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Abstract

Cloning, or approximate cloning, is one of basic operations in quantum
information processing. In this paper, we deal with cloning of classical
states, or probability distribution in asymptotic setting. We study the
quality of the approximate (n, rn)-clone, with n being very large and r
being constant.

The result turns out to be ‖N (0, r1)− N(0, 1)‖
1
, where N (µ,Σ) is

the Gaussian distribution with mean µ and covariance Σ. Notablly, this
value does not depend on the the family of porbability distributions to be
cloned.

The key of the argument is use of local asymptotic normality: If the
curve θ → Pθ is sufficiently smooth in θ, then, the behavior of P⊗n

θ′
where

θ′ − θ = o
(

√

1/n
)

, is approximated by Gaussian shift. Using this, we

reduce the general case to Gaussian shift model.

1 Introduction

Cloning, or approximate cloning, is one of basic operations in quantum informa-
tion processing. It is related to optimal eavesdropping of quantum key distribu-
tion, and also to optimal estimation efficiency. The quality of the approximate
clone, thus, has been studied extensively [8].

In this paper, we deal with cloning of classical states, or probability distri-
butions in asymptotic setting. The study of (approximate) cloning of classical
states had started even earlier than the proposal of no-cloning theorem, to give
a measure of information contained in additional observations : they studied
the quality of approximate (n+ r)-copies made from n-copies ((n, n+ r)-clone,
hereafter), with n being very large and r being constant [2][5][6].

This paper explores another direction: we study the quality of the approx-
imate (n, rn)-clone with n being very large and r being constant, since its ex-
tension to quantum system seems to be easier.
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In the argument, we make full use of local asymptotic normality: If the curve

θ → Pθ is sufficiently smooth, then, the family
{

P⊗n
θ+hn−1/2

}

h∈Rm
is approxi-

mated by Gaussian shift
{

N
(

h, J−1
θ

)}

h∈Rm , where Jθ is the Fisher information

matrix of {Pθ}θ∈Θ at θ. Using this fact , we reduce the general case to the
Gaussian shift model . More concretely, letting Dr,Σ be the loss of optimal
(1, r)-cloner of the Gaussian shift {N(h,Σ)}h∈Rm , we show

sup
a≥0

lim
n→∞

inf
Λ

sup
‖θ′−θ‖≤an−1/2

‖Λ (Pn
θ′)− P rn

θ′ ‖1 ≥ Dr,J−1
θ

, (1)

where Λ moves over all the Markov maps. In other words, the loss of the
optimal asymptotic (n, nr)-cloner is asymptotically lower-bounded by Dr,J−1

θ
,

at each θ ∈ Θ. This loss turns out to be achievable: we construct a cloner Λn,r
δ,ε

with
lim
δ↓0

lim
ε↓0

lim
n→∞

∥

∥

∥
Λn,r
δ,ε (Pn

θ )− P rn
θ

∥

∥

∥

1
= Dr,J−1

θ
. (2)

Also, we find more explicit expression of Dr,Σ, which is

Dr,Σ = ‖N(0, r1)−N(0,1)‖1 .

It is notable that Dr,Σ does not depend on Σ. This means that Dr,J−1
θ

,

the smallest asymptotic loss of (n, rn)-cloner, does not depend on the family
{Pθ}θ∈Θ to be cloned.

Since there is a (finite dimensional) quantum version of local asymptotic
normality, this argument may be extended to finite dimensional quantum case.

The paper is organized as follows. First, we give the optimal approximate
cloners for Gaussian shift families, and find some properties of them. Second, we
state local asymptotic normality of smooth family of probability distributions,
and its uniform version. Finally, we give asymptotic analysis of approximate
(n, rn)-clone of smooth families. The paper is concluded by discussions.

2 Gaussian shift family

2.1 Reduction of cloning to amplification

The contents of the subsection is well-known, but added for the sake of comple-
tion.

Consider the Gaussian shift family {N(h,Σ)}h∈Rm . Then, the problem of
optimum approximate (1, r)-clone, or finding a map achieving

Cr,Σ := inf
Λ:Markov

sup
h∈Rm

∥

∥

∥
Λ (N (h,Σ))−N(h,Σ)

⊗r
∥

∥

∥

1

is equivalent to finding the optimum r-amplifier, or a Markov map achieving

Dr,Σ := inf
Λ:Markov

sup
h∈Rm

∥

∥Λ (N (h,Σ))−N
(√

rh,Σ
)∥

∥

1
. (3)
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To see this, let X1, · · · , Xr ∼ N(h,Σ), and

X ′
i =

r
∑

j=1

Oi,jXj

where O is an orthogonal matrix with O1,1 = O1,2 = · · · = O1,r = 1√
r
. Then,

X ′
1 ∼ N(

√
rh,Σ) and X ′

2, · · · , X ′
r ∼ N(0,Σ).

Therefore, if

sup
h∈Rm

∥

∥

∥
Λ0 (N (h,Σ))−N(h,Σ)

⊗r
∥

∥

∥

1
= Cr,Σ + ε,

then
sup
h∈Rm

∥

∥Ψ ◦ Λ0 (N (h,Σ))−N
(√

rh,Σ
)
∥

∥

1
≤ Cr,Σ + ε, ,

where Ψ is a Markov map corresponding to application of O followed by restric-
tion to the first variable. Hence,

Cr,Σ ≥ Dr,Σ.

On the other hand, let Ψ′ be a Markov map corresponding to the map

X → (X,X ′
2, · · · , X ′

r) , X
′
2, · · · , X ′

r ∼ N(0,Σ)

followed by O−1. If

sup
h∈Rm

∥

∥Λ1 (N (h,Σ))−N
(√

rh,Σ
)
∥

∥

1
= Dr,Σ + ε,

then
sup
h∈Rm

∥

∥

∥
Ψ′ ◦ Λ1 (N (h,Σ))−N(h,Σ)

⊗r
∥

∥

∥

1
≤ Dr,Σ + ε.

Hence,
Cr,Σ ≤ Dr,Σ.

After all, we have Cr,Σ = Dr,Σ.

2.2 Amplifier for Gaussian shift families

In this subsection, we find the optimum r-amplifier (r ≥ 1) and its loss Dr,Σ =
Cr,Σ for the Gaussian shift family {N(h,Σ)}h∈Rm .

Observe first that

Ψ√
r (N (h,Σ)) = N

(√
rh, rΣ

)

, Ψr−1/2

(

N
(√

rh, rΣ
))

= N(h,Σ) .

where Ψa describes the Markov map corresponding to scale change. Hence,

Dr,Σ ≤ inf
Λ

sup
h∈Rm

∥

∥Λ ◦Ψ√
r (N (h,Σ))−N

(√
rh,Σ

)∥

∥

1

= inf
Λ

sup
h∈Rm

∥

∥Λ
(

N
(√

rh, rΣ
))

−N
(√

rh,Σ
)∥

∥

1
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and

Dr,Σ = inf
Λ

sup
h∈Rm

∥

∥Λ ◦Ψr−1/2

(

N
(√

rh, rΣ
))

−N
(√

rh,Σ
)∥

∥

1

≥ inf
Λ

sup
h∈Rm

∥

∥Λ
(

N
(√

rh, rΣ
))

−N
(√

rh,Σ
)∥

∥

1
.

Thus,
Dr,Σ = inf

Λ
sup
h∈Rm

∥

∥Λ
(

N
(√

rh, rΣ
))

−N
(√

rh,Σ
)∥

∥

1
, (4)

and Λr
amp achieving (3) and Λr achieving (4) are, if exists, related by

Λr
amp = Λr ◦Ψ√

r.

Now, we refer to Theorem3 of [11]: applying to our case, it says that

Dr,Σ = sup
f :supx|f(x)|≤1

{
∫

f (y) p0,Σ (y) dy − sup
x

∫

f
(

y +
√
rx

)

p0,rΣ (y) dy

}

= sup
f :supx|f(x)|≤1

inf
x

{
∫

f (y) {p0,Σ (y)− px,rΣ (y)}dy
}

= sup
f :supx|f(x)|≤1

inf
x

{
∫

f (y) {p0,1 (y)− px,r1 (y)}dy
}

, (5)

where px,Σ is probability density function of N (x,Σ).
The right most side of (5) is evaluated as follows. Observe

Dr,Σ ≤ inf
x
‖p0,1 − px,r1,‖1

= ‖p0,1 − p0,r1‖1 . (6)

(The proof of (6) is in the appendix.) On the other hand, define Br :=
{y ; p1 (y) ≥ pr1 (y)}, which is a ball centered at origin. Then,

Dr,Σ ≥ inf
x

{
∫

(2IBr (y)− 1) {p0,1 (y)− px,r1 (y)}dy
}

=

∫

(2IBr (y)− 1) p0,1 (y) dy − sup
x

∫

(2IBr (y)− 1) px,r1 (y) dy

=

∫

(2IBr (y)− 1) p0,1 (y) dy −
∫

(2IBr (y)− 1) p0,r1 (y) dy

= ‖p0,1 − p0,r1‖1 . (7)

(N.B. in the case of r < 1, supx
∫

(2IBr (y)− 1) px,r1 (y) dy is achieved as ‖x‖ →
∞.)

After all, we have, if r ≥ 1,

Dr,Σ = ‖p0,1 − p0,r1‖1 = ‖N(0,1)−N(0, r1)‖1 . (8)

Obviously, corresponding Λr is the identity map. Thus,

Λr
amp = Ψ√

r. (9)
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2.3 Bounded shifts

Define
Dr,Σ,a := inf

Λ
sup

‖h‖≤a

∥

∥Λ (N (h,Σ))−N
(

h,
√
rΣ

)
∥

∥

1
.

Then, if a′ ≥ a and

sup
‖h‖≤a′

∥

∥Λ (N (h,Σ))−N
(

h,
√
rΣ

)∥

∥

1
= Dr,Σ,a′ + ε,

then
sup

‖h‖≤a

∥

∥Λ (N (h,Σ))− N
(

h,
√
rΣ

)∥

∥

1
≤ Dr,Σ,a′ + ε.

Since ε > 0 can be arbitrary, therefore,

Dr,Σ,a ≤ Dr,Σ,a′ .

Hence, since Dr,Σ,a ≤ 2, lima→∞ Dr,Σ,a exists.

Lemma 1
lim
a→∞

Dr,Σ,a = Dr,Σ.

Proof. Let us consider a decision problem taking values in [−1, 1]R
m

. Let ρ be

a Markov kernel from R
m to [−1, 1]

R
m

, and F (h, ·) : Rm → [−1, 1] be a lower
continuous function. Also, we define Pa be the set of probability distributions
over {x; ‖x‖ ≤ a} with finite support. Then, we define, for π ∈ Pa,

Rπ (Σ, F, ρ) :=

∫ ∫

F (h, a)ρ (da, x) ph,rΣ (x) dxdπ (h) .

Due to the randomization criteria (Theorem1.10 of [9], Theorem 55.9 of [10]),

Dr,Σ = sup
π∈P∞

sup
F

{

inf
ρ
Rπ (rΣ, F, ρ) − inf

ρ
Rπ (Σ, F, ρ)

}

,

and

Dr,Σ,a = sup
π∈Pa

sup
F

{

inf
ρ
Rπ (rΣ, F, ρ) − inf

ρ
Rπ (Σ, F, ρ)

}

.

Comparing the right hand sides of them,

Dr,Σ = sup
a≥0

Dr,Σ,a = lim
a→∞

Dr,Σ,a.
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3 Smooth family

3.1 Settings and description of results

Consider a family of probability distributions {Pθ; θ ∈ Θ} over the measurable
space (Ω,X ), where Θ is an open region in R

m, Ω is a Polish space (a separable
completely metrizable topological space, e.g. Rk, Zk, etc. ) , and Pθ has density
pθ with respect to a measure µ. Define Pn

θ := P⊗n
θ , pnθ := p⊗n

θ , Ωn := Ω×n,
Xn := X⊗n, and

Zn
θ,h :=

pn
θ+hn−1/2

pnθ
.

Also, Eθ and En
θ refers to expectation with respect to Pθ or Pn

θ , respectively.
Wθ,κ (κ = 1, · · · , n) are the random variables with Wθ,κ ∼ Pθ, and define
Wn

θ := (Wθ,1, · · · ,Wθ,n), which obeys Pn
θ .

Under this setting, we investigate the quality of (n, nr)-clone of {Pθ; θ ∈ Θ}.
More specifically, we show

sup
a≥0

lim
n→∞

inf
Λn,r :Markov

sup
‖θ′−θ‖≤an−1/2

‖Λn,r (Pn
θ′)− P rn

θ′ ‖1 ≥ Dr,J−1
θ ,∞ = Dr,J−1

θ
,

(10)
which means the loss of the optimal asymptotic (n, nr)-cloner is lower bounded
by Dr,J−1

θ
, at each θ ∈ Θ. Also, we show this loss is achievable: we construct a

cloner Λn,r
δ,ε with

lim
δ↓0

lim
ε↓0

lim
n→∞

∥

∥

∥
Λn,r
δ,ε (Pn

θ )− P rn
θ

∥

∥

∥

1
= Dr,J−1

θ
. (11)

3.2 Local asymptotic normality and its uniform version

The map θ → pθ is differentiable in quadratic mean, if

lim
h→0

1

‖h‖2
∫

(√
pθ+h −√

pθ −
hT

2
ℓθ
√
pθ

)2

dµ = 0, ∀θ ∈ Θ. (12)

If the map θ → ℓθ is continuous, we say θ → pθ is continuously differentiable in
quadratic mean.

We define, with ωn ∈ Ωn and ωκ ∈ Ω,

ℓnθ (ω
n) :=

1√
n

n
∑

κ=1

ℓθ (ωκ) ,

Jθ := [Eθℓθ,iℓθ,j], and

Zθ,h (x) := exp

(

hTx− 1

2
hT Jθh

)

.

The following Lemma is recasting of Remark 1 of [3] and Theorem7.2 of
[12].
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Lemma 2 Suppose Θ is an open region in R
m and θ → pθ is continuously

differentiable in quadratic mean. Then, Eθℓθ = 0, and, for any compact set
K ⊂ Θ and K ′ ⊂ R

m,

lim
n→∞

sup
h∈K′

sup
θ∈K

Pn
θ

{
∣

∣lnZn
θ,h − lnZθ,h (ℓ

n
θ )
∣

∣ > ε
}

= 0, ∀ε > 0.

The following Lemma is recasting of Remark 1 of Theorem7.2 of [12].

Lemma 3 Suppose Θ is an open region in R
m and θ → pθ is differentiable in

quadratic mean. Then, Eθℓθ = 0, and, for any compact set K ′ ⊂ R
m,

lim
n→∞

sup
h∈K′

Pn
θ

{∣

∣lnZn
θ,h − lnZθ,h (ℓ

n
θ )
∣

∣ > ε
}

= 0, ∀ε > 0.

In addition, we assume the following conditions:

Jθ is continuous in θ, (13)

inf
θ∈Θ

αθ > 0, (14)

where αθ is the minimum eigenvalue of Jθ, and

sup
θ∈K

Eθe
hT ℓθ < ∞, ∀h ∈ R

m, for any compact set K ⊂ Θ. (15)

Observe that

Eθ

(

hT ℓθ
)2k ≤ (2k)! ‖h‖2k Eθ cosh

(

eT ℓθ
)

,

Eθ

∣

∣hT ℓθ
∣

∣

2k−1 ≤ ‖h‖2k−1
{

1 + Eθ

(

eT ℓθ
)2k

}

≤ ‖h‖2k−1 {
1 + (2k)!Eθ cosh

(

eT ℓθ
)}

,

where e = h/ ‖h‖, implying

sup
θ∈K

Eθ

∣

∣hT ℓθ
∣

∣

k
< ∞, ∀h ∈ R

m, for any compact set K ⊂ Θ. (16)

Also, one can show that, for any compact set K ⊂ Θ and K ′ ⊂ R
m,

sup
n≥nK,K′

Eθe
hT ℓnθ ≤ eh

T Jθh, ∀θ ∈ Θ, ∀h ∈ K ′, ∃nK,K′ (17)

The proof of (17) is as follows. Observe, since Eθℓθ = 0 due to Lemma 3,

En
θ e

hT ℓnθ =

(

Eθe
− hT

√
n
ℓθ

)n

=

(

1 +
hTJθh

2n
+ frem (θ, h, n)

)n

, (18)
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where

|frem (θ, h, n)|

≤
∞
∑

k=3

1

k!

(‖h‖√
n

)k

Eθ

∣

∣eT ℓθ
∣

∣

k

≤ 1

2

∞
∑

k≥3,k:even

(‖h‖√
n

)k

Eθ cosh e
T ℓθ

+

∞
∑

k≥3,k:odd

{

1

k!

(‖h‖√
n

)k

+
(k + 1)!

k!

(‖h‖√
n

)k

Eθ cosh e
T ℓθ

}

≤
∞
∑

k≥3

(k + 1)

(‖h‖√
n

)k
{

Eθ cosh e
T ℓθ + 1

}

=

(‖h‖√
n

)3
4− 5 ‖h‖ /√n

1− ‖h‖ /√n

(

Eθ cosh e
T ℓθ + 1

)

. (19)

Therefore, for each compact set K ⊂ Θ and K ′ ⊂ R
m, there is nK,K′ such that

En
θ e

hT ℓnθ ≤
(

1 +
hTJθh

n

)n

≤ eh
TJθh, ∀n ≥ nK,K′ .

Hence, we have (17).
Also, we use the following identity :

lim
a→∞

sup
n≥nK,K′

sup
h∈K′

sup
θ∈K

En
θ

[

eh
T ℓnθ : eh

T ℓnθ ≥ a
]

= 0, (20)

which is proved as follows.

lim
a→∞

sup
n≥nK,K′

sup
h∈K′

sup
θ∈K

En
θ

[

eh
T ℓnθ : eh

T ℓnθ ≥ a
]

≤ lim
a→∞

sup
n≥nK,K′

sup
h∈K′

sup
θ∈K

√

En
θ

[

e2h
T ℓnθ

]

Pn
θ

{

eh
T ℓnθ ≥ a

}

≤ lim
a→∞

sup
n≥nK,K′

sup
h∈K′

sup
θ∈K

e2h
T Jθh

√

Pn
θ

{

eh
T ℓnθ ≥ a

}

≤ lim
a→∞

sup
n≥nK,K′

sup
h∈K′

sup
θ∈K

e2h
T Jθh

√

1

a
En
θ e

hT ℓnθ

≤ lim
a→∞

1

a
sup
h∈K′

sup
θ∈K

e
5
2h

T Jθh = 0.

Lemma 4 Suppose random variables Xn,t , and Yn,t, n ≥ 1, t ∈ T , taking
values in R

k, satisfies

lim
n→∞

sup
t∈T

Pr {‖Xn,t − Yn,t‖ > ε} = 0, (21)
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Let f be a continuously differentiable function from R
k to R such that,

sup
x:f(x)≤a

‖∇xf (x)‖ < ∞, (22)

and

lim
a→∞

lim
n→∞

sup
t∈T

E [f (Xn,t) : f (Xn,t) > a] < ∞, (23)

lim
a→∞

lim
n→∞

sup
t∈T

E [f (Xn,t) : f (Yn,t) > a] < ∞. (24)

Then,
lim
n→∞

sup
t∈T

|Ef (Xn,t)− Ef (Yn,t)| = 0

Proof. Define
fa (x) := f (x) ∧ a.

Then,

lim
n→∞

sup
t∈T

|Ef (Xn,t)− Ef (Yn,t)|

≤ lim
n→∞

sup
t∈T

|Efa (Xn,t)− Efa (Xt)|

+ lim
n→∞

sup
t∈T

|E [f (Xn,t) : f (Xn,t) > a]|

+ lim
n→∞

sup
t∈T

|E [f (Yn,t) : f (Yn,t) > a]| . (25)

The first term of the right hand side is evaluated as follows.

|fa (Xn,t)− fa (Yn,t)| ≤ C ‖Xn,t − Yn,t‖ , ∀t ∈ T

where
C ≤ sup

x:f(x)≤a

‖∇xf (x)‖ < ∞.

Therefore,

lim
n→∞

sup
t∈T

|Efa (Xn,t)− Efa (Yn,t)| ≤ ε+ a× lim
n→∞

sup
t∈T

Pr {|fa (Xn,t)− fa (Yn,t)| > ε}

= ε+ a× lim
n→∞

sup
t∈T

Pr {C |Xn,t − Yn,t| > ε}

= ε.

This can be made arbitrarily small, since ε > 0 is arbitrary.
The second and the third terms of the right hand side of ( 25) can be made

arbitrarily small by taking a large. Hence, we have the assertion.

Lemma 5 Suppose θ → pθ is continuously differentiable in quadratic mean,
and (15) holds. Then, for any compact set K ⊂ Θ and K ′ ⊂ R

m,

lim
n→∞

sup
h∈K′

sup
θ∈K

En
θ

∣

∣Zn
θ,h − Zθ,h (ℓ

n
θ )
∣

∣ = 0.
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Proof. We apply Lemma4, with f (x) := ex, t = (θ, h), Xn,t := lnZn
θ,h and

Yn,t := lnZθ,h (ℓ
n
θ ) = hT ℓnθ − 1

2h
TJθh. Then, the premises (21) and (22) are

obviously satisfied.
Due to (20), (23) is satisfied:

lim
n→∞

sup
h∈K′

sup
θ∈K

En
θ [Zθ,h (ℓ

n
θ ) : Zθ,h (ℓ

n
θ ) ≥ a] → 0, a → ∞.

(24) is proved as follows. Let ga (x) be a continuous function on R+ such
that ga (x) = 1 for x ≤ a− 1 and ga (x) = 0 for x ≥ a. Then,

lim
n→∞

sup
h∈K′

sup
θ∈K

En
θ

[

Zn
θ,h : Zn

θ,h ≥ a
]

≤ lim
n→∞

sup
h∈K′

sup
θ∈K

{

1− En
θ

[

Zn
θ,h ga

(

Zn
θ,h

)]}

≤ lim
n→∞

sup
h∈K′

sup
θ∈K

{1− En
θ [Zθ,h (ℓ

n
θ ) ga (Zθ,h (ℓ

n
θ ) )]}

+ sup
x

{(x+ ε) ga (x+ ε)− xga (x)}

+ a lim
n→∞

Pn
θ

{∣

∣Zn
θ,h − Zθ,h (ℓ

n
θ )
∣

∣ > ε
}

≤ lim
n→∞

sup
h∈K′

sup
θ∈K

En
θ [Zθ,h (ℓ

n
θ ) : Zθ,h (ℓ

n
θ ) ≥ a− 1 ]

+ sup
x

{(x+ ε) ga (x+ ε)− xga (x)}

+ a lim
n→∞

Pn
θ

{∣

∣Zn
θ,h − Zθ,h (ℓ

n
θ )
∣

∣ > ε
}

= lim
n→∞

sup
h∈K′

sup
θ∈K

En
θ [Zθ,h (ℓ

n
θ ) : Zθ,h (ℓ

n
θ ) ≥ a− 1 ]

+ sup
x

{(x+ ε) ga (x+ ε)− xga (x)} .

Since ε > 0 is arbitrary and ga is continuous,

lim
n→∞

sup
h∈K′

sup
θ∈K

En
θ

[

Zn
θ,h : Zn

θ,h ≥ a
]

≤ lim
n→∞

sup
h∈K′

sup
θ∈K

En
θ [Zθ,h (ℓ

n
θ ) : Zθ,h (ℓ

n
θ ) ≥ a− 1 ]

→ 0, a → ∞.

So, we have the assertion.

Lemma 6 Suppose θ → pθ is differentiable in quadratic mean, and (15) holds.
Then, for any compact set K ′ ⊂ R

m,

lim
n→∞

sup
h∈K′

En
θ

∣

∣Zn
θ,h − Zθ,h (ℓ

n
θ )
∣

∣ = 0.

Proof. The proof is almost parallel with the one of Lemma5, except that
Lemma3 is used instead of Lemma2 and that supθ∈K at each step is removed.

Below, we denote by C (h, r) the closed m-dimensional hypercube which is
centered at h ∈ R

m, parallel to the coordinate axis, and of edge length 2r. Also,
2−k

Z
m is an element of Rm whose coordinates are integer multiple of 2−k.

10



Lemma 7 Let Θ0 be a countable subset of Θ and cn be a positive constant.
Then, to every ordered correction (i1, i2, · · · , ik) associate a Borel set S(i1,i2,··· ,ik)
in R

m such that

S(i1,i2,··· ,ik) ∩ S(j1,j2,··· ,jk) = ∅, (i1, i2, · · · , ik) 6= (j1, j2, · · · , jk) , (26)

Diameter of S(i1,i2,··· ,ik) <
√
m2−k+2 (k ≥ 1) , (27)

Pn
θ

{

ℓnθ ∈ ∂S(i1,i2,··· ,ik)
}

= 0, ∀θ ∈ Θ0, ∀n (28)

Nn
⋃

j=1

Sj ⊃ [−cn, cn]
m , Nn := (2cn + 1)m , (29)

∞
⋃

j=1

Sj = R
m, (30)

5m
⋃

j=1

S(i1,··· ,ik−1,j) = S(i1,··· ,ik−1). (31)

Proof. Since Θ0 is a countable set, we can choose an r0 with cn < r0 < cn + 1
2

and
Pn
θ {ℓnθ ∈ C (0, r0)} = 0, ∀θ ∈ Θ0, ∀n. (32)

Also, we can choose rk with 2−k < rk < 2−k+1 and

Pn
θ {ℓnθ ∈ C (h, rk)} = 0, ∀θ ∈ Θ0, ∀n, (33)

for all h ∈ 2−k+1
Z
m.

First, we compose S1, S2, · · · . Define hj ∈ Z
m so that h1,· · · ,hNn ∈

[−cn, cn]
m
, and that {hj ; j = 1, 2, · · · } = Z

m. Then, recursively define, for
j = 1,· · · , Nn,

S1 := C (0, r0) ∩C (h1, r1) , Sj := C (0, r0) ∩
{

C (hj , r1)−
j−1
⋃

i=1

Si

}

,

and, for j ≥ Nn + 1,

Sj := C (hj, r1)−
j−1
⋃

i=1

Si.

Since
⋃Nn

j=1 C
(

hj , 2
−1

)

= C
(

0, cn + 1
2

)

, we have
⋃Nn

j=1 C (hj , r1) ⊃ C (0, r0) .
Also,

Nn
⋃

j=1

Sj = C (0, r0) ∩







Nn
⋃

j=1

C (hj , r1)







.

Therefore,
Nn
⋃

j=1

Sj = C (0, r0) ⊃ [−cn, cn]
m
,

11



indicating (29). Similarly, we have

∞
⋃

j=1

Sj = C (0, r0) ∪
∞
⋃

j=Nn+1

Sj = C (0, r0) ∪
∞
⋃

j=Nn+1

C (hj , r1)

⊃ [−cn, cn]
m ∪

∞
⋃

j=Nn+1

C

(

hj,
1

2

)

= R
m,

which is (30).
Next, we compose S(i1,··· ,ik) . For each k ≥ 2, let hi1,··· ,ik (ik = 1,· · · , 5m) be

an element of 2−k+1
Z
m with hi1,··· ,ik ∈ C

(

hi1,··· ,ik−1
, 2−k+2

)

. Then, we define,
recursively,

S(i1,··· ,ik−1,1) := S(i1,··· ,ik−1) ∩ C
(

hi1,··· ,ik−1,1, rk
)

,

S(i1,··· ,ik) := S(i1,··· ,ik−1) ∩







C
(

hi1,··· ,ik−1,ik , rk
)

−
ik−1
⋃

j=1

S(i1,··· ,ik−1,j)







.

Since

5m
⋃

j=1

S(i1,··· ,ik−1,j) ⊃
5m
⋃

j=1

C
(

hi1,··· ,ik−1,j , 2
−k

)

= C
(

hi1,··· ,ik−1
, 2−k+2 + 2−k

)

and

C
(

hi1,··· ,ik−1
, 2−k+2 + 2−k

)

⊃ C
(

hi1,··· ,ik−1
, rk−1

)

⊃ S(i1,··· ,ik−1),

we have
5m
⋃

j=1

S(i1,··· ,ik−1,j) ⊃ S(i1,··· ,ik−1),

which implies (31).
(26) is trivial by composition. (27) is due to

∂S(i1,··· ,ik−1,ik) ⊂ ∂S(i1,··· ,ik−1) ∪
ik
⋃

j=1

∂C
(

hi1,··· ,ik−1,j, rk
)

.

Hence, by (32) and (33), recursively we have (28). (27) is obvious from that
S(i1,··· ,ik) is a subset of C (hi1,··· ,ik , rk).

Lemma 8 Suppose θ → pθ is continuously differentiable in quadratic mean,
and (15) holds. Also, let Θ0 be a countable subset of Θ. Then, there are ran-
dom variables ηθ and ηnθ (n ≥ 1) over ([0, 1] ,B ([0, 1]× R

m) , ν), such that ν is
Lebesgue measure,

L (ηθ|ν) = N (0, Jθ) , L (ηnθ |ν) = L (ℓnθ |Pn
θ ) , (34)

lim
n→∞

sup
θ∈K∩Θ0

ν {‖ηnθ − ηθ‖ ≥ ε} = 0. (35)

12



Proof. Let S(i1,··· ,ik) be as of Lemma 7, and for each k, and order

{(i1, · · · , ik) ; i1 ∈ N,1 ≤ ij ≤ 5m}
lexicographically. For θ ∈ Θ0, define intervals ∆n

θ (i1, · · · , ik) of the form [a, b)
in [0, 1) such that the length of ∆n

θ (i1, · · · , ik) is Pn
θ

{

ℓnθ ∈ S(i1,··· ,in)
}

, and that,
with (j1, · · · , jk) > (i1, · · · , ik), the left end point of ∆n

θ (j1, · · · , jk) lies to the
right of ∆n

θ (i1, · · · , ik). Then, we have
⋃

i1∈N,1≤ij≤5m

∆n
θ (i1, · · · , ik) = [0, 1).

If Pn
θ

{

ℓnθ ∈ S(i1,··· ,in)
}

is non-zero for some n, by (28), its interior is non-
empty. Thus we may take a point x(i1,··· ,ik) in its interior. For ̟ ∈ [0, 1],
define

ηn,kθ (̟) := x(i1,··· ,ik), ̟ ∈ ∆n
θ (i1, · · · , ik) .

Then,
∥

∥

∥
ηn,kθ (̟)− ηn,k+k′

θ (̟)
∥

∥

∥
≤ √

m2−k+2, (36)

making the sequence
{

ηn,kθ (̟)
}∞

k=1
Cauchy for each̟,n, and θ. Hence, ηnθ (̟) :=

limk→∞ ηn,kθ (̟) exists.
Define the intervals ∆θ (i1, · · · , ik) of the form [a, b) in [0, 1) such that the

length of ∆θ (i1, · · · , ik) is PN(0,Jθ)

(

S(i1,··· ,in)
)

, and that, with (j1, · · · , jk) >
(i1, · · · , ik), the left end point of ∆θ (j1, · · · , jk) lies to the right of ∆θ (i1, · · · , ik).
Also, one can define ηkθ (̟) and ηθ (̟) in the parallel manner with ηn,kθ (̟) and
ηnθ (̟).

Then, by (28) and the multi-dimensional Berry Esseen theorem (Corollary
11.1 of [1]), we have

sup
θ∈K∩Θ0

|ν (∆n
θ (i1, · · · , ik))− ν (∆θ (i1, · · · , ik))| ≤

β√
n
,

where β := 400m1/4 supθ∈K Eθ

∥

∥J−1
θ ℓθ

∥

∥

3
.Therefore,

ν (∆n
θ (i1, · · · , ik)△∆θ (i1, · · · , ik)) ≤

2β5mki1√
n

.

Also, by Markov’s inequality,

∞
∑

j=Nn+1

ν (∆n
θ (j)) ≤ supθ∈K tr Jθ

c2n
,

∞
∑

j=Nn+1

ν (∆θ (j)) ≤
supθ∈K tr Jθ

c2n

Thus,

sup
θ∈K∩Θ0

∑

i1∈N,1≤ij≤5m

ν (∆n
θ (i1, · · · , ik)△∆θ (i1, · · · , ik))

≤ 2 supθ∈K tr Jθ
c2n

+
β52mk ((2cn + 1)

m
+ 1)

2

√
n

.
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Here, set

k = kn :=
lnn

16m ln 5
, cn := n

1
16m .

Then,

sup
θ∈K∩Θ0

∑

i1∈N,1≤ij≤5m

ν (∆n
θ (i1, · · · , ikn)△∆θ (i1, · · · , ikn))

= O
(

n− 1
8m

)

+O
(

n−1/4
)

→ 0, n → ∞.

Therefore,

lim
n→∞

sup
θ∈K∩Θ0

ν
{

ηn,kn

θ (̟) 6= ηkn

θ (̟)
}

≤ lim
n→∞

sup
θ∈K

∑

i1∈N,1≤ij≤5m

ν (∆n
θ (i1, · · · , ikn)△∆θ (i1, · · · , ikn)) = 0. (37)

Observe, due to (36)

∥

∥

∥
ηnθ (̟)− ηn,kn

θ (̟)
∥

∥

∥
= lim

k′→∞

∥

∥

∥
ηn,k

′

θ (̟)− ηn,kn

θ (̟)
∥

∥

∥
≤ √

m2−kn+2,
∥

∥

∥
ηθ (̟)− ηkn

θ (̟)
∥

∥

∥
= lim

k′→∞

∥

∥

∥
ηk

′

θ (̟)− ηkn

θ (̟)
∥

∥

∥
≤ √

m2−kn+2.

Therefore, due to

‖ηnθ (̟)− ηθ (̟)‖
≤

∥

∥

∥
ηnθ (̟)− ηn,kn

θ (̟)
∥

∥

∥
+
∥

∥

∥
ηn,kn

θ (̟)− ηkn

θ (̟)
∥

∥

∥
+
∥

∥

∥
ηkn

θ (̟)− ηθ (̟)
∥

∥

∥
,

and (37), we have

sup
θ∈K∩Θ0

ν {‖ηnθ − ηθ‖ ≥ ε}

≤ sup
θ∈K∩Θ0

ν
{
∥

∥

∥
ηn,kn

θ − ηkn

θ

∥

∥

∥
+ 2

√
m2−kn+2 ≥ ε

}

→ 0, n → ∞,

which is (35).
To prove (34), observe that every open set in R

m can be expressed as a
disjoint countable union of S(i1,··· ,ik)’s. Therefore, for any open setG, by Fatou’s
lemma,

lim
k→∞

ν
{

ηn,kθ ∈ G
}

≥ Pn
θ {ℓnθ ∈ G} .

Hence, by Portmanteau theorem (Lemma 2.2 of [12]), limk→∞ L
(

ηn,kθ |ν
)

=

L (ℓnθ |Pn
θ ). Since limk→∞ ηn,kθ = ηnθ almost surely, we have the second identity

of (34). The first identity is proved parallelly.
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Lemma 9 Suppose θ → pθ is continuously differentiable in quadratic mean, and
(15) holds. Also, let Θ0 be a countable subset of Θ. Then, there are probability
measure P̃n

θ over a measurable space (Ωn × Ω′,Xn ⊗X ′), where (Ω′,X ′) :=
(Rm × [0, 1] ,B (Rm × [0, 1])), n ≥ 1, and random variables λ′n, n ≥ 1 over
(

Ωn × Ω′,Xn ⊗X ′, P̃n
θ

)

, such that, P̃n
θ is an extension of Pn

θ and

λ′n ∼ N(0, Jθ) , (38)

lim
n→∞

sup
θ∈K∩Θ0

P̃n
θ {‖ℓnθ − λ′n‖ ≥ ε} = 0, (39)

for any compact set K ⊂ Θ.

Proof. The proof much draws upon the second proof of Lemma 2.2 of [9]. Define
a kernel Kn

θ (x, dy) from (Rm,B (Rm)) to ([0, 1] ,B ([0, 1])) by the identity

δηn
θ (y) (dx) ν (dy) = Rn

θ (dx)Kn
θ (x, dy) , (40)

where δy is Dirac measure, ν is the Lebesgue measure, ηnθ is as of Lemma 8, and
Rn

θ = L (ℓnθ |Pn
θ ) = L (ηnθ |ν). (Since [0, 1] is Polish, such Kn

θ exists, see 342E of
[4]. ) Define, with ω̃n = (ωn, x, y) ∈ Ωn × Ω′,

P̃n
θ (dω̃n) := Pn

θ (dωn) δℓnθ (ωn) (dx)K
n
θ (x, dy) ,

λ′n (ω̃n) := ηθ (y) ,

where ηθ is as of Lemma 8.
Since the restriction of P̃n

θ on ([0, 1] ,B ([0, 1])) is ν,

L
(

λ′n (ω̃n) |P̃n
θ

)

= L
(

ηθ (y) |P̃n
θ

)

= L (ηθ (y) |ν) = N (0, Jθ) .

Hence, (38) is shown.
By abusing the notation, we denote the extension of ℓnθ : Ωn → R

m to
Ωn × Ω′ → R

m also by ℓnθ : in other words,

ℓnθ (ω
n, x, y) := ℓnθ (ω

n) .

To verify (39), we show

ℓnθ (ω̃
n) = ηnθ (y) , P̃n

θ -a.s.. (41)

Observe that restriction of P̃n
θ to (Ω′,X ′) = (Rm × [0, 1] ,B (Rm × [0, 1])) is

(40). Therefore, we have

P̃n
θ ({ℓnθ (ω̃n) = x}) =

∫

Ωn

∫

Rm

I{ℓnθ (ω̃n)=x}P
n
θ (dωn) δℓnθ (ω̃n) (dx)

=

∫

Ωn

Pn
θ (dωn)

∫

Rm

I{ℓnθ (ω̃n)=x}δℓnθ (ω̃n) (dx)

= 1,
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and

P̃n
θ ({ηnθ (y) = x}) =

∫

Rm

∫

[0,1]

I{ηn
θ (y)=x}δηn

θ (y) (dx) ν (dy)

=

∫

[0,1]

ν (dy)

∫

[0,1]

I{ηn
θ (y)=x}δηn

θ (y) (dx)

= 1.

Thus, (41) is shown.
By (41) and the definition of λ′n,

sup
θ∈K∩Θ0

P̃n
θ {‖ℓnθ − λ′n,‖ ≥ ε} = sup

θ∈K∩Θ0

P̃n
θ {‖ηnθ − ηθ‖ ≥ ε}

= sup
θ∈K∩Θ0

ν {‖ηnθ − ηθ‖ ≥ ε}

→ 0, n → ∞.

Lemma 10 Suppose θ → pθ is differentiable in quadratic mean, and (15) holds.
Then, there are probability measure P̃n

θ over a measurable space (Ωn × Ω′,Xn ⊗X ′),
where (Ω′,X ′) := (Rm × [0, 1] ,B (Rm × [0, 1])), n ≥ 1, and random variables

λ′n, n ≥ 1 over
(

Ωn × Ω′,Xn ⊗X ′, P̃n
θ

)

, such that, P̃n
θ is an extension of Pn

θ

and

λ′n ∼ N(0, Jθ) , (42)

lim
n→∞

P̃n
θ {‖ℓnθ − λ′n‖ ≥ ε} = 0, (43)

for any compact set K ⊂ Θ.

Proof. This is only the combination of Lemma 2.2 of [9] and the central limit
theorem.

Theorem 11 Suppose θ → pθ is continuously differentiable in quadratic mean,
and (15) holds. Also, let Θ0 be a countable subset of Θ. Then, there are probabil-
ity measures P̃n

θ over measurable spaces (Ωn × Ω′,Xn ⊗X ′), where (Ω′,X ′) :=
(Rm × [0, 1] ,B (Rm × [0, 1])), n ≥ 1, and random variables λn

h, n ≥ 1 over
(

Ωn × Ω′,Xn ⊗X ′, P̃n
θ

)

, such that, P̃n
θ is an extension of Pn

θ and

lim
n→∞

sup
h∈K′

sup
θ∈K∩Θ0

∥

∥

∥
P̃n
θ+hn−1/2 −Qn

θ,h

∥

∥

∥

1
= 0,

L (λn
h) = N

(

h, J−1
θ

)

,

Qn
θ,h (A) := Eλn

Rn
θ (A|λn

h) .

Here, K is an arbitrary compact set in Θ, K ′ is an arbitrary compact set in
R

m, and Rn
θ (·|λn) is a measure on (Ωn × Ω′,Xn ⊗X ′), which may depend on

θ, but is independent of h.
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Proof. We use Lemma 4, with f (x) = ex, t = (θ, h), Xn,t := hTλ′n − 1
2h

T Jθh
and Yn,t := hT ℓnθ − 1

2h
TJθh. Obviously, (21) and (22) are satisfied.

Due to (20), we have (23):

lim
n→∞

sup
h∈K′

sup
θ∈K∩Θ0

En
θ [Zθ,h (ℓ

n
θ ) : Zθ,h (ℓ

n
θ ) > a] → 0, a → ∞.

Due to (38) , we have

lim
n→∞

sup
h∈K′

sup
θ∈K∩Θ0

Ẽn
θ [Zθ,h (λ

′n) : Zθ,h (λ
′n) > a]

= sup
h∈K′

sup
θ∈K∩Θ0

EX [Zθ,h (X) : Zθ,h (X) > a] → 0, a → ∞,

where L (X) = N
(

0, J−1
θ

)

. Thus (24). Therefore, we have

lim
n→∞

sup
h∈K′

sup
θ∈K∩Θ0

Ẽn
θ |Zθ,h (ℓ

n
θ )− Zθ,h (λ

′n)| = 0.

Therefore, combining Lemma 5,

sup
h∈K′

sup
θ∈K

Ẽn
θ

∣

∣Zn
θ,h − Zθ,h (λ

′n)
∣

∣

≤ sup
h∈K′

sup
θ∈K

En
θ

∣

∣Zn
θ,h − Zθ,h (ℓ

n
θ )
∣

∣+ sup
h∈K′

sup
θ∈K

Ẽn
θ |Zθ,h (ℓ

n
θ )− Zθ,h (λ

′n)|

→ 0.

Let W̃n
θ be the random variable with L

(

W̃n
θ

)

= P̃n
θ . Then

Ẽn
θZθ,h (λ

′n) IA
(

W̃n
θ

)

=

∫

Ẽn
θ

[

Zθ,h (λ
′n) IA

(

W̃n
θ

)

|λ′n = x
] e−

1
2x

TJ−1
θ xdx

(2π)m/2 (detJθ)
1/2

=

∫

Ẽn
θ

[

IA

(

W̃n
θ

)

|λ′n = x
]

exp

{

− 1
2x

TJ−1
θ x + hTx− 1

2
hT Jθh

}

dx

(2π)
m/2

(detJθ)
1/2

=

∫

Ẽn
θ

[

IA

(

W̃n
θ

)

|λ′n = Jθx
]

exp

{

−1

2
(x− h)T Jθ (x− h)

}

(detJθ)
1/2

(2π)m/2
dx.

Since Ωn×Ω′ is Polish, there is a nice version ofRn
θ (A|x) := Ẽn

θ

[

IA

(

W̃n
θ

)

|λ′n = Jθx
]

which is a probability measure in Xn ×X ′ for every 6 x ∈ R
m (see, for example,

342E of [4]). By definition,

ẼθZθ,h (λ
′n) IA

(

W̃n
θ

)

= Eλn
hRn

θ (A|λn
h) .

17



Therefore, we have the assertion:

sup
h∈K′

sup
θ∈K

∣

∣

∣
P̃n
θ+n−1/2h (A)−Qn

θ,h (A)
∣

∣

∣

= sup
h∈K′

sup
θ∈K

∣

∣

∣
P̃n
θ+n−1/2h (A)− Eλn

Rn
θ (A|λn)

∣

∣

∣

= sup
h∈K′

sup
θ∈K

∣

∣

∣
Ẽn
θZ

n
θ,hIA

(

W̃n
θ

)

− Ẽn
θZθ,h (λ

′n) IA
(

W̃n
θ

)
∣

∣

∣

≤ sup
h∈K′

sup
θ∈K

Ẽn
θ

∣

∣Zn
θ,h − Zθ,h (λ

′n)
∣

∣ → 0, n → ∞.

Theorem 12 Suppose θ → pθ is differentiable in quadratic mean, and (15)
holds. Then, there are probability measures P̃n

θ over a measurable spaces (Ωn × Ω′,Xn ⊗X ′),
where (Ω′,X ′) := (Rm × [0, 1] ,B (Rm × [0, 1])), n ≥ 1, and random variables

λn
h, n ≥ 1 over

(

Ωn × Ω′,Xn ⊗X ′, P̃n
θ

)

, such that, P̃n
θ is an extension of Pn

θ

and

lim
n→∞

sup
h∈K′

∥

∥

∥
P̃n
θ+hn−1/2 −Qn

θ,h

∥

∥

∥

1
= 0,

λn
h ∼ N

(

h, J−1
θ

)

,

Qn
θ,h (A) := Eλn

Rn
θ (A|λn

h) .

Here, K ′ is an arbitrary compact set in R
m, and Rn

θ (·|λn) is a measure on
(Ωn × Ω′,Xn ⊗X ′), which may depend on θ, but is independent of h.

Proof. The proof is parallel with the one of Theorem11, except that Lemma 10
is used instead of Lemma9, and that supθ∈Θ at each step is removed.

3.3 Asymptotic cloner using the optimal amplifier for the
Gaussian shift family

Hereafter, we assume the existence of a sequence
{

θ̂n
}

of estimate of θ, such

that
lim
a→∞

lim
n→∞

Pn
θ

{√
n
∥

∥

∥
θ̂n − θ

∥

∥

∥
≥ a

}

= 0. (44)

Without loss of generality, one can suppose that

θ̂n ∈ n−1/2
Z. (45)

If (45) is not satisfied, we redefine θ̂n as the closest element of n−1/2
Z to θ̂n.

Obviously, newly defined θ̂n satisfies (44). Therefore, letting

Θ0 :=
{

k−1/2 · l; k ∈ N, l ∈ Z

}

,

we can suppose
θ̂n ∈ Θ0
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and the cardinality of Θ0 is countable.
We consider the following procedure of (n, rn)-cloner Λn,r

δ,ε . For the compo-
sition, we use the optimal r-amplifier Λr

amp = Ψ√
r of the Gaussian shift family

{

N
(

h, J−1
θ

)}

h∈Rm . Also, define

Ln,ε
θ (ωn) := J−1

θ ℓnθ (ω
n) + Yε,

where L (Yε) = N (0, ε1).
Then, for a given ε > 0 and 0 < δ < 1, we construct a cloner Λn,r

δ,ε as follows.

(I) Estimate θ using n1-data, (n1 := δn) and let n2 := (1− δ)n .

(II) Apply Λ

√
r/1−δ

amp to L
(

Ln2,ε

θ̂n1
|Pn2

θ

)

. Denote the resulting random variable

by X̃n
θ̂n1

.

(III) Generate (ωrn, ω′) according to Rrn
θ̂n1

(

·|X̃n
θ̂n1

)

, and discard ω′.

The output probability distribution is

Λn,r
δ,ε (Pn

θ ) = Eθ̂n1
EX̃n

θ̂n1 Rrn
θ̂n1

(

A× Ω′|X̃n
θ̂n1

)

.

We will show this is asymptotically optimal.

Lemma 13 Suppose θ → pθ is continuously differentiable in quadratic mean,
and (15) holds. Moreover, suppose (13) is satisfied. Then, for any compact set
K ′ ⊂ R

m,

lim
ε↓0

lim
n→∞

sup
h∈K′

∥

∥

∥
L
(

Ln,ε
θn,h

|Pn
θn,h

)

−N
(

0, J−1
θ

)

∥

∥

∥

1
= 0,

where θn,h := θ + n−1/2h.

Proof. Define hn so that

∥

∥

∥
L
(

Ln,ε
θn,hn

|Pn
θn,hn

)

−N
(

0, J−1
θ

)

∥

∥

∥

1
≥ sup

h∈K′

∥

∥

∥
L
(

Ln,ε
θn,h

|Pn
θn,h

)

−N
(

0, J−1
θ

)

∥

∥

∥

1
− ε′

holds, and let θn := θn,hn . Then, limn→∞ θn = θ.
Denote by φθ′ the characteristic function of the distribution of J−1

θ′ ℓθ′ (Wθ,κ).
Then, the density of L (Ln,ε

θn |Pn
θn) with respect to Lebesgue measure is

1

2π

∫
{

φθn

(

t√
n

)}n

e−
1
2 ε‖t‖

2

e−
√
−1t·xdt.

Observe
∫

∣

∣

∣

∣

{

φθn

(

t√
n

)}n

e−
1
2 ε‖t‖

2

e−
√
−1t·x

∣

∣

∣

∣

dt ≤
∫

e−ε‖t‖2

dt < ∞.
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Hence, by Lebesgue’s dominated convergence theorem, we have, with frem being
as of (18),

lim
n→∞

1

2π

∫
{

φθn

(

t√
n

)}n

e−
1
2 ε‖t‖

2

e−
√
−1t·xdt

=
1

2π

∫

lim
n→∞

{

φθn

(

t√
n

)}n

e−
1
2 ε‖t‖

2

e−
√
−1t·xdt,

=
1

2π

∫

lim
n→∞

{

1− 1

2n

(

tTJ−1
θn t

)

+ frem
(

θ,
√
−1t, n

)

}n

e−
1
2 ε‖t‖

2

e−
√
−1t·xdt

=
1

2π

∫

exp

{

−1

2
tT

(

J−1
θ + ε21

)

t

}

e−
√
−1t·xdt a.e.

Here, in the third line, we used Lemma 3 to show that the first order term of the
Taylor expansion (= En

θ ℓ
n
θ ) vanishes. Also, to obtain the fourth line, we used

the inequality (19).
Therefore, the density of L (Ln,ε

θn |Pn
θn) converges to the one of N

(

0, J−1
θ + ε

)

,
as n → ∞. Therefore, By Schefe’s lemma, we have

lim
n→∞

∥

∥L (Ln,ε
θn |Pn

θn)−N
(

0, J−1
θ + ε

)
∥

∥

1
= 0.

Therefore,

lim
ε↓0

lim
n→∞

∥

∥L (Ln,ε
θn |Pn

θn)−N
(

0, J−1
θ

)
∥

∥

1

≤ lim
ε↓0

lim
n→∞

∥

∥L (Ln,ε
θn |Pn

θn)− N
(

0, J−1
θ + ε

)∥

∥

1
+ lim

ε↓0

∥

∥N
(

0, J−1
θ

)

−N
(

0, J−1
θ + ε

)∥

∥

1

= 0.

Therefore,

lim
ε↓0

lim
n→∞

sup
h∈K′

∥

∥

∥
L
(

Ln,ε
θn,h

|Pn
θn,h

)

−N
(

0, J−1
θ

)

∥

∥

∥

1
≤ ε′.

Since ε′ > 0 is arbitrary, we have the assertion.

Lemma 14 Suppose θ → pθ is continuously differentiable in quadratic mean,
and (15) holds. Moreover, we suppose (13) and (14) hold. Then, for any com-
pact set K ′ ∈ R

m, we have

lim
ε↓0

lim
n→∞

sup
h∈K′

∥

∥

∥
L
(

Ln,ε
θn,h

|Pn
θ

)

−N
(

−h, J−1
θ

)

∥

∥

∥

1
= 0,

where θn,h := θ + n−1/2h

Proof. Observe, for any measurable function f with supx∈Rm |f (x)| ≤ 1,

EYεEn
θ

[

f
(

Ln,ε
θn,h

)]

= EYεEn
θn,h

[

f
(

Ln,ε
θn,h

)

Zn
θn,h,−h

]

,

20



Observe also, due to Lemma 5, with Kθ being a compact subset of Θ containing
θ and K ′ being an arbitrary compact subset of Rm,

sup
h∈K′

∣

∣

∣
EYεEn

θn,h

[

f
(

Ln,ε
θn,h

)(

Zn
θn,h,−h − Zθn,h,−h

(

ℓnθn,h

))]∣

∣

∣

≤ sup
h∈K′

En
θn,h

[∣

∣

∣
Zn
θn,h,−h − Zθn,h,−h

(

ℓnθn,h

) ∣

∣

∣

]

≤ sup
h∈K′

sup
θ′∈Kθ

En
θ′

[∣

∣Zn
θ′,−h − Zθ′,−h (ℓ

n
θ′)

∣

∣

]

→ 0, n → ∞. (46)

Therefore, we have to evaluate

lim
n→∞

sup
h∈K′

EYεEn
θn,h

[

f
(

Ln,ε
θn,h

)

Zθn,h,−h

(

ℓnθn,h

)]

= lim
n→∞

sup
h∈K′

EYεEn
θn,h

[

f
(

Ln,ε
θn,h

)

Zθn,h,−h

(

Jθn,h
Ln,ε
θn,h

)

eh
T Jθn,h

Yε

]

= lim
n→∞

sup
h∈K′

{E1 + E2 + E3} ,

where

E1 := EYεEn
θn,h

[

I{∥

∥

∥
Ln,ε

θn,h

∥

∥

∥
≤a , ‖Yε‖≤ε1/4

}f
(

Ln,ε
θn,h

)

Zθn,h,−h

(

Jθn,h
Ln,ε
θn,h

)

eh
TJθn,h

Yε

]

,

E2 := EYεEn
θn,h

[

I{ ‖Yε‖>ε1/4}f
(

Ln,ε
θn,h

)

Zθn,h,−h

(

Jθn,h
Ln,ε
θn,h

)

eh
TJθn,h

Yε

]

,

E3 := EYεEn
θn,h

[

I{∥

∥

∥
Ln,ε

θn,h

∥

∥

∥
>a , ‖Yε‖≤ε1/4

}f
(

Ln,ε
θn,h

)

Zθn,h,−h

(

Jθn,h
Ln,ε
θn,h

)

eh
TJθn,h

Yε

]

.

The first term of the right most side of E1 is evaluated as follows.

E1 = EYεEn
θn,h

[

I{∥

∥

∥
Ln,ε

θn,h

∥

∥

∥
≤a

}f
(

Ln,ε
θn,h

)

Zθn,h,−h

(

Jθn,h
Ln,ε
θn,h

)

E
[

I{|Yε|≤ε1/4}e
hTJθn,h

Yε

∣

∣

∣
Ln,ε
θn,h

]

]

,

(47)
whose second factor can be evaluated as

lim
ε↓0

lim
n→∞

sup
h∈K′

∣

∣

∣
E
[

I{‖Yε‖≤ε1/2}e
hT Jθn,h

Y
∣

∣

∣
Ln,ε
θn,h

]

− 1
∣

∣

∣

≤ lim
ε↓0

lim
n→∞

sup
h∈K′

e‖h‖‖Jθn,h‖ε1/4 = 0 (48)

To evaluate the first factor of E1, or

E1,1 := EYεEn
θn,h

[

I{∥

∥

∥
Ln,ε

θn,h

∥

∥

∥
≤a

}f
(

Ln,ε
θn,h

)

Zθn,h,−h

(

Jθn,h
Ln,ε
θn,h

)

]

,
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observe

lim
n→∞

sup
h∈K′

∣

∣

∣

∣

E1,1 − EYεEn
θn,h

[

I{∥

∥

∥
Ln,ε

θn,h

∥

∥

∥
≤a

}f
(

Ln
θn,h

)

Zθ,−h

(

JθL
n,ε
θn,h

)

]
∣

∣

∣

∣

≤ lim
n→∞

sup
h∈K′

sup
‖L‖≤a

∣

∣Zθn,h,−h

(

Jθn,h
L
)

− Zθ,−h (JθL)
∣

∣

= lim
n→∞

sup
h∈K′

sup
‖L‖≤a

∣

∣

∣
exp

{

−hTJθn,h
L
}

e
1
2h

T Jθn,h
h − exp

{

−hTJθL
}

e
1
2h

TJθh
∣

∣

∣

= 0.

Therefore, letting Xh be a random variable with L (Xh) = N
(

h, J−1
θ

)

,

lim
ε↓0

lim
n→∞

sup
h∈K′

∣

∣E1,1 − EX−h [f (X−h) ; ‖X−h‖ ≤ a]
∣

∣

= lim
ε↓0

lim
n→∞

sup
h∈K′

∣

∣

∣

∣

∣

EYεEn
θn,h

[

f
(

Ln
θn,h

)

Zθ,−h

(

JθL
n,ε
θn,h

)

:
∥

∥

∥
Ln,ε
θn,h

∥

∥

∥
≤ a

]

−EX0 [f (X0)Zθ,−h (JθX0) : ‖X0‖ ≤ a]

∣

∣

∣

∣

∣

≤ sup
h∈K′

e‖h‖‖Jθ‖ae−
1
2h

TJθh lim
ε↓0

lim
n→∞

sup
h∈K′

∥

∥

∥
L
(

Ln,ε
θn,h

|Pn
θn,h

)

−N
(

0, J−1
θ

)

∥

∥

∥

1

= 0, (49)

where the last identity is due to Lemma13.
Therefore, by (48) and (49),

lim
ε↓0

lim
n→∞

sup
h∈K′

|E1 − E [f (X−h) ; ‖X−h‖ ≤ a]| = 0. (50)

On the other hand, by (17), E2the second term of the right most side of (46)
is evaluated as

lim
ε↓0

lim
n→∞

sup
h∈K′

E2 ≤ lim
n→∞

sup
h∈K′

EYεEn
θn,h

[

Zθn,h,−h

(

ℓnθn,h

)

: ‖Yε‖ > ε1/4
]

= lim
ε↓0

Pr
{

‖Yε‖ > ε1/4
}

· lim
n→∞

sup
h∈K′

eh
T Jθn,h

he−
1
2h

TJθn,h
h

= 0. (51)
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Also, E3 is evaluated as, by (17),

lim
ε↓0

lim
n→∞

sup
h∈K′

E3

≤ lim
ε↓0

lim
n→∞

sup
h∈K′

EYεEθn,h

[

Zθn,h,−h

(

ℓnθn,h

)

:
∥

∥

∥
Ln,ε
θn,h

∥

∥

∥
> a , ‖Yε‖ ≤ ε1/4

]

≤ lim
ε↓0

lim
n→∞

sup
h∈K′

En
θn,h

[

I{∥

∥

∥
J−1
θn,h

ℓnθn,h

∥

∥

∥
>a−ε1/4

}Zθn,h,−h

(

ℓnθn,h

)

]

≤ lim
ε↓0

lim
n→∞

√

sup
h∈K′

Pn
θn,h

{∥

∥

∥
ℓnθn,h

∥

∥

∥
> αθn,h

(

a− ε1/4
)

}

En
θn,h

[

Zθn,h,−h

(

ℓnθn,h

)]2

≤ lim
ε↓0

lim
n→∞

√

sup
h∈K′

Pn
θn,h

{
∥

∥

∥
ℓn2

θn,h

∥

∥

∥
> αθn,h

(

a− ε1/4
)

}

e2h
TJθn,h

he−hT Jθn,h
h

≤ lim
ε↓0

lim
n→∞

√

sup
h∈K′

1
{

αθn,h

(

a− ε1/4
)}2E

n
θn,h

∥

∥

∥
ℓnθn,h

∥

∥

∥

2

eh
TJθn,h

h

≤
√

tr Jθ
α2
θa

2
sup
h∈K′

ehTJθh, (52)

where αθ is the minimal eigenvalue of Jθ.
After all, combining (46), (50), (51) and (52), we have

lim
ε↓0

lim
n→∞

sup
h∈K′

∣

∣

∣
EYεEn

θ

[

f
(

Ln,ε
θn,h

)]

− E [f (X−h)]
∣

∣

∣

≤ lim
ε↓0

lim
n→∞

sup
h∈K′

∣

∣

∣
EYεEn

θn,h

[

f
(

Ln,ε
θn,h

)

Zθn,h,−h

(

ℓnθn,h

)]

− E [f (X−h)]
∣

∣

∣

=

√

trJθ
α2
θa

2
sup
h∈K′

ehT Jθh + sup
h∈K′

Pr {‖X−h‖ > a} .

Since a is arbitrary, letting a → ∞, we have

lim
ε↓0

lim
n→∞

sup
h∈K′

∥

∥

∥
L
(

Ln,ε
θn,h

|Pn
θ

)

−N
(

−h, J−1
θ

)

∥

∥

∥

1
= 0.

Theorem 15 Suppose θ → pθ is continuously differentiable in quadratic mean,
and (15) holds. Moreover, we suppose (13), (14), and (44) hold. Then, we have
(11).
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Proof. Observe, for any compact set K ′ ⊂ R
m,

∥

∥

∥
Λn,r
δ,ε (Pn

θ )− P rn
θ

∥

∥

∥

1
.

≤
∥

∥

∥
Eθ̂n1

EX̃n
θ̂n1 Rrn

θ̂n1

(

·|X̃n
θ̂n1

)

− P̃ rn
θ

∥

∥

∥

1

≤ Eθ̂n1
∥

∥

∥
EX̃n

θ̂n1 Rrn
θ̂n1

(

·|X̃n
θ̂n1

)

− P̃ rn
θ

∥

∥

∥

1

≤ Eθ̂n1
[∥

∥

∥
EX̃n

θ̂n1 Rrn
θ̂n1

(

·|X̃n
θ̂n1

)

− P̃ rn
θ

∥

∥

∥

1
:
√
n2

(

θ̂n1 − θ
)

∈ K ′
]

+ Eθ̂n1
[∥

∥

∥
EX̃n

θ̂n1 Rrn
θ̂n1

(

·|X̃n
θ̂n1

)

− P̃ rn
θ

∥

∥

∥

1
:
√
n2

(

θ̂n1 − θ
)

6∈ K ′
]

(53)

The second term of (53) is evaluated as

lim
n→∞

Eθ̂n1
{∥

∥

∥
EX̃n

θ̂n1 Rrn
θ̂n1

(

·|X̃n
θ̂n1

)

− P̃ rn
θ

∥

∥

∥

1
:
√
rn

(

θ̂n1 − θ
)

/∈ K ′
}

≤ 2 lim
n→∞

Pn1

θ

{√
rn

(

θ̂n1 − θ
)

/∈ K ′
}

,

whose left hand side becomes arbitrarily small as K ′ ↑ R
m, due to (44).

Next, we evaluate the first term of (53).

Eθ̂n1
[∥

∥

∥
EX̃n

θ̂n1 Rrn
θ̂n1

(

·|X̃n
θ̂n1

)

− P̃ rn
θ

∥

∥

∥

1
:
√
n2

(

θ̂n1 − θ
)

∈ K ′
]

≤ Eθ̂n1

[

∥

∥

∥
EX̃n

θ̂n1 Rrn
θ̂n1

(

·|X̃n
θ̂n1

)

−Qrn
θ̂n1 ,

√
rn(θ−θ̂n1)

∥

∥

∥

1
:
√
n2

(

θ̂n1 − θ
)

∈ K ′
]

+ Eθ̂n1

[

∥

∥

∥
Qrn

θ̂n1 ,
√
rn(θ−θ̂n1) − P̃ rn

θ

∥

∥

∥

1
:
√
n2

(

θ̂n1 − θ
)

∈ K ′
]

. (54)

The first term of (54) is evaluated as follows. Let

h :=
√
n2

(

θ̂n1 − θ
)

=

√

1− δ

r

√
rn

(

θ̂n1 − θ
)

,

or equivalently,
θ̂n1 = θn2,h = θrn,h̃,
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where h̃ :=

√

r (1− δ)
−1

h. Then,

sup
Ã

∣

∣

∣
EX̃n

θ̂n1 Rrn
θ̂n1

(

Ã|X̃n
θ̂n1

)

−Qrn
θ̂n1 ,

√
rn(θ−θ̂n1)

(

Ã
)
∣

∣

∣

= sup
Ã

∣

∣

∣
EX̃n

θ̂n1 Rrn
θ̂n1

(

Ã|X̃n
θ̂n1

)

−Qrn
θ̂n1 ,−h̃

(

Ã
)
∣

∣

∣

= sup
Ã

∣

∣

∣
EX̃n

θ̂n1 Rrn
θ̂n1

(

Ã|X̃n
θ̂n1

)

− Eλrn
−h̃Rrn

θ̂n1

(

Ã|λrn
−h̃

)∣

∣

∣

≤
∥

∥

∥
L
(

X̃n
θ̂n1

)

−N
(

−h̃, J−1
θ

)∥

∥

∥

1

≤
∥

∥

∥

∥

L
(

X̃n
θ̂n1

)

− Λ

√
r/(1−δ)

amp

(

N
(

−h, J−1
θ

))

∥

∥

∥

∥

1

+

∥

∥

∥

∥

Λ

√
r/(1−δ)

amp

(

N
(

−h, J−1
θ

))

−N
(

−h̃, J−1
θ

)

∥

∥

∥

∥

1

=

∥

∥

∥

∥

Λ

√
r/(1−δ)

amp

(

L
(

Ln2,ε

θ̂n1
|Pn2

θ

))

− Λ

√
r/(1−δ)

amp

(

N
(

−h, J−1
θ

))

∥

∥

∥

∥

1

+

∥

∥

∥

∥

Λ

√
r/(1−δ)

amp

(

N
(

−h, J−1
θ

))

−N
(

−
√

r/ (1− δ)h, J−1
θ

)

∥

∥

∥

∥

1

≤
∥

∥

∥
L
(

Ln2,ε

θ̂n1
|Pn2

θ

)

−N
(

−h, J−1
θ

)

∥

∥

∥

1
+ sup

h′∈Rm

∥

∥

∥

∥

Λ

√
r/(1−δ)

amp

(

N
(

h′, J−1
θ

))

−N
(

√

r/ (1− δ)h′, J−1
θ

)

∥

∥

∥

∥

1

.

Therefore, due to Lemma 14,

lim
ε↓0

lim
n→∞

Eθ̂n1

[

sup
Ã

∣

∣

∣
EX̃n

θ̂n1 Rrn
θ̂n1

(

Ã|X̃n
θ̂n1

)

−Qrn
θ̂n1 ,

√
rn(θ−θ̂n1)

(

Ã
)∣

∣

∣
;
√
n2

(

θ̂n1 − θ
)

∈ K ′
]

≤ lim
ε↓0

lim
n→∞

sup
h∈K′

∥

∥

∥
L
(

Ln2,ε
θn2,h

|Pn2

θ

)

−N
(

−h, J−1
θ

)

∥

∥

∥

1

+ sup
h∈K′

sup
h′∈Rm

∥

∥

∥

∥

Λ

√
r/(1−δ)

amp

(

N
(

h′, J−1
θ

))

−N
(

√

r/ (1− δ)h′, J−1
θ

)

∥

∥

∥

∥

1

= sup
h∈Rm

∥

∥

∥

∥

Λ

√
r/(1−δ)

amp

(

N
(

h, J−1
θ

))

−N
(

√

r/ (1− δ)h, J−1
θ

)

∥

∥

∥

∥

1

= Dr/(1−δ),J−1
θ

. (55)

The second term of (54) is evaluated as follows. Let K ′ be an arbitrary
compact set in R

m and Kθ be an arbitrary compact set in Θ with θ ∈ K. Then,
due to (45) and Theorem11,

Eθ̂n1

{

∥

∥

∥
Qrn

θ̂n1 ,
√
rn(θ−θ̂n1) − P̃ rn

θ

∥

∥

∥

1
:
√
rn

(

θ̂n1 − θ
)

∈ K ′
}

≤ sup
θ′∈Kθ

sup
h∈K′

∥

∥

∥
Qrn

θ′,−h − P̃ rn
θ′−h/

√
rn

∥

∥

∥

1
→ 0, n → ∞. (56)

Therefore, combining (55) and (56), we have

lim
ε↓0

lim
n→∞

Eθ̂n1
[
∥

∥

∥
EX̃n

θ̂n1 Rrn
θ̂n1

(

·|X̃n
θ̂n1

)

− P̃ rn
θ

∥

∥

∥

1
:
√
n2

(

θ̂n1 − θ
)

∈ K ′
]

≤ Dr/(1−δ),J−1
θ
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After all, we have

lim
ε↓0

lim
n→∞

∥

∥

∥
Λn,r
δ,ε (Pn

θ )− P rn
θ

∥

∥

∥
≤ Dr/(1−δ),J−1

θ
.

Since the map x → Dx,Σ is continuous about x (see (8) ), letting δ → 0, we
have the asserted result.

3.4 Local minimax property

Based on (n, rn)-cloner Λn,r for {Pn
θ }θ∈Θ, we compose an amplifier Λ

θ,
√
r,n,ε

amp

for the Gaussian shift
{

N
(

h, J−1
θ

)}

h∈Rm as follows.

(I) Given Xh with L (Xh) = N
(

h, J−1
θ

)

, compose

Q′n
θ,h (A) := Qn

θ,h (A× Ω′) = EXhRn
θ (A× Ω′|Xh) .

(II) Apply Λn,r to Q′n
θ,h. Denote byWn,r

h the random variable with L (Wn,r
h ) =

Λn,r
(

Q′n
θ,h

)

.

(III) The output random variable is X̃r,n,ε
h := Lrn,ε

θ (Wn,r
h ), where Ln,ε

θ (ωn) :=
J−1
θ ℓnθ (ω

n) + Yε and L (Yε) = N (0, ε).

Lemma 16 Suppose θ → pθ is differentiable in quadratic mean, and (15) and
(14) hold. Then, for any compact set K ′ ∈ R

m, we have

lim
n→∞

sup
h∈K′

∥

∥

∥
L
(

Ln,ε
θ |Pn

θn,h

)

−N
(

h, J−1
θ

)

∥

∥

∥

1
= 0.

Proof. Observe, for any measurable function f with supx∈Rm |f (x)| ≤ 1,

EYεEn
θn,h

[f (Ln,ε
θ )] = EYεEn

θ

[

f (Ln,ε
θ )Zn

θ,h

]

,

Observe also, due to Lemma6, with K ′ being an arbitrary compact subset of
R

m,

sup
h∈K′

∣

∣EYεEn
θ

[

f (Ln,ε
θ )

(

Zn
θ,h − Zθ,h (ℓ

n
θ )

)]∣

∣ (57)

≤ sup
h∈K′

En
θn,h

[∣

∣Zn
θ,h − Zθ,h (ℓ

n
θ )
∣

∣

]

→ 0, n → ∞.

Therefore, we have to evaluate

lim
ε↓0

lim
n→∞

sup
h∈K′

EYεEn
θ [f (Ln,ε

θ )Zθ,h (ℓnθ )]

= lim
ε↓0

lim
n→∞

sup
h∈K′

EYεEn
θ

[

f (Ln,ε
θ )Zθ,h (JθL

n,ε
θ ) e−hT JθYε

]

= lim
ε↓0

lim
n→∞

sup
h∈K′

(E1 + E2 + E3) ,
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where

E1 := EYεEn
θ

[

I{‖Ln,ε
θ ‖≤a , ‖Yε‖≤ε1/4}f (Ln,ε

θ )Zθ,h (JθL
n,ε
θ ) e−hTJθYε

]

,

E2 := EYεEn
θ

[

I{‖Yε‖>ε1/4}f (Ln,ε
θ )Zθ,h (JθL

n,ε
θ ) e−hTJθYε

]

,

E3 := EYεEn
θ

[

I{‖Ln,ε
θ ‖>a , ‖Yε‖≤ε1/4}f (Ln,ε

θ )Zθ,h (JθL
n,ε
θ ) e−hTJθYε

]

.

E1 is evaluated as follows. Observe

E1 = EYεEn
θn,h

[

I{‖Ln,ε
θ ‖≤a}f (Ln,ε

θ )Zθ,h (JθL
n,ε
θ ) E

[

I{‖Yε‖≤ε1/4}e
−hTJθYε

∣

∣

∣
Ln,ε
θ

]]

,

whose second factor can be evaluated as

lim
ε↓0

lim
n→∞

sup
h∈K′

∣

∣

∣
E
[

I{‖Yε‖≤ε1/4}e
−hTJθY

∣

∣

∣
Ln,ε
θn,h

]

− 1
∣

∣

∣
≤ e‖h‖‖Jθ‖ε1/4 (58)

To evaluate the first factor

E1,1 := EYεEn
θ [f (Ln,ε

θ )Zθ,h (JθL
n,ε
θ ) : ‖Ln,ε

θ ‖ ≤ a] ,

observe, with L (Xh) = N
(

h, J−1
θ

)

,

lim
ε↓0

lim
n→∞

sup
h∈K′

|E1,1 − E [f (X−h) : ‖X−h‖ ≤ a]|

= lim
ε↓0

lim
n→∞

sup
h∈K′

∣

∣

∣

∣

EYεEn
θ [f (Ln,ε

θ )Zθ,h (JθL
n,ε
θ ) : ‖Ln,ε

θ ‖ ≤ a]
−EX0 [f (X0)Zθ,h (JθX0) : ‖X0‖ ≤ a]

∣

∣

∣

∣

≤ sup
h∈K′

e‖h‖‖Jθ‖a− 1
2h

T Jθh lim
ε↓0

lim
n→∞

∥

∥L (Ln,ε
θ |Pn

θ )−N
(

0, J−1
θ

)∥

∥

1

= 0, (59)

where the last identity is due to Lemma13.
Therefore, by (58) and (59),

lim
ε↓0

lim
n→∞

sup
h∈K′

|E1 − E [f (X−h) : ‖X−h‖ ≤ a]| = 0. (60)

On the other hand, by (17),

lim
ε↓0

lim
n→∞

sup
h∈K′

E2

≤ lim
ε↓0

lim
n→∞

sup
h∈K′

EYεEn
θ

[

Zθ,h (ℓnθ ) : ‖Yε‖ > ε1/4
]

= lim
ε↓0

Pr
{

‖Yε‖ > ε1/4
}

· sup
h∈K′

eh
TJθhe−

1
2h

TJθh

= 0, (61)
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and

lim
ε↓0

lim
n→∞

sup
h∈K′

E3

≤ lim
ε↓0

lim
n→∞

sup
h∈K′

EYεEθ

[

Zθ,h (ℓnθ ) : ‖Ln,ε
θ ‖ > a , ‖Yε‖ ≤ ε1/2

]

≤ lim
ε↓0

lim
n→∞

sup
h∈K′

En
θ

[

I{‖ℓnθ ‖>αθ(a−ε1/4)}Zθ,h (ℓnθ )
]

≤ lim
ε↓0

lim
n→∞

sup
h∈K′

√

Pn
θ

{

‖ℓnθ‖ > αθ

(

a− ε1/4
)}

√

En
θ [Zθ,h (ℓnθ )]

2

≤ lim
ε↓0

lim
n→∞

√

sup
h∈K′

Pn
θ

{

‖ℓnθ‖ > αθ

(

a− ε1/4
)}

sup
h∈K′

(

En
θ′e

− 2hT
√

n
ℓθ

)n

e−hTJθh

≤ lim
ε↓0

lim
n→∞

√

sup
h∈K′

1
{

αθ

(

a− ε1/4
)}2E

n
θ ‖ℓnθ ‖

2
sup
h∈K′

ehTJθh

=

√

sup
h∈K′

tr Jθ
α2
θa

2
sup
h∈K′

ehTJθh. (62)

After all, by (57), (60), (51), and (52), we have

lim
ε↓0

lim
n→∞

sup
h∈K′

∣

∣

∣
EYεEn

θhn
[f (Ln,ε

θ )]− E [f (Xh)]
∣

∣

∣

= lim
ε↓0

lim
n→∞

sup
h∈K′

∣

∣EYεEn
θ [f (Ln,ε

θ )Zθ,h (ℓnθ )]− E [f (Xh)]
∣

∣

=

√

sup
h∈K′

trJθ
α2
θa

2
sup
h∈K′

ehT Jθh + sup
h∈K′

Pr {‖Xh‖ > a} .

Since a is arbitrary, letting a → ∞, we have

lim
ε↓0

lim
n→∞

sup
h∈K′

∥

∥

∥
L
(

Ln,ε
θ |Pn

θn,h

)

−N
(

h, J−1
θ

)

∥

∥

∥

1
= 0.

Theorem 17 Suppose θ → pθ is differentiable in quadratic mean, and (15) and
(14) hold. Then, for any Markov map Λn,r and for any θ ∈ Θ, we have (10).
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Proof. Observe
∥

∥

∥
Λθ,

√
r,n,ε

amp

(

N
(

h, J−1
θ

))

−N
(√

rh, J−1
θ

)

∥

∥

∥

1

≤
∥

∥

∥
Λθ,

√
r,n,ε

amp

(

N
(

h, J−1
θ

))

− L
(

Lrn,ε
θ |P rn

θn,h

)∥

∥

∥

1
+
∥

∥

∥
L
(

Lrn,ε
θ |P rn

θn,h

)

−N
(√

rh, J−1
θ

)

∥

∥

∥

1

=
∥

∥

∥
L
(

Lrn,ε
θ |Λn,r

(

Q′n
θ,h

))

− L
(

Lrn,ε
θ |P rn

θn,h

)∥

∥

∥

1
+
∥

∥

∥
L
(

Lrn,ε
θ |P rn

θn,h

)

−N
(√

rh, J−1
θ

)

∥

∥

∥

1

≤
∥

∥

∥
Λn,r

(

Q′n
θ,h

)

− P rn
θn,h

∥

∥

∥

1
+
∥

∥

∥
L
(

Lrn,ε
θ |P rn

θn,h

)

−N
(√

rh, J−1
θ

)

∥

∥

∥

1

≤
∥

∥

∥
Λn,r

(

Q′n
θ,h

)

− Λn,r
(

Pn
θn,h

)
∥

∥

∥

1
+
∥

∥

∥
Λn,r

(

Pn
θn,h

)

− P rn
θn,h

∥

∥

∥

1

+
∥

∥

∥
L
(

Lrn,ε
θ |P rn

θn,h

)

−N
(√

rh, J−1
θ

)

∥

∥

∥

1

≤
∥

∥

∥
Q′n

θ,h − Pn
θn,h

∥

∥

∥

1
+
∥

∥

∥
Λn,r

(

Pn
θn,h

)

− P rn
θn,h

∥

∥

∥

1
+
∥

∥

∥
L
(

Lrn,ε
θ |P rn

θn,h

)

−N
(√

rh, J−1
θ

)

∥

∥

∥

1
.

By Theorem12,the first term vanishes,

lim
n→∞

sup
h∈K′

∥

∥

∥
Q′n

θ,h − Pn
θn,h

∥

∥

∥

1
= 0.

By Lemma 16, since θn,h = θrn,
√
rh, the third term vanishes,

lim
ε↓0

lim
n→∞

sup
h∈K′

∥

∥

∥
L
(

Lrn,ε
θ |P rn

θn,h

)

−N
(√

rh, J−1
θ

)

∥

∥

∥

1
= 0.

After all, we have

lim
ε↓0

lim
n→∞

sup
h∈K′

∥

∥

∥
Λθ,

√
r,n,ε

amp

(

N
(

h, J−1
θ

))

−N
(√

rh, J−1
θ

)

∥

∥

∥

1
≤ lim

n→∞
sup
h∈K′

∥

∥

∥
Λn,r

(

Pn
θn,h

)

− P rn
θn,h

∥

∥

∥

1
.

Since

inf
Λ

sup
h∈K′

∥

∥

∥
Λθ,

√
r

amp

(

N
(

h, J−1
θ

))

−N
(√

rh, J−1
θ

)

∥

∥

∥

1
≤ lim

n→∞
sup
h∈K′

∥

∥

∥
Λθ,

√
r,n,ε

amp

(

N
(

h, J−1
θ

))

−N
(√

rh, J−1
θ

)

∥

∥

∥

1

holds due to optimality of Λ
θ,
√
r

amp , we have

lim
n→∞

sup
h∈K′

∥

∥

∥
Λn,r

(

Pn
θn,h

)

− P rn
θn,h

∥

∥

∥

1
≥ inf

Λ
sup
h∈K′

∥

∥

∥
Λθ,

√
r

amp

(

N
(

h, J−1
θ

))

−N
(√

rh, J−1
θ

)

∥

∥

∥

1
.

Here, letting K ′ = {x ; ‖x‖ ≤ a} and a → ∞, we have (10).

4 Discussion

Using quantum LAN, we can produce similar results for finite dimensional quan-
tum system.
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A Proof of (6)

In this appendix, we prove

inf
x
‖p0,1 − px,r1‖1 = ‖p0,1 (y)− p0,r1 (y)‖1 ,
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where px,Σ is the density of N (x,Σ). Due to the symmetry, we can suppose
x = (t, 0, · · · , 0), t ≥ 0. Define Br,t := {y; p0,1 (y) ≥ px,r1 (y)}. Observe

y ∈ Br

⇔ 1

(2π)
m/2

e−
(y1)2+

∑m
κ=2(yκ)2

2 ≥ 1

(2πr)
m/2

e−
(y1−t)2+

∑m
κ=2(yκ)2

2r

⇔
(

y1 −
t

r − 1

)2

+
m
∑

κ=2

(yκ)
2 ≤ 2m

r − 1
log r +

(

t

r − 1

)2

.

Hence, Br is a ball.
For z ∈ R

m−1 and t ∈ R, define t1 and t2 by

p0,1 ((tκ, z)) = p0,r1 ((tκ − t, z)) ,

t1 ≤ t2.

One can verify
p0,1 ((t1, z)) ≥ p0,1 ((t2, z))

as follows. In case of 0 ≤ t1 (t, z) ≤ t2 (t, z), this holds because p0,1 ((·, z))
is monotone decreasing on R+. In case of t1 (t, z) ≤ 0 ≤ t2 (t, z), observe
t1 (0, z) ≤ t1 (t, z) ≤ 0 ≤ t2 (0, z) ≤ t2 (t, z). Hence,

p0,1 ((t1 (t, z) , z)) ≥ p0,1 ((t1 (0, z) , z)) = p0,1 ((t2 (0, z) , z)) ≥ p0,1 ((t2 (t, z) , z)) .

Therefore,

d

dt
‖p0,1 − px,r1‖1 =

∫

{p0,1 ((t1, z))− p0,1 ((t2, z))}dz ≥ 0.

Therefore, the minimum is achieved t = 0, and we have the asserted result.
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