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Abstract

According to Madelung, Bohm and Vigier, Wilhelm, Rosen and others, the
original Schroedinger equation can be transformed into the hydrodynamical system
of equations by using the so called Madelung ansatz. We derive in such quantum
hydrodynamics, the non-relativistic and relativistic Strouhal number from the so
called von Kármán’s vortex street. The relativistic derivation of this formula follows
from the addition formula for velocities. The Strouhal friction tones are generated
also during the motion of cosmic rays in relic photon sea, during the motion of
bolids in atmosphere, during the Saturn rings motion in the relic black-body sea,
during the motion of bodies in superfluid helium and so on.

1 Introduction

It is well known from the experimental artillery physics and ballistics, that the moving

ballistic projectile generates not only the Mach cone but also the sound. Similarly, the

moving projectile of a gun, moving bolid in atmosphere, moving tactic and ballistic misails

generate sound. The physical origin of this sound is not caused by the vibration of the

surface of the projectile, or by the vibration of the Mach cone, or by the micro-structure

of the Mach cone, but it is caused by the periodic generation of vortexes in the vicinity

of the surface of the projectile during the air flowing around it. Such sound is generated

also by the air flow around the cylinders, or strings. The system of strings generating

the sound is named Aeolean’s harp (Aeolus being God of winds in the Greek mythology)

and the tones generated in a such a way are so called the Strouhal friction tones. If the
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diameter of the string, or cylinder immersed in the flow is D and the velocity of the flow is

v then the frequency f of the sound is given by the Strouhal formula (Blokhintsev, 1981):

f = κ(Re)
v

D
, (1)

where κ is the Strouhal number named after Vincent Strouhal, a Czech physicist who

experimented in 1878 with wires experiencing vortex shedding and singing in the wind

(Strouhal, 1878; White, 1999). The dimensionless symbol Re is the Reynolds number

given by the formula Re = vD/ν, where ν is the kinematic viscosity. The Strouhal

number was late generalized to involve obertons, or, (Blokhintsev, 1981):

f = κ(Re)
v

D
n, (2)

where n is the integer number of the oberton.

2 The Madelung model of quantum mechanics

According to Madelung (1926), Bohm and Vigier (1954), Wilhelm (1970), Rosen (1974)

and others, the original Schrödinger equation can be transformed into the hydrodynamical

system of equations by using the so called Madelung ansatz:

Ψ =
√
ne

i
h̄
S, (3)

where n is interpreted as the density of particles and S is the classical action for h̄→ 0.

The mass density is defined by relation % = nm where m is mass of a particle.

It is well known that after insertion of the relation (3) into the original Schrödinger

equation

ih̄
∂Ψ

∂t
= − h̄2

2m
∆Ψ + VΨ, (4)

where V is the potential energy, we get, after separating the real and imaginary parts,

the following system of equations:

∂S

∂t
+

1

2m
(∇S)2 + V =

h̄2

2m

∆
√
n√
n

(5)

∂n

∂t
+ div(nv) = 0 (6)

with

v =
∇S
m

. (7)

Equation (5) is the Hamilton-Jacobi equation with the additional term
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Vq = − h̄2

2m

∆
√
n√
n
, (8)

which is called the quantum Bohm potential and equation (6) is the continuity equation.

After application of operator 5 on eq. (5), it can be cast into the Euler hydrodynam-

ical equation of the form:

∂v

∂t
+ (v · ∇)v = − 1

m
∇(V + Vq). (9)

It is evident that this equation is from the hydrodynamical point of view incomplete

as a consequence of the missing term −%−1∇p where p is hydrodynamical pressure. We

use here this fact just as the crucial point for derivation of the nonlinear Schrödinger

equation. We complete the eq. (9) by adding the pressure term and in such a way we get

the total Euler equation in the form:

m

(
∂v

∂t
+ (v · ∇)v

)
= −∇(V + Vq)−∇F, (10)

where

∇F =
1

n
∇p. (11)

The equation (10) can be obtained by the Madelung procedure from the following

extended Schrödinger equation

ih̄
∂Ψ

∂t
= − h̄2

2m
∆Ψ + VΨ + FΨ (12)

on the assumption that it is possible to determine F in term of the wave function. From

the vector analysis follows that the necessary condition of the existence of F as the solution

of the eq. (11) is rot grad F = 0, or,

rot(n−1∇p) = 0, (13)

which enables to take the linear solution in the form

p = −bn = −b|Ψ|2, (14)

where b is some arbitrary constant. We do not consider the more general solution of eq.

(13). Then, from eq. (11) i.e. grad F = a we have:

F =
∫
ai dxi = −b

∫ 1

n
dn = −b ln |Ψ|2, (15)

where we have omitted the additive constant which plays no substantial role in the

Schrödinger equation.
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Now, we can write the generalized Schrödinger equation which corresponds to the

complete Euler equation (10) in the following form:

ih̄
∂Ψ

∂t
= − h̄2

2m
∆Ψ + VΨ− b(ln |Ψ|2)Ψ. (16)

The last equation is continuation of the de Broglie ideas on quantum mechanics

(Broglie, 1960) and leads to interesting consequences as can be seen it many articlle

on the nonlinear quantum mechanics. Namely, (Bialynicky-Birula, et al., 1976), (Pardy,

1993; 1994; 2001), (Gaehler, et al., 1981) and so on. Let us remark that only nonlinear

equation (16) has the correct classsical limit for the particle of the infinite mass (Pardy,

2001).

3 The Quantum Pascal law

Let us firstly, consider quantum mechanics with the electron confined in the box with the

infinite barriers at point 0 and l. Then, the energy levels of electron inside the box is

(Sokolov et al. 1962)

En =
π2h̄2n2

2ml2
(17)

and the corresponding wave function is

ψn =

√
2

l
sin

(
πn

x

l

)
. (18)

The quantum pressure caused by the quantum mechanical motion of particle is

obtained by the same operation as in the Casimir effect. Or,

F = −∂En
∂l

=
π2h̄2n2

2ml3
. (19)

The physical interpretation of eq. (19) is, that if some pressure p is at point 0, then

the same pressure is instantaneously without retardation in point l,

In case that the thermal box is three-dimensional, we get (Sokolov et al., 1962 )

En1,n2,n3 =
π2h̄2

2m

[(
n1

l1

)2

+
(
n2

l2

)2

+
(
n3

l3

)]
(20)

and the corresponding wave function is

ψn1,n2,n3 =

√
8

l1l2l3
sin

(
πn1

x

l1

)
sin

(
πn2

x

l2

)
sin

(
πn3

x

l3

)
. (21)

The corresponding pressures are

p23 = − 1

l2l3

∂En1,n2,n3

∂l1
(22)
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p13 = − 1

l1l3

∂En1,n2,n3

∂l2
(23)

p12 = − 1

l1l2

∂En1,n2,n3

∂l3
. (24)

The physical interpretation of eqs. (22–24) is, that if some pressure p is at wall lij,

then the same pressure is instantaneously without retardation at opposite wall of lij. (the

partial quantum Pascal law).

The wave function af the electron in a box abc in the coordinate system xyz in the

momentum representation is as follows (Grashin, 1974):

ψ(p) =
∫ a

0
dx
∫ b

0
dy
∫ c

0
dz

exp−(pr/h̄)√
π3h̄3abc

sin
(
π
x

a

)
sin

(
π
y

b

)
sin

(
π
z

c

)
. (25)

Let us only remark that the quantum pressure derived here is the perfect proof that

the wave function in quantum mechanics is the mathematical form of physical reality -

form of matter - or, the wave function is in such a way the objective form of matter,

where matter is continuum independent on observer. The similar quantum model is the

Casimir effect, which is based on the quantum field theory, where quantum field is form

of matter independent on the observer and not only the mathematical construct. So, the

Madelung hydrodynamical model of quantum mechanics is the model of medium which

can be connsidered as the physical medium involving sound waves.

4 The von Kármán vortex street

The von Kármán vortex street is named after the engineer and fluid dynamicist Theodore

von Kármán (1963; 1994). It is produced for instance by wind interacting with the

suspended telephone, or, by the power lines, or, by a car antenna at certain speeds of a

car.

The potential flow of the ideal liquid can be described by the complex function

w(z) = ϕ(x, y) + iψ(x, y), (26)

with z = x + iy (Kočin et al., 1963). It is supposed that the function is analytical,

which means that the Cauchy-Riemann conditions are fulfilled:

∂ϕ

∂x
=
∂ψ

∂y
;

∂ϕ

∂y
= −∂ψ

∂x
. (27)

The corresponding velocities of the two-dimensional liquid fluid are as follows:
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vx =
∂ϕ

∂x
; vy =

∂ϕ

∂y
. (28)

Then, derivation of w gives:

dw

dz
=
∂ϕ

∂x
+ i

∂ψ

∂x
=
∂ϕ

∂x
− i∂ϕ

∂y
= vx − ivy. (29)

The vortex potential was derived in the theory of complex function theory of the fluid

dynamics as

w(z) =
Γ

2πi
ln

(z − zk)
l

, (30)

where Γ is so called circulation of liquid and l is the arbitrary constant with the

dimensionality of length. Let us suppose that the center of the vortexes is at points

z0,±z1,±z2,±z3, ... with xk = lk, k = 0,±1,±2,±3, ... and yk = H/2, where H is the

arbitrary parameter.

It may be easy to see that the complex potential of the system of vortexes is (Kočin

et al. 1963):

w(z) =
Γ

2πi

{
ln

(z − z0)π
l

+
∞∑
k=1

[
ln

(z − zk)
−lk

+ ln
(z − z−k)

lk

]}
+ const, (31)

where we have multiplied z− z0 by π/l and z− zk by 1/(−kl), which leads to the change

of additional constant in the complex potential and not to the change of physics following

from the complex potential. After some mathematical manipulations, we get the last

formula in the following form:

w(z) =
Γ

2πi
ln

{
(z − z0)π

l

∞∏
k=1

(z − zk)
−lk

(z − z−k)
lk

}
. (32)

Since we have used zk = z0 − lk, z−k = z0 + lk, then

w(z) =
Γ

2πi
ln

{
(z − z0)π

l

∞∏
k=1

[
1−

(
(z − z0)2

lk

)]}
. (33)

Now, using the formula

sin πx = πx
∞∏
k=1

(
1− x2

k2

)
, (34)

we get

w =
Γ

2πi
ln sin

π

l
(z − z0). (35)

The corresponding complex velocity is as follows:

vx − ivy =
Γ

2li
cot

π

l
(z − z0). (36)
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In case of two vortexes with circulation Γ1,Γ2, we get the complex velocities in the

form:

vx − ivy =
Γ1

2li
cot

π

i
(z − z1) +

Γ2

2li
cot

π

l
(z − z2) = −dw

dz
. (37)

It is possible to see that (Kočin et al., 1963)

v1x − iv1y =
Γ2

2li
cot

π

l
(z1 − z2) (38)

and

v2x − iv2y = −Γ1

2li
cot

π

l
(z1 − z2). (39)

We have from equal complex velocities:

v1x − iv1y = v2x − iv2y, (40)

the following evident relation

Γ1 = −Γ2. (41)

In case that y-velocities of vortexes are zero, or, v1y = v2y = 0, then

z1 − z2 = b+Hi, (42)

where b,H are some constants.

Now, let us use the formula:

cot
π

l
(b+Hi) =

sin 2πb
l

cosh 2πH
l
− cos 2πb

l

− i
sinh 2πH

l

cosh 2πH
l
− cos 2πb

l

, (43)

Then, it follows from the last equation that

v1,2x =
Γ

2l

sinh 2πH
l

cosh 2πH
l
− cos 2πb

l

, (44a)

v1,2y = − Γ

2l

sin 2πb
l

cosh 2πH
l
− cos 2πb

l

. (44b)

We have from v1y = v2y = 0, that

sin
2πb

l
= 0, (45)

or, b = 0, b = l/2.

The situation with b = 0 is called the symmetrical configuration which is non-stable

(Kočin et al., 1963) and the situation with b = l/2 which is the chess stable configuration.

We have two velocities:
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v1x =
Γ

2l
coth

(
πH

l

)
; (b = 0), (46)

v2x =
Γ

2l
tanh

(
πH

l

)
; (b = l/2). (47)

5 The derivation of the Strouhal number from the

vortex street

The period forming by the vortex street, where the relative velocities is v − u, is

(Blokhintsev, 1981):

T =
l

v − u
(48)

and the frequency f is

f =
v − u
l

=
(

1− u

v

)
D

l
.
v

D
(49)

It means in the last formula that the non-relativistic Strouhal number κ is

κ =
(

1− u

v

)
D

l
. (50)

6 The relativistic Strouhal number

The rigorous derivation of the relativistic Strouhal number follows from the relativistic

hydrodynamics (Landau et al. 1987), together with the derivation of the relativistic von

Kármán’s vortex theory. However, we here suppose that the relativistic Strouhal nummber

follows immediately from the non-relativistic formula by the operation of the relativistic

generalization.

The Strouhal formula contains quantity D with the dimensionality of length, and

velocities v and u. According to special theory of relativity, length is not contracted when

the cylinder or string is placed perpendicular to the direction of motion, and it means

that it is not contracted if it is placed perpendicular to the air flow in the considered

experiment. On the other hand, the special relativity addition theorem is necessary to

apply for velocities v and u. In other words the relativistic formula is as follows (with

v ⊕ u being the relativistic addition) :

v ⊕ u =
v + u

1 + uv
c2

. (51)

Using the formula (25) for non-relativistic frequency generated by the vortexes, we get

after some algebraic operations, the relativistic Strouhal number in the form:
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κ =

(
1− u

v

)
D
l(

1− uv
c2

) . (52)

Let us remark, that if we consider the Strouhal effect in the inertial system moving

with velocity V with regard to the laboratory system, then it is necessary still transform

the last formula according the relativistic Doppler formula.

7 Discussion

We have considered the aerodynamic and hydrodynamical situations where the Strouhal

friction tones are generated. The non-relativistic and relativistic Strouhal number was

derived from so called von Kármán’s vortex street. The relativistic derivation of this

formula followed from the relativistic addition formula for velocities.

The physical phenomenon called the Strouhal friction tones can be extended to the

cosmic rays moving in the relic photon sea, motion of bolids in atmosphere and the

ionospheric generation of sound escorting the aurora borealis/australis. In case of cosmic

rays we consider the moving bunch of cosmical particles with its effective diameter D and

not the individual particles. The detection of the generated sound is possible by special

microphones. Motion of bodies in the solar wind produces also the von Kármán vortex

street leading to the Strouhal friction tones.

The moving bunch of protons with effective diameter D in the accelerated tube in LHC

of CERN generates also the Strouhal friction tones, because the tube is the black-body

with the photon sea (Pardy, 2013a; ibid., 2013b), which enables the formation of the von

Kármán photon vortex street.

The Strouhal friction tones are also generated by submarine during the formation of

the von Kármán phonon vortex street.

The cylinder of the diameter D immersed in the flame perpendicularly to the flame

flow generates also the Strouhal friction tones.

The Saturn rings Ri, i = 1, 2, ... are composed from massive objects with diameters

Di1, Di2, Di3, ..., moving in the relic photon see (Pardy, 2013a; ibid., 2013b) and producing

the Strouhal friction tones. In such a way, the Saturn rings form the Saturn Aeolian

harp in our planetary system. It is not excluded that the Strouhal friction tones of the

Saturn rings can be detected by the special microphones of the Bell laboratories. At the

samme time we can say that every strategic bombarder is visible because it produces von

Kármán’s vortex street which are detectable by the special radars.

The von Kármán vortexes are generated also in the Earth atmosphere , or in the

Jupiter atmosphere, or, in other planetary atmospheres. It is not excluded that in a

cosmological space, the von Kármán vortexes are generated during formation of galaxies,

however, if and only if the hydrodynamical limit of cosmological matter is possible.
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Let us remark in conclusion that the von Kármán vortexes and friction tones are also

generated by the motion of bodies in liquid helium, which can be easily verified by the

experiments in the low temperature laboratories.

References

Bialynicky-Birula, I. and Mycielski, J. (1976). Nonlinear Wave Mechanics, Ann. Phys.

(N.Y.) 100, 62.

Blokhintsev, D. I., The acoustics of the non-homogenous moving medium, (2nd ed.),

Nauka, Moscow, (1981).

Bohm, D. and Vigier, J. (1954). Model of the Causal Interpretation of Quantum Theory

in Terms of a Fluid with Irregular Fluctuations, Phys. Rev. 96, 208.

Broglie de, L. (1960). Non-linear Wave Mechanics, Elsevier, Amsterdam.

Gähler, R., Klein, A. G. and Zeilinger, A. (1981). Neutron optical tests of nonlinear wave

mechanics, Phys. Rev. A 23, 1611.

Grashin, a. F. Quantum mechanics, Moscow, (1974)
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