random variable with £ (VVG”) = ]59”. Then

B2 Zo 1 (N) I (W;)
e 2% Jo Tdx

- _1,Tj-1
_ nn m n m __
= /Ee _Ze,h (A™) 1a (We ) A" = x} (27T)m/2 (det J0)1/2

S - 1
- /Eg Ia (W;) A= 3:} exp {—%ITJQ Ty Ty §hTJ9h}

dx
(2m)™2 (det J)*/?

= [ 85 [1a (W5 ) 3" = e exp{—% (=0T Jy (ar - h)} %dw

Since Q" x Q' is Polish, there is a nice version of R} (A|z) := Ej [IA (W;) [N = ng}
which is a probability measure in X™ x X’ for every £ € R™ (see, for example,
342E of [4]). By definition,

EoZon (") La (W3 ) = MRy (AIN)

17



Therefore, we have the assertion:

sup sup [Py, 12, (A) — Qp (A)‘

heK’' e K

= sup sup | B, 12, (A) — EM Ry (AIX")
heK’' e K

= sup sup [B3 23, La (W) = B Zoa (V") La (W7')|
heK’' e K

< sup sup E} |23, — Zon (\™)] = 0, n — 0.
heK’ €K '

Theorem 12 Suppose 0 — py is differentiable in quadratic mean, and (13)
holds. Then, there are probability measures Pj* over a measurable spaces (2" x ', X" @ X'),
where (', X") := (R™ x [0,1],B(R™ x [0,1])), n > 1, and random variables
7, n>1 over (Q" x QX" ® X’,I:’gl), such that, ]59" is an extension of Pj
and

: n n
lim sup P9+,m,1/2 — Q(%h

n— o0 hEK'
Ap ~ N (h,Jy ),
Qp 1, (A) =BV Ry (A|N}).

=0
1

Here, K' is an arbitrary compact set in R™, and Ry (-|A\") is a measure on
Q" x QX" @ X'), which may depend on 0, but is independent of h.

Proof. The proof is parallel with the one of Theorem[II] except that Lemmal[l(

is used instead of Lemmald] and that supgcg at each step is removed. m

3.3 Asymptotic cloner using the optimal amplifier for the
Gaussian shift family

Hereafter, we assume the existence of a sequence {é"} of estimate of 6, such
that

a—00 N—r00

lim lim P} {\/ﬁ

é"—eH Za} = 0. (44)
Without loss of generality, one can suppose that
" e n=1?z. (45)

If (@F) is not satisfied, we redefine ™ as the closest element of n~/2Z to 0".
Obviously, newly defined 0™ satisfies ([@4]). Therefore, letting

Qo == {k‘1/2~l;keN,leZ},

we can suppose R
" € (CH)

18



and the cardinality of © is countable.
We consider the following procedure of (n, rn)-cloner A:{’;. For the compo-
sition, we use the optimal r-amplifier A7, =V 7 of the Gaussian shift family

{N (h, J;l)}heﬂw. Also, define
Ly (W) = J, Wy (w™) + Yz,

where £ (Y;) = N (0,¢1).
Then, for a given € > 0 and 0 < § < 1, we construct a cloner A:{’; as follows.

(I) Estimate 6 using ni-data, (nq := dn) and let ng:= (1 — ) n.

(IT) Apply Aa'mTp/ o L (ngf Py 2). Denote the resulting random variable
by X2 .=

o1’

(III) Generate (w"™,w') according to R%"

- ) ,
o (.|X;Jn1), and discard w'.

The output probability distribution is

37 (R =BT BN R (A Q1R

We will show this is asymptotically optimal.

Lemma 13 Suppose 0 — pg is continuously differentiable in quadratic mean,
and (I3) holds. Moreover, suppose (I3) is satisfied. Then, for any compact set
K' cR™,

£ (L5, 1P, ) =N (o, J;l)H1 =0,

lim lim sup
el0 n—=00 p K1

where 0, p, := 0 + n=1/2p.
Proof. Define h,, so that

n, n —1
e (251, ) N )], = sup

L (nghwg;,h) —N (0, JO_I)Hl —¢

holds, and let 8" := 6, 5. Then, lim,,_,, 6™ = 6.
Denote by ¢¢/ the characteristic function of the distribution of J,, Yo (Wa,x)-
Then, the density of £ (Ly; |Pj.) with respect to Lebesgue measure is

1 t " “le|jt)|? — /Tt
— n | — *dt.
o [ (7)ot

Observe

/‘{¢0" (L) }n e_%€||t|\2e—ﬁt»m

19

dt < /e_glltwdt < 00.
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Hence, by Lebesgue’s dominated convergence theorem, we have, with fremm being

as of (I8]),

o1 t \ " - 1o —v=Tew
S A O
_ 1 : t " Lellt)? v/ Tt
“5 [ {or (ﬁ} < i

- _/ hm {1 T 9. (tTJO" ) + frcm (9, V —lt,n)} e_%€||t|‘2e—\/—_1t»mdt

n—oo

= —/exp{——tT +521) }e‘/_”'””dt a.e.

Here, in the third line, we used Lemmal3] to show that the first order term of the
Taylor expansion (= E}¢j) vanishes. Also, to obtain the fourth line, we used
the inequality (9.

Therefore, the density of £ (Ly;°|Pj.) converges to the one of N (0, Jt+ £),
as n — oo. Therefore, By Schefe’s lemma, we have

Jim (|2 (5713 =N (0,957 +9)]], =
Therefore,

lim lim ||£(Ly:5|Pga) — N (0, J,7)

el0 n—o0 Hl

I

=0.

<lim lim [[£(Lg7[P5) = N (0. 0y +e) |, + lim IN(0,J,1) =N (0, ;" +¢)

Therefore,

lim lim sup ’
el0 n—=00 pe K

,€ —1 /
(Lgn,h,|P0’n;L,h) _N(07J9 )Hl S €.
Since ¢’ > 0 is arbitrary, we have the assertion. m
Lemma 14 Suppose 0 — pg is continuously differentiable in quadratic mean,

and (I3) holds. Moreover, we suppose ({I3) and (I4) hold. Then, for any com-
pact set K' € R™, we have

lim lim sup
el0 n—o0 heK'

£ (L5, 15) =N (=h, 51| =0,

where Oy, p, =0 + n=1/2p

Proof. Observe, for any measurable function f with sup,cgm |f (z)| <1,
B [f (25 )] =BE, [7 (652 28 0]
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Observe also, due to Lemmalbl with Ky being a compact subset of © containing
# and K’ being an arbitrary compact subset of R™,
sup

hek! EYEEgn,h |:f (Lgrfh) (Zg‘n,hv*h - Ze"’h’7h (ég"’h) )jH

5 [ tus (5.
hek’ ™ ’ ’

< sup sup By [|Z5 _p — Zor -1 (05) |]
heK' /€Ky

— 0, n — 0. (46)

Therefore, we have to evaluate

lim sup EYE gn’h |:f (Lg:fh) Zen,}n*h (égn,h):|

n—oo heK’
T Y. n,e n,e hTJo, Y.
= lim Sup BEEG, [f (Len,h) 26, 1,~h (Jen,hLen,h) er e }
= lim sup {E1 + E2 + E3},

n—r oo heK’

where

Ey:=E“Ep | I{HL

n,e n,e rtJ, hYE
<a.vlzea}d (£65.) Zousmn (Jonn i, ) €7 |

n,e
971,}1

_pYepn n,e ne \ hTJe . Ye
By =E"Eg I vesera}S (Lem) 29,1, (Jen,hLen,h,) er e

. RYepn n,e T,E hTJg h,YE
P = BRg I{| |>a,||Y5||SE“4}f (LM) Ztn =t (J‘)"’hL%Je v '

n,h

e
971,}1

The first term of the right most side of F; is evaluated as follows.

) n, n, rTJ Y-
Fy=EVE,, [1{1%1;1 <a}/ (2652) Zousn (Foun 255, ) B [Ty cariaye o

n,e
L0n,h:| } !

(47)
whose second factor can be evaluated as
. . R Je, Y| ne ]
i Jim s [ [ 1oy 23] 1
/
<lim lim sup e”h”||"9n,h||51 — (48)

el0 n—oo pc it

To evaluate the first factor of Ey, or

Eiq = EYEEgn,h, [I{‘LZ:}L ‘Sa}f (Lgfh) Z‘gn,}“_h (Jen,thfh,)] )
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observe

lim sup
n—00 heK'

By, —EEf | [I{‘

g (88, s (02

< lim sup sup |Zy, ,.—n (Jo, L) — Zo,—n (JoL)|
" heK! L] <a

Ln,s
On.h

= lim sup sup
MO heK’ | L||<a

=0.

exp {—hTJgn,hL} e Jounh _ exp {—hTJgL} e3h” Joh

Therefore, letting X, be a random variable with £ (X)) = N (h, Je_l),

lim lim sup
el0 n—oo heK'

Erq—EX [f (Xon) 5 | Xl < a]‘

. . < a}
=lim lim sup -

el0 n—=00 b7

EYEp L{(ng) Zo—n (Jngjh) : HLn,s
o

On,h
—E* [f (Xo) Zo,—n (JoXo) : | Xol| < a]

< sup ellPllollag=3h"Joh 1y Jim sup ||£ (L"’8 Py ) —N(0,J,* H
N heII;' l0 nﬁoohe}{)/ 0""‘| O (0.757) 1
=0, (49)
where the last identity is due to Lemmal[I3l
Therefore, by [{@8) and ([@9),
lim Tim sup [By — B [f (X_)3]|X_4l| < al] = 0. (50)
€l0 n—00 p 7

On the other hand, by ([IT), Eathe second term of the right most side of (@8]
is evaluated as

lim lim sup Fy < lim sup EY<E} |:Z9n —h ( 5 ) Yz > 51/4}
el0 n—oo heK' n— o0 heK' n,h v n,h

. . nT h_—inT h
= hmPr{HYEH > 61/4} - lim sup e Tonnlem2 Jonn

el0 n—00 p,c [/

= 0. (51)
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Also, FEj is evaluated as, by ([7),

lim lim sup Ej
el0 n—oo heK'’

<lim lim sup EYEEen,h [Zen,h,—h (ﬂgn,h) : HLZ:h

el0 n—0o0 pc it

>(l,||}€|| _<E /
< . . E’n, ] Z9 — (gn )
hm nllm hSLlp/ 6 , {HanlY ’[nnY ”|>a 61/4} n,hs h On’h

2
: : n n _ ~1/4 n n
<l i, V 50, 75, {5, > conn 0=} B, (2o (6,

. 2hTJy  h —hTJy  h
< lim lim sup P 02 | > ag (a — 51/4) e fn.ne On.h
E,LO n—o0 he K’ 071,}1 071,}1 n,h

L. 1 2 pr
<lim lim ,/ sup sE 14, e o nh
2R o, (oo I
tr Jy
< 5— sup eh’Joh, (52)
aga? pei

where ay is the minimal eigenvalue of Jy.

After all, combining ({#6]), (50), (&I) and (G2), we have
BEg (£ (L57,)] — BIf (X))

B, [£(255,) Zownn (6,,)] — B (X0

lim lim sup
el0 n—=00 pc

<lim lim sup
€0 n—00 p i

tr J,

— |22 sup eh"Joh + sup Pr{|| X_| > a}.

72
Apa~ pheK’ heK'’

Since a is arbitrary, letting a — oo, we have

lim lim sup
el0 n—=00 pc i

£(Lps, 1Py ) =N (b, 57| =0,

Theorem 15 Suppose 8 — py is continuously differentiable in quadratic mean,

and (I3) holds. Moreover, we suppose ([I3), (I3)), and {{4)) hold. Then, we have
(L1).
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Proof. Observe, for any compact set K’ C R™,

|

< e ES Ry, (1%5.) - B

A3 Py = B,

on1 on1

<E™

X rn N DTN
Eom Ry, ("Xém) -5

om1 Xxr, TN N DTN
o o (147.) -

(155.,) -7
B0 (| g, (155,) - B

(é"l - 9) € K’}

1:\/71_2
1:\/@@"1 —9) gzK’} (53)

The second term of (B3)) is evaluated as

H@O EO { ‘EXeTLM Ry (-|Xgn1) - Py . vrn (é”l — 9) ¢ K’}
< 271@0199711 {\/rn (é"l — 9) ¢ K’},

whose left hand side becomes arbitrarily small as K’ 1 R™, due to (@4).
Next, we evaluate the first term of (B3]).

B [BS g, (1%5.) - B

lzm(énl—e) e K|
‘1:\/71_2(9”1 —9) GK/]
1: \/n—z(ém —9) € K’} . (54)

om1 xnr rn N rn
<E |:HE 6 lRé"I (|Xén1) - énl)\/m(e_énl)

™1 rn prn
+E [H 61,y (0—6m1 ) Py

The first term of (B4) is evaluated as follows. Let

h;:\/n—Q(ém —9) - ,/#m(ém —9),

or equivalently,

0" = 0,5 = 0

rn,h’
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where h := 1/r (1 — 6) " 'h. Then,

X rn Al Yvn Tn A
Sl:ip‘E o Ry (A|Xén1) © %o, rn(9—6m1) (A)’

= sup [Bi Ry, (A1%7,) - Qg (A)]
A

—sup [EXi Ry (4157, ) - BV Rg (A7)
A

om1 o1

(i) i),
< ,C(Xgnl)—/\avnf}f“"” (N (—h,Jel))H +‘
1

_ gy (£ (Lgzaipe)) = A= (N (=h, 75 1))

’ 20

At O (N (= I ) = N (=g )

1

= amp on1

1

+ HA:,,TP/““” (N (=h,J; 1)) =N (—\/7‘/ 1 —0)h, ng)

na, n —1
<fle (zgimie) =N G g+

1

Ad T (N () = N (VT =0, g5

1
Therefore, due to Lemmal[l4]

. T mhm X rn 1lvn rn 1
Eﬁ)lnh—{%oE Sljip’E N (A|Xén1> — Qgns e (o—im) (A)

£ (Lgze py=) =N (=h g7 |

(i -d) e

<lim lim sup
el0 n—oo p ot

1

+sup sup Al TV (N(W,J5Y) =N (\/r/ 1- 5)h’,J9_1)
heK’ h'€R™ 1
= sup [T (8 ) N (VT am g
m 1
=D, )1 sy. (55)

The second term of (B4) is evaluated as follows. Let K’ be an arbitrary
compact set in R” and Ky be an arbitrary compact set in © with § € K. Then,
due to {@3) and Theorem[IT]

gm1 rn Hrn . n
E {H é7111\/m(97én1)_P0 1.\/7‘71(6’ 1—6‘) EK'}

< sup sup

— 0, n — 0. (56)
0'€Ko heK’

an _ Prn
0',—h 0'—h/\/Tn

1

Therefore, combining (53] and (&6), we have

lim Tim EO [HEX&IRC" (IX” ) - B

el0 n—oo om1 om1

LV (0m = 0) €K S D
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After all, we have

lim lim
£J}0 n—oo

<D,

AR (P) By

/(1=8),J, "

Since the map © — D, » is continuous about z (see () ), letting § — 0, we
have the asserted result. m

3.4 Local minimax property

. 0
Based on (n,rn)-cloner A™" for {Pj'},.q, We compose an amplifier Adpyrmee

for the Gaussian shift {N (h, Je_l) }heRm as follows.
(I) Given X with £(X;,) =N (h,J; '), compose
i (A) = Q) (Ax Q) = E¥" Ry (A x | X»).
(IT) Apply A™" to Q3. Denote by W;"" the random variable with £ (W,"") =
A ().

(III) The output random variable is X;™ := Lp™* (W,;""), where L} (w™) :=
o (W) + Yz and £ (Yz) = N (0,¢).

Lemma 16 Suppose 0 — py is differentiable in quadratic mean, and (I3) and
(Z4) hold. Then, for any compact set K' € R™, we have

lim sup
n—oo heK'

(LpeIpy, ) =N (nJ7 || =0
Proof. Observe, for any measurable function f with sup,cgm |f (z)] <1,
EVEj | [f (Ly)] =EYEy [f (L) Zu ],

Observe also, due to LemmalG] with K’ being an arbitrary compact subset of
R™,

sup [EYE} [f (L5) (Z5n = Zon (t5))]] (57)
< sup By (|25, — Zon (63)]]
heK’

— 0, n — 0.
Therefore, we have to evaluate

lim lim sup EY<E} [f (Ly°) Zon (£5)]
€l0 n—00 p i

=lim lim sup EYEj |f (L§) Zon (L) e 7]
el0 n—o0 p gt

=lim lim sup (Fy + E> + E3),
el0 n—=00 v
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where
By o= BB |1 <a v f (157) Zon (Jo L3y 0]
Ep = BV Ej [I{IIYEH>51/4}f(Lg’E)Ze,h (JeLg’a)e_hTJBYE} :
Es := EEj [I{||Lgv5||>a,||YE||gal/4}f(LZ’5)Ze,h (JoLy™) 67hTJ9Y€} ,

F; is evaluated as follows. Observe

n n, n, —hT JpY-
E\=E"Ej | [I{HLQ"EHga}f (L) Zon (JoLy®)E [I{HYEHgslM}e ey

all

3T n, 1/4
ol i P | T L G

whose second factor can be evaluated as

lim lim sup
el0 n—o0 heK'

To evaluate the first factor
By = BBy [f (Ly*) Zow (JoLy®) : | Ly |l < ],
observe, with £ (X3,) =N (h, J,; '),

lim lim sup [Eyy —E[f (Xop) @ [ Xon] < df
el0 n—oo heK'

Y-n n,e n,e\ . n,e
—lim lim sup EYE} [f (L") Zo.n (JoLy™) : | Ly || <

el0 n—oo e | —EX0[f (Xo) Zon (JoXo) + [| Xol| < d]
< ikl Jolla—3hT Joh 1 : ne|pny _ 1
< sup e R lim m £ (LG 71 = N (0,5 )
=0, (59)
where the last identity is due to Lemmall3]
Therefore, by (58) and (B3],
lim lim sup |Ey —E[f (X_p) : || X_n] <a]| =0. (60)
£J}0 n—o0 heK'
On the other hand, by (1),
lim lim sup Fso
el0 n—00 pc it
<lim lim sup EY*Ej |:Zg7h (0g) - |Y=|| > 51/4}
el0 n—=00 v
= lim Pr {||Y5|| > 51/4} . sup el Johemzh" Joh
el0 heK'
=0, (61)
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and

lim lim sup FEj3
el0 n—o0 pc

< lim lim sup E¥:Ey [Zg,h @) 12 > a, |IYe] < 51/2}
el0 n—oo e/

R . :

< lign ltn, S0 5 [T sy (a-0)y 2o ()

<ty Jim s /{1451 > o (o= 1) /5 U (050

onT n
<1 li pr | 1/4 Ene v Lo —hTJgh
Elfgnlm \/hSélp, 0 {H 9||>a9(a € )} sup ( o€ e

heK’
1
<lim lim , [ sup sEY [€2]? sup eh™Joh
el0 n—oo \| pekr {aé (a _ 81/4)} heK’
tr Ji
=/ sup r2 92 sup eh”Joh, (62)
heK' QpQ” pheK!

After all, by (7)), (60), (&I, and (52), we have

lim lim sup
el0 n—00 p v

EY“Ej, [/ (L)~ E[f (Xa)]|

=lim lim sup
el0 n—00 p et

EVE} [f (Ly) Zow (£5)] — ELf (X)]]

tr J,
= \/sup 5 92 sup e Joh + sup Pr{||Xp| > a}.
heK' Qg pheK!' heK'’

Since a is arbitrary, letting a — oo, we have

lim lim sup
el0 n—=00 b7

(Lyipy, ) =N ()| =0

Theorem 17 Suppose 6 — py is differentiable in quadratic mean, and (I3) and
(Z7) hold. Then, for any Markov map A™" and for any 6 € ©, we have (I0).
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Proof. Observe

A% (N (7)) =N (v ag )|
< |[asrme (8 (i) = (Egier, )|+ e (zaeipr,) = N (V)|
£ (e (@) - (L, )|+ e (i, ) =N (vanh |
(@) = B |+ e (e, ) - N (g |
A (@) = A ()
c(Lepge,) =N (|,

A (B ) = B

IN

IN

]
1

A (B, ) - B

1

_|_

IN

m n
0,h — Pen,h

+|
1

A H,c (Lg"ﬂpggh) — N (Vrh, J; ) H1 .

By Theorem[I2]the first term vanishes,

lim sup =0.

n—oo heK'

m n
Qo' — Py, . .

By Lemma [I6] since 6, = 6,,, /s, the third term vanishes,

lim lim sup
el0 n—00 p K7

(Lo, ) =N (V|| =0,

After all, we have

lim lim sup [|A%Y7me (N (h,Je_l))—N(\/Fh,Je_l)Hl < lim sup

amp

n,r n _ prn
A (Pen,h) P9n,h 1

el noo he K’ n—oo he K’

Since

inf sup [ AZyT (N (h,J5 ) = N (vih, Jg )| < gim sup [|AZyTme (N (h, 7571)) = N (Vi ;) |
A hek’ 1 n—ooheK’ 1

holds due to optimality of Az}ﬁ/p? , we have

lim sup
n—oo he K’

> inf sup

‘1 A peg I#P

A (B ) = B

ALY (N (B J7)) = N (Vb I )|

Here, letting K’ = {x;||z|| < a} and a — oo, we have (I0). =

4 Discussion

Using quantum LAN, we can produce similar results for finite dimensional quan-
tum system.
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Proof of ([6))

In this appendix, we prove

H;f Hp0,1 _pz,rlnl = Hpo,l (y) — Po,r1 (y)”l ;
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where p, 5, is the density of N (z,%). Due to the symmetry, we can suppose
z=(t0,---,0),t >0. Define B,; :={y;p0,1 (y) > pz.r1 (y)}. Observe

y € B,

1 C WDPHET 5 (ye)? 1 w1242, (k)2
2 2r

& ————e > ———¢
(2m)™/? (m)m/?
2
t
<y1—r—> +Z Yr) S — logr+< _1> :

Hence, B, is a ball.
For z € R™~! and t € R, define ¢; and t3 by

po.1 ((te, 2)) = pora ((ts — t,2)),
t <ty

One can verify
po,1 ((t1,2)) = po ((t2, 2))
as follows. In case of 0 < ¢ (¢,2) < t2(t,2), this holds because po1 ((-, 2))
is monotone decreasing on Ry. In case of t1 (t,z) < 0 < t2(t, 2), observe
ty (Oa Z) <t (tv Z) < 0 <2 (07 Z) <t2 (ta Z) Hencea
Po,1 ((tl (t7 Z) ) Z)) 2 Po,21 ((tl (07 Z) ’ Z)) =DPo ((t2 (07 Z) ’ Z)) 2 Po,1 ((tQ (t7 Z) ) Z)) :
Therefore,

d
T lpox = perilly = /{Po,l ((t1,2)) — po,1 ((t2,2))} dz > 0.

Therefore, the minimum is achieved ¢ = 0, and we have the asserted result.
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