GEnERALIZED LORENTZ Transformations

A. Blato
Creative Commons Attribution 3.0 License
(2018) Buenos Aires

Argentina

This article presents the generalized Lorentz transformations of time, space, velocity and acceleration which can be applied in any inertial or non-inertial (uniform circular motion) frame.

Introduction

If we consider an inertial or non-inertial (uniform circular motion) frame S and another inertial frame Σ whose origins coincide at time zero (in both frames) then the time (t), the position (\mathbf{r}), the velocity (\mathbf{v}) and the acceleration (a) of a (massive or non-massive) particle relative to the inertial frame Σ are:

$$
\begin{aligned}
& t=\int_{0}^{\mathrm{t}} \gamma \mathrm{dt}-\gamma \frac{\vec{r} \cdot \mathbf{V}}{c^{2}} \\
& \mathbf{r}=\vec{r}+\frac{\gamma^{2}}{\gamma+1} \frac{(\vec{r} \cdot \mathbf{V}) \mathbf{V}}{c^{2}}-\gamma \mathbf{R}-\frac{\gamma^{2}}{\gamma+1} \frac{(\mathbf{R} \times \mathbf{V}) \times \mathbf{V}}{c^{2}} \\
& \mathbf{v}=\frac{d \mathbf{r}}{d t} \\
& \mathbf{a}=\frac{d \mathbf{v}}{d t}
\end{aligned}
$$

where (t, \vec{r}) are the time and the position of the particle relative to the frame S , $(\mathbf{R}, \mathbf{V}, \mathbf{A})$ are the position, the velocity and the acceleration of the origin of the inertial frame Σ relative to the frame $\mathrm{S},(c)$ is the speed of light in vacuum, and $\gamma=\left(1-\mathbf{V} \cdot \mathbf{V} / c^{2}\right)^{-1 / 2}$

- $\frac{d \mathbf{r}}{d t}=\left(\frac{d \mathbf{r}}{d \mathrm{t}}+\Omega \times \mathbf{r}\right)\left(\frac{1}{d t / \mathrm{dt}}\right)$
- $\frac{d \mathbf{v}}{d t}=\left(\frac{d \mathbf{v}}{\mathrm{dt}}+\Omega \times \mathbf{v}\right)\left(\frac{1}{d t / \mathrm{dt}}\right)$
- $\Omega=\frac{\gamma^{2}}{\gamma+1} \frac{(\mathbf{A} \times \mathbf{V})}{c^{2}}$
- $\frac{\gamma^{2}}{\gamma+1} \frac{1}{c^{2}}=\frac{\gamma-1}{\mathbf{V}^{2}} \quad\left(\mathbf{V}^{2}=\mathbf{V} \cdot \mathbf{V}\right)$
- $\gamma \mathbf{R}+\frac{\gamma^{2}}{\gamma+1} \frac{(\mathbf{R} \times \mathbf{V}) \times \mathbf{V}}{c^{2}}=\mathbf{R}+\frac{\gamma^{2}}{\gamma+1} \frac{(\mathbf{R} \cdot \mathbf{V}) \mathbf{V}}{c^{2}}$

General Observations

If the frame S is inertial then $(\mathbf{A}=0),(\mathbf{V}=$ cte $),(\mathbf{R}=\mathbf{V} \mathrm{t}),(\gamma=$ cte $)$ $\left(\int_{0}^{\mathrm{t}} \gamma \mathrm{dt}=\gamma \mathrm{t}\right),(\mathbf{R} \times \mathbf{V}=0) \&(\Omega=0)$

If the frame \mathbf{S} is non-inertial (uniform circular motion) then ($\mathbf{A} \neq 0$) $(\mathbf{A} \cdot \mathbf{V}=0),(\mathbf{V} \cdot \mathbf{V}=$ cte $),(\gamma=$ cte $)\left(\int_{0}^{\mathrm{t}} \gamma \mathrm{dt}=\gamma \mathrm{t}\right) \&(\Omega \neq 0)$

In addition, if the frame S is non-inertial (uniform circular motion) then the observer S should preferably use an origin O^{\prime} such that $(\mathbf{R} \cdot \mathbf{V}=0)$

Bibliography

[1] R. A. Nelson, J. Math. Phys. 28, 2379 (1987).
[2] R. A. Nelson, J. Math. Phys. 35, 6224 (1994).
[3] C. Møller, The Theory of Relativity (1952).

