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Abstract

It is known that both quantum and classical cellular automata (CA) exist that
are computationally universal in the sense that they can simulate, after appropriate
initialization, any quantum or classical computation, respectively. Here we introduce
a different notion of universality: a CA is called physically universal if every transfor-
mation on any finite region can be (approximately) implemented by the autonomous
time evolution of the system after the complement of the region has been initialized in
an appropriate way. We pose the question of whether physically universal CAs exist.

Such CAs would provide a model of the world where the boundary between a phys-
ical system and its controller can be consistently shifted, in analogy to the Heisenberg
cut for the quantum measurement problem. We propose to study the thermodynamic
cost of computation and control within such a model because implementing a cyclic
process on a microsystem may require a non-cyclic process for its controller, whereas
implementing a cyclic process on system and controller may require the implementa-
tion of a non-cyclic process on a “meta”-controller, and so on. Physically universal
CAs avoid this infinite hierarchy of controllers and the cost of implementing cycles on
a subsystem can be described by mixing properties of the CA dynamics.

We define a physical prior on the CA configurations by applying the dynamics to
an initial state where half of the CA is in the maximum entropy state and half of it
is in the all-zero state (thus reflecting the fact that life requires non-equilibrium states
like the boundary between a hold and a cold reservoir). As opposed to Solomonoff’s
prior, our prior does not only account for the Kolmogorov complexity but also for the
cost of isolating the system during the state preparation if the preparation process is
not robust.

The main goal of this article is to formally state several open problems and sketch
their relevance for the foundations of physics rather than providing results.
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1 Towards a physical theory of control

In the abstract framework of both quantum theory and classical physics, the following
concepts play a crucial role: (1) states (2) dynamical evolution (3) measurements (4)
system composition and (5) restriction of the state of a composed system to one of its
components. In quantum theory, states are given by density operators (e.g. positive
operators with trace one) on the system Hilbert space H, the dynamical evolution
is described by a semi-group of completely positive trace-preserving maps, measure-
ments are described by positive-operator-valued measures, and system composition is
described by tensor products of Hilbert spaces [1, 2, 3]. Finally, partial traces define
system restriction.

In classical physics, the states are probability distributions on a phase space, the dy-
namics is given by a semi-group of stochastic maps, system composition is given by the
cartesian product of the phase spaces, and state restriction is given by marginalization
of probability measures.

Having such a framework for the physical world raises the question to what extent
the formalism also contains states, dynamical evolutions, and measurements that do
not correspond to any physically possible situation or process. Restricting the attention
to quantum theory, these questions thus read: (1) Is every density operator on H a
physically possible state, (2) is every completely positive trace-preserving operation a
process that can be implemented in nature, (3) is there a measurement procedure for
every POVM?

First we describe in what sense modern quantum computing (QC) research [3] has
given an affirmative answer to all these questions and in what sense it has not. To this
end, we first rephrase some terminology of QC. A quantum-bit (qubit) is a quantum
system with Hilbert space C2, a quantum register is a collection of n qubits1. Re-
searchers have described various physical systems having a quantum degree of freedom
for which two states are universally controllable in the following sense: Any unitary
operation on C2 (“single qubit gate”) can be performed by appropriate operations on
the system. Moreover, they have described how to implement controlled interactions
between pairs of qubits, thus implementing a unitary on the Hilbert spaceH := C2⊗C2

that is not a product of single qubit operations (hence a proper “two-qubit gate”). It
was then shown that sequences of one- and two-qubit gates are sufficient for implement-
ing arbitrary unitary operations up to any desired precision [4]. Being able to prepare
one pure state of the quantum register thus enables the preparation of any pure state.
Moreover, measurements with respect to any measurement basis can be reduced to
measurements with respect to a single reference basis by first transforming the state
to the latter basis via a unitary transformation. Preparations of mixed states, imple-
mentation of general completely positive trace-preserving maps and measurements for
general POVMs can be obtained by restriction of states to a subsystem. In this sense,
questions (1)-(3) seem to be answered with “yes”. Then, the operational meaning of
some multi-qubit states, dynamical evolutions, observables are only limited by the fact
that the implementation time could even exceed the life-time of the universe2. There

1It should be noted that the restriction to two-dimensional systems is only a matter of convention.
2For a complexity theory of states and observables see e.g. [5, 6, 7, 8]
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are, however, two other reasons why QC did not answer our questions in the sense
intended here.

First, the quantum mechanical degrees of freedom defining the qubits in existing
proposals for QC [3] are only a small part of the entire degrees of freedom of physical
particles (e.g. the nuclear spin of a particle or it may be two levels in an internal degree
of freedom of a trapped ion). So far, it has not been claimed that all the degrees of
freedom of such a particle would be controllable simultaneously.

The second reason why we are not satisfied with the answer given by QC is that we
would like to see a theoretical model of quantum control that treats the controller as
the same type of physical system as the system to be controlled. Within such a unifying
model – as proposed by the present article – we are able to explore the conditions under
which one system acts as controller of the other, even though a physical interaction
can send information in both directions.3 Moreover, the question of how to control
the controller then shifts the problem of how to control the system to the problem of
how to control the controller by a “meta-controller”, leading to an infinite hierarchy of
controllers.

Remarkably, the same shift between system and its interface is generally accepted
for the quantum measurement problem: Once the quantum measurement process is
described by an interaction between system and the measurement apparatus, the ques-
tion occurs “who measures the measurement apparatus?”, which leads to the same
chain of measurement instruments as we have stated for the controller problem above.
For the measurement apparatus, it has been argued that the cut between system and
measurement instrument is arbitrary, the description must remain consistent if the
boundary is shifted. Likewise, we argue that quantum control has a consistent descrip-
tion if one can show that the cut between system and controller can be shifted. In
[9], we have already described a toy model of quantum control with a fixed interaction
between controller and system, where operations on the system are implemented by
implementing transformations on the controller. In the present paper, we assume that
we are only able to implement state preparations on the controller. We first state on
an abstract level what we would consider a consistent model of physical control, before
it will be made precise within the setting of cellular automata (CA):

Definition 1 (model of physical control, abstract version )
Let (αt) with t ∈ R or t ∈ Z be a group describing the dynamical evolution on state

space of the world W . Then every mathematically possible operation on the physical
state space of some region R can be implemented by initializing the complement W \R of
the region to an appropriate state and waiting until αt implements the desired operation.

To motivate Definition 1, we first consider an arbitrary experimental setup that
is able to implement one particular control operation. The control operation may,
for instance, be to change the quantum state of a few ions in an ion trap in some
desired way. To this end, some sophisticated sequence of Laser pulses is applied to the

3Note that unidirectionality of causal influence not only occurs if the controller is significantly larger than
the system to be controlled. Instead, it is also a matter of the state of the controller. For such toy models
of quantum control see e.g., [9, 10]; Refs. [11, 12] discuss thermodynamic aspects of unidirectionality.
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system. Assume that the pulses are controlled by a computer program so that there
is no need for the experimentalist to intervene once the program runs. We can then
consider computer, Laser and the ions in the trap as a big physical system on which the
global dynamics of the world acts. Obviously, the computer software controlling this
process is just a physical state of the computer. However, here we want to go further
and also consider the presence or absence of the hardware of the experimental setup
merely as different states of a larger system (which implicitly refers to a field-theoretic
point of view). From such a perspective, there is no distinction between hardware and
software in the experimental setup and the whole control operation on the system to
be controlled (the ions) is implemented by changing the physical state of the system’s
environment.

Following, for instance, [13, 14, 15] we will consider cellular automata (CA) as in-
teresting models of the world and therefore study our problem in the context of CAs.
Our main focus (Section 2) will be on classical CAs since the problem seems to be
non-trivial even in the classical regime. Apart from describing possible definitions of
physical universality (Subsection 2.1), we discuss some relations between physical uni-
versality to ergodic properties of CAs in Subsection 2.2. Subsections 2.3 and 2.4 argues
why physically universal CAs are helpful for studying limits of control and thermody-
namic laws from a new perspective. Subsection 2.5 proposes a prior distribution for
physical states based on physically universal CAs. To this end, we consider an initial
state of the CA where half of the cells are set to zero and the other half are in the max-
imum entropy state (thus modelling a hot and a cold part of the universe). Section 3
briefly discusses physical universality for quantum CAs (Subsection 3) and physically
universal Hamiltonians as their continuous analog (Subsection 3.3), where controllabil-
ity also implies the ability to control the preparation of quantum superpositions by a
classical program. In the context of physically universal Hamiltonians, the terms “hot”
and “cold” part of the universe can be taken more literally because they really refer to
Gibbs states. This makes the physical interpretation of the prior more obvious.

The main contribution of this article is to raise the question of how to define the
right framework for a physical control theory that also treats the controller as an object
internal to the theory. In posing this question, the paper sketches the possible impact
of such a framework, but it will not present any deep results on cellular automata.

2 Physically universal classical cellular automata

2.1 Possible options for defining physical universality

We first introduce some terminology and notation for classical cellular automata (CAs).
Let L := Zd for some d ∈ N be a d-dimensional lattice and A be an alphabet of states
of a single cell (without loss of generality, let one of the symbols be “0”). The space of
pure states of the CA is given by

S := AL .

The space of mixed states is given by probability distributions on S. The maximally
mixed state (maximum entropy state) is given by the uniform distribution over S, i.e.,
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the infinite product of uniform distributions over A. For every state s ∈ S and every
subset R ⊂ L the restriction of s to R, denoted by s|R is defined by the substring
s′ ∈ AR corresponding to R. A region will be a subset R ∈ L. Usually, our regions will
be finite subsets unless we state the opposite.

By slightly abusing notation, we set

s|x := s|{x} ,

for any x ∈ L. A configuration of a region R is a string c ∈ AR. It defines, in a
straightforward way, the cylinder set

{s ∈ AL | s|R = c} ,

which will also be denoted by c whenever this causes no confusion. The entropy of R
in the mixed state ν is given by the Shannon entropy of the restriction of ν to R, i.e.,

S(ν|R) := −
∑
c∈AR

ν(c) log ν(c) .

The time evolution (αt)t∈Z of a CA is a group (by assuming the group property we
implicitly restrict the attention to reversible CAs) of translation covariant maps

αt : S → S ,

that is local in the sense that α±1(s)|x only depend on the state of the cells lying in
some neighborhood of x. Here we consider the Moore neighborhood of radius one, i.e.,
all cells y with ‖y − x‖∞ ≤ 1 [16].

By slightly overloading notation, we also write αt(c)|R if c ∈ AR′ is the configuration
of any region R′ that contains all cells relevant for determining the state of R at time
t (which is, for instance, the case if R′ contains the Moore neighborhood of R with
radius t). If a configuration c ∈ AR is defined via c := (c1, c2) with c1 ∈ AR1 and
c2 ∈ AR2 for R = R1 ∪R2, we write αt(c1, c2)|R instead of αt((c1, c2))|R.

The following definition formalizes the weakest form among all notions of physical
universality that we define. It is the ability to change the state of a region R by
initializing the complement of R in an appropriate way:

Definition 2 (conditional state preparation)
A CA is said to allow for conditional state preparation if for every region R ⊂ L and

every pair (ci, cf ) of initial and final configurations of R there exists a configuration
e ∈ AL\R and a time t ∈ N0 such that

αt(e, ci)|R = cf .

Less formally speaking, the dynamics prepares the final state cf ∈ AR after the time t,
given that the environment started in the state e and the region in the state ci.

Note that the state e can be chosen differently for every initial state ci. The following
notion of state preparation is stronger since it demands the existence of a state e that
works for every initial configuration ci:
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Definition 3 (unconditional state preparation)
A CA is said to allow for unconditional state preparation if for every finite subset
R ⊂ L of cells and configurations cf ∈ AR, there exists a configuration in e ∈ AL\R
and a time t ∈ N such that

αt(e, ci)|R = cf ,

for every configuration ci ∈ AR.
Less formally speaking, the dynamics prepares the state cf in the region R by ini-

tializing the complement of R to e, regardless of the initial state ci of R.

It seems that Definition 2 already formalizes a sufficiently strong property because one
could prepare the environment after having read out the initial state ci of the region
R. However, the entire process of readout and conditioning the initialization of the
complement of R on the state ci should also be implemented by the physical laws that
govern the dynamics of the world. Therefore, we consider the latter definition as the
better notion of universal state preparation. Nevertheless, the following example shows
that Definition 3 is a rather weak notion of universality since it is already satisfied by
a simple shift:

Example 1 (shift)
For x ∈ L let α1 be given by shifting the state by the vector x, i.e.,

α1(s)|i := s|i−x ∀s ∈ AL .

For some finite region R ⊂ Z, let cf ∈ AR be an arbitrary configuration. Then cf can
be prepared as follows. Choose some t0 such that

(R+ xt0) ∩R = ∅ .

Initialize the region R′ := R − xt0 to the translated copy of cf . Then the region R is
obviously in the configuration cf at time t0.

If d = 1 and x = 1, the dynamics shifts the state of each site by one. Then the
corresponding MDS is known as Bernoulli shift.

However, such a trivial model of dynamical evolution is unacceptable as a model
for universal control. One reason is that it lacks computation power. We could ask for
models that are computationally universal and allow for universal state preparation in
the sense of Definitions 2 or 3. Rather than postulating computational power a priori,
we prefer demanding that the model allows for non-trivial operations other than state
preparation. The following condition includes conditional state preparation and is
obviously not satisfied for the shift dynamics:

Definition 4 (universal implementation of bijections)
A CA is said to allow for universal implementation of bijections if for every finite

region R ⊂ L and every bijective map

π : AR → AR

there is a configuration e ∈ AL\R of the complement of R and a time t such that

αt(e, c)|R = π(c) ∀c ∈ AR .
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Note that the ability of implementing bijections implies the ability of implementing
measurements in the following sense: apart from a region R whose state should be
measured, define a region RM which serves as a measurement aparatus. One can then
implement a bijection π on R ∪ RM that chnages the state of RM depending on the
state of R.

One of the main goal of this paper is to formulate the following open problem:

Question 1 (existence of physically universal CA)
Is there a classical CA that is physically universal in the sense of Definition 4?

It is easy to see that non-bijective maps π can be implemented by restricting bijec-
tions to smaller regions. For this reason, the bijectivity assumption in Definition 4 is
irrelevant and it is a matter of taste whether one wants to keep it in the definition.

In case the answer to this question is negative, one should try to find a weaker sense
of universal controllability. An affirmative answer, on the other hand, raises further
questions since physically universal CAs are good candidates for studying thermody-
namic cost of computation and (quantum) control from a new perspective. Some ideas
on that will be presented in Subsection 2.4.

We will not formulate any conjecture regarding the solution of Question 1, but
Subsection 2.3 will show that the controllability of the controller of a system imposes
limitations on the controllability of the system itself.

2.2 Some relations between physical universality and er-
godic properties

We want to discuss relations between physical universality and ergodicity of dynamical
systems. To this end, we introduce the following terminology [17]:

Definition 5 (measure-preserving dynamical systems (MDS))
Let (Ω,Σ, µ) be a measure space where Ω is a set, Σ the σ-algebra of measurable subsets
of Ω and µ a measure with µ(Ω) < ∞. Let φ : Ω → Ω be a measurable map with
µ(φ−1(B)) = µ(B) for every measurable set B. Then (Ω,Σ, µ, φ) is called a measure-
preserving dynamical system (MDS).

Then we have:

Lemma 1 (CA is an MDS)
Every reversible CA as defined above is a measure-preserving dynamical system where
Ω := S, Σ is generated by the set of cylinder sets, µ is the product of uniform probability
distributions on A and φ := α1.

Proof: µ(α−1
1 (B)) = µ(B) can easily be checked for every cylinder set B. Since the lat-

ter ones generate the entire sigma algebra of measurable sets, conservation of measure
follows.�

The following terminology will be useful [18, 17]:
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Definition 6 (ergodicity)
An MDS is called ergodic if φ−1(B) ∼= B implies B ∼= Ω or B ∼= ∅ for all B ∈ Σ, where
∼= denotes equality up to sets of measure zero. Equivalently, φ−1(B) ∼= B can also be
replaced with φ−1(B) ⊆ B or φ−1(B) ⊇ B (up to sets of measure zero).

We will also need another equivalent formulations of ergodicity [18]:

Lemma 2 (different characterization of ergodicity)
An MDS is ergodic if and only if for every B,D ∈ Σ there is an t ∈ N such that

φ−t(B) ∩D 6∼= ∅ .

Then we have:

Theorem 1 (state preparation in ergodic CAs)
If a CA is an ergodic MDS, it allows for conditional state preparation in the sense of
Definition 2.

Proof: Let Bi ⊂ S and Bf ⊂ S be the cylinder sets corresponding to the initial and
the final configuration ci and cf of R, respectively. Then there is a t such that

α−1
t (Bf ) ∩Bi 6∼= ∅ .

Choose c ∈ α−1
t (Bf ) ∩Bi. Since c is an element of Bi, it is of the form c = (e, ci). On

the other hand, αt(e, ci)|R = cf because c ∈ α−1
t (Bf ). �

Ergodicity of CAs has already been studied in the literature4 [20, 21], but the fact
that the Bernoulli shift (Example 1) is ergodic [17] shows that even ergodicity does not
imply physical universality in the sense of Definition 4.

2.3 Limits of controllability

Being able to prepare a certain state, one may also wish to keep it at least for some
time. In the context of quantum information processing, for instance, it is considered
as an important problem to prevent a quantum state from decaying too quickly (where
decay can be understood in the sense of both decoherence or relaxation). To ensure this,
one tries to isolate the system as much as possible from influences of the environment.
On the other hand, implementing control operations requires interactions with the
environment. We expect that this conflict between protecting the state by isolating
the system and nevertheless still being able to access it, can be nicely explored in the
setting of physically universal CAs. Then, isolating the system only means to prepare
the environment into a state that effectively turns off the interaction. The question
of whether this conflict implies serious restrictions to physical universality will mainly
be unanswered, but we mention some small observations that may suggest a future
direction for research. The following statement, for instance, is almost obvious, but
we phrase it as a theorem because it shows that too strong controllability assumptions
are self-contradictory:

4Note that [19] studies ergodic quantum CAs, but not in the sense of MDS. Instead, ergodicity is meant
in the sense of a topological dynamics having a unique invariant state.
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Theorem 2 (some configurations are unstable)
Let R be a region that includes at least the Moore neighborhood of one cell x. Let αt be
physically universal in the sense of Definition 2, then there is a configuration c ∈ AR
such that

α1(e, c)|R 6= c ∀e ∈ AL\R .

Proof: If the dynamics of the CA is non-trivial (which is certainly the case for physically
universal CAs) there must be a configuration c ∈ AR such that

α1(c)|x 6= c|x .

Hence,
α1(e, c)|x 6= cx

for all e ∈ AL\R. �

The following result is only slightly less straightforward, but it already illustrates how
controllability of the controller of a region R restricts the controllability of R:

Theorem 3 (no configuration lasts forever)
Given a CA that is physically universal in the sense of Definition 4, then it is impossible

that there exists initial and final configurations ci, cf ∈ AR, a finite “program” region
Rp with initialization cp, and a time t0 ∈ N such that

αt(ci, cp)|R = cf ∀t ≥ t0 . (1)

Proof: Assume that (1) is satisfied. Set R′ := R ∪ Rp and choose a vector x ∈ L such
that (R′+x)∩R′ = ∅ and that ‖x‖∞ ≥ t0. Let β be the transformation on R′∪(R′+x)
that swaps the state between R′ and R′ + x. By physical universality in the sense of
Definition 4, there is a configuration of the complement of R′ ∪ (R′ + x) such that αt1
implements β for some t1. After the implementation of β, the region R is only in the
state cf if the initial state of the region R+ x has been the shifted copy of cf . Hence,
t1 must be smaller than t0 since (1) states that the state of R is cf regardless of the
state of R′ + x (note that R′ + x is part of the complement of Rp by assumption and
its state is thus irrelevant for (1)). On the other hand, the implementation of the swap
β requires at least the time t0 since the information can propagate one cell per time
step only, which leads to a contradiction. �

Theorem 3 shows that initializing a finite region can never prepare a state that lasts
forever. If possible at all, it requires an infinite region. To show more powerful results
about control tasks that are self-contradictory has to be left to the future (in this
context it may also be worth mentioning Ref. [22] which describes some impossibility
results for inference tasks instead of control tasks within a computation model of the
world and relate them to the Halting problem).

9



2.4 Space and energy requirements of computations and
control operations

In this section we want to mention some potential implications for the resource re-
quirements of computation processes, given that physically universal CAs define a
reasonable model of the world. Even though we have proved only a few results on
this, the following high-level arguments motivate why physically universal CAs shed a
different light on thermodynamics.

1. The thermodynamic cost of isolating systems: the difficulty of isolating physi-
cal objects from its environment is one of the main obstacles in controlling mi-
crophysics. In usual quantum control, this appears more or less as a practical
problem and the question is how to turn off the disturbing interactions. Physical
universality, however, implies that the system is never isolated and that only ap-
propriate states of the environment ensure that the system behaves for some time
period as if it would be isolated. The fact that, in turn, also the environment of
the system is permanently coupled to its environment (by physical universality)
implies that this “isolating state” is perturbed after a while. Preparing the envi-
ronment into a state that effectively isolates the system for a long time, probably
requires a lot of thermodynamic resources. To discuss these costs, one proba-
bly needs a model where all interactions are permanently present and cannot be
turned on and off by the experimentalist. Within the framework of physically uni-
versal CAs it is not only possible to address the requirements of extracting heat
from a system [23] but also of preventing the heat from reentering the system.

2. Thermodynamic reversibility: It is commonly assumed that the implementation
of a bijective transformation of the states of a microscopic system is thermody-
namically reversible. The fact that the experimental setup controlling the imple-
mentation generates a lot of heat is usually considered as a problem of current
technology rather than being a fundamental law of physics. Physically universal
CAs provide a model that makes it possible to explore how the controller (i.e.,
the region Rp around the region R to be controlled) changes its state during this
implementation. From the point of view of traditional thermodynamics, this state
transition is again reversible if it is a bijection of the state space of a microsystem.
However, inverting this bijection will then change the state of the environment
around Rp. Then, the question of thermodynamic reversibility leads, again, to
our infinite sequence of meta-controllers. We will not present any solution to this
deep problem. We only emphasize that the existence of thermodynamic reversible
processes is challenged by the ideas above.

3. Space and energy requirements of computation: In complexity theory, the space
requirements of a computation is defined as the size of the memory band of a
Turing machine that is written on during the computation process. The com-
plexity class PSPACE, for instance, is defined as the class of problems whose
space requirements increase only polynomial in the size of the input string [24].
It is known [25] that appropriate CAs can simulate a universal Turing machine
efficiently with respect to both space and time resources.
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In our context, we want to redefine the space requirements of a computation in a
way that is motivated by ideas from thermodynamics: we do not only count those
cells of the CA that are actively involved in the computation in the sense that
their state changes during the process. Instead, we count all cells whose state
matters. In the simplest case, it may be necessary to set a large set of cells to
some fixed symbol (e.g. to zero) to avoid that these cells disturb the computation
by influencing the cells involved in the computation. From a purely computer
scientific point of view, it is natural to study the resources of computation within
a setting where all the sites are set to zero except for those involved in the
computation. In our physical model, however, this would correspond to cooling all
cells down to zero temperature, which requires infinite thermodynamic resources.
We assume that we can only extract the entropy of a finite region and use this
free memory space for the computation. In a physically universal CA, we then
get the problem that this region can never remain free of entropy because the
interaction that guarantees universality necessarily transfers entropy into the free
memory space.

The discussion below tries to support the vague statements above by formal ar-
guments. We will not always distinguish between computation processes and other
control processes.5. The following theorem is actually a simple observation, but we
phrase it as a theorem because it confirms the last sentence of item 3 above:

Theorem 4 (lower bound on entropy influx)
Let R be an arbitrary region and ν be a probability distribution on S whose restriction
to L\R is the uniform distribution. Let the CA be universal in the sense of Definition 4
and x be some vector such that R ∩ (R + x) = ∅. If Rp denotes a region such that for
some cp ∈ ARp the state c of R is transferred to R+ x, i.e.,

αt(cp, c)|R+x = c ∀c ∈ AR ,

for some appropriate t, then the entropy of R after the time t is at least

S((ν ◦ αt)|R) ≥ |R|
|A||Rp|

log |A| .

Proof: For νt := ν ◦ αt we consider the conditional distribution given α−1
t (cp). Its

restriction to R is the uniform distribution because the initial state cp triggers the
implementation of the swap between R + x and R. The entropy of the uniform dis-
tribution on R reads |R| log |A|. Since Rp is initially also in the maximum entropy
mixture, the probability for being in the state cp is |A|−|Rp|. Weighting the entropy
|R| log |A| with this factor yields the desired bound. �

The theorem shows a trade-off between being able to implement bijections and being
able to isolate a region: if β can be easily implemented on R∪(R+x) (i.e., by initializing
a small region Rp) then R ∪ (R + x) is badly isolated because we get large entropy

5On the elementary level of nature, thermodynamic and computation processes are closely related, anyway
[26]

11



influx. Note that no such statement holds for computationally universal CAs since
they could have a “death state” that remains forever and turns off all interactions with
the surrounding cells. A boundary with dead cells could then prevent the memory
space from getting entropy from its environment. In a physically universal CA, the
environment is always able to “revitalize” the “dead cells”. It is possible that in
physically universal CAs, the region that needs to be initialized to enable a computation
process grows proportionally with the computation time. Loosely speaking, the size of
the region that needs to be initialized is related to the amount of free energy that must
be available in order to run the computation properly. This is because Landauer’s
principle [27, 28, 23] states that it requires the energy E = kT ln 2 to initialize one
bit. From a more accurate point of view, however, we have to account for the fact
that the region that we must initialize not necessarily needs to be prepared to one
specific configuration. Instead, it could be that there is a whole set of configurations
that ensure that the desired computation process works properly. This corresponds to
a smaller amount of free energy. The following definition formalizes the free energy
content of configurations:

Definition 7 (free energy of a set of configurations)
Let B ⊂ AL be a set of configurations and µ be the uniform distribution on S (which

is defined via the product of uniform distributions on each A). Then

F (B) = − log2 µ(B)

is the free energy required to ensure that the world is in a state s ∈ B.

The definition is motivated by the following interpretation of probability distributions.
The mixed state µ, which is the uniform distribution over all configuration, is thought
to be the thermodynamic equilibrium of the world, i.e., the analog of the Gibbs state.
We define its free energy to be zero. In physics, the free energy of a mixed state is,
up to the factor kT , given by its relative entropy distance from thermal equilibrium
[29]. Here, mixed states are probability distributions on AL and the free energy is thus
(up to constants that we ignore for sake of convenience) given by the relative entropy
distance from µ, i.e.,

F (µ̃) := D(µ̃||µ) .

If µ̃ is any distribution with support B, the relative entropy distance to µ is minimal
if µ̃ is the uniform distribution on B. One checks easily that

D(µ̃||µ) = − log2 µ(B) .

Within this setting, we can easily define the free energy needed for a preparation
process:

Definition 8 (free energy required for a preparation process)
Assume a region is in the state ci ∈ AR and we want it to be in the state cf at time t.
Interpreting ci and cf as cylinder sets, the state of the lattice s ∈ AL\R must be chosen
such that

s ∈ ci ∩ α−1
t (cf ) ,
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where the right hand side interprets ci and cf as sets (as defined previously).
Then,

F (ci 7→ cf ) := − logµ(ci ∩ α−1
t (cf ))

is the free energy needed to implement the preparation process ci 7→ cf after the time t.

Note that this definition includes the free energy content of ci which is given by
|R| log2 |A|, since ci is one configuration in a set of |A||R| possible ones.

We also define the free energy required for a computation process:

Definition 9 (energy requirements for computation)
Assume that the physical universal CA is only able to perform a desired computation
process C if the state s of the world lies in the set B ⊂ AL. Then

F (B) := − logµ(B)

is the free energy required for C.

We will not elaborate on this any further, but consider the thermodynamic costs of
implementing sequences of state transitions on some region R since this task is easier to
address than computation tasks. Consider the following sequence of state transitions

c0
t17→ c1

t27→ c1 · · ·
tn7→ cn ,

and define the corresponding free energy resource requirements by

− logµ
(
c0 ∩ α−1

t1
(c1) ∩ α−1

t1+t2
(c2) ∩ · · · ∩ α−1

t1+···+tn(cn)
)
.

An interesting special instance is to implement k cycles

c1 7→ c2 7→ · · · 7→ cn︸ ︷︷ ︸
1th cycle

7→ c1 7→ c2 · · · cn︸ ︷︷ ︸
2nd cycle

· · · , (2)

where the transition from ci and ci+1 and from cn to c1 is implemented by one time
step of the CA. We do not know whether physically universal CAs also allow for the
implementation of arbitrarily many cycles of this form, but given that they do, we have
the following statement for ergodic CAs:

Theorem 5 (cost of implementing repeated cycle processes)
Let c1, . . . , cn be configurations of a region R such that

n⋃
j=1

cj 6= AR . (3)

Then, in an ergodic CA, the cost of implementing k cycles of the form (2) converges
to infinity for k →∞.
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Proof: define B :=
⋃n
j=1 cj and

D :=
k⋂
j=1

α−1
k (B) .

Clearly,
α1(D) ⊂ D . (4)

Due to eq. (3), we have µ(D) 6= 1. Since α1 is ergodic, all sets satisfying the invariance
condition (4) have measure zero or one, hence µ(D) = 0. Due to

lim
k→∞

µ

 k⋂
j=1

αj(B)

 = µ(D) = 0 ,

the statement follows. �.
A weaker task than implementing a cycle is to periodically restore the same config-

uration c again and again after τ time steps, without specifying what happens between
the τ steps:

c
τ7→ c

τ7→ c
τ7→ · · · .

According to Definition 7, the free energy requirements are given by

− logµ
( n⋂
j=0

α−1
jτ (c)

)
. (5)

To derive statements on the resources needed, we first recall the following mixing
property (see [18], page 38), which is known to imply ergodicity [18, 17]:

Definition 10 (weakly mixing MDS)
An MDS is called weakly mixing if

lim
n→∞

1

n

n−1∑
j=0

µ
(
φ−j(B) ∩D

)
= µ(B)µ(D) ,

for all measurable sets B,D.

The following result of ergodic theory (Corollary 14.15 in [17]) will be helpful:

Lemma 3 (mixing of all orders)
Every weakly mixing MDS is weakly mixing of all orders in the sense that

lim
n→∞

1

n

n−1∑
n=0

µ
(
B0 ∩ φ−n(B1) ∩ φ−2n(B2) ∩ · · · ∩ φ−(k−1)n(Bk−1)

)
= µ(B0) · · ·µ(Bk−1) ,

(6)
for all k ∈ N and every B0, . . . , Bk−1 ∈ Σ.

We apply this result to our setting and obtain:
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Theorem 6 (cost of restoring states in weakly mixing CAs)
Let the CA be weakly mixing and assume that there is a configuration c ∈ AR for

which it is possible to implement the following k-fold recurrence

c
τ7→ c

τ7→ c 7→ · · · τ7→ c︸ ︷︷ ︸
k

,

for all τ ≥ τ0 for some τ0 ∈ N. Let Fk(τ) be the free energy required for implementing
this process. Define the average free energy requirements over all τ ≥ τ0 by

F̄k := lim inf
τ1→∞

1

τ1 − τ0 + 1

τ1∑
τ=τ0

Fk(τ) . (7)

Then it satisfies the lower bound

F̄k ≥ −k log2 µ(c) .

Proof: According to Definition 7, Fk(τ) reads

Fk(τ) := − log2 µ

k−1⋂
j=0

α−1
jτ (c)

 .

Hence,

F̄k := − lim inf
τ1→∞

1

τ1 − τ0 + 1

τ1∑
τ=τ0

log2 µ

k−1⋂
j=0

α−1
jτ (c)

 .

The convexity of the logarithm implies

F̄k ≥ log2 lim
τ1→∞

1

τ1 − τ0 + 1

τ1∑
τ=τ0

µ

k−1⋂
j=0

α−1
jτ (c)

 = − log2 µ(c)k = −k log2 µ(c) ,

where the second last equality uses eq. (6). �

Theorem 6 states that the cost of repeatedly restoring the same state k times (after
τ time steps) grows linearly in k when averaged over all τ . The physical relevance
of this statement is speculative for two reasons. First, we do not know whether the
appropriate mixing properties follow from physical universality. Second, it is unclear
whether the assumption that the sequence of state transitions can be implemented for
all τ ≥ τ0 is reasonable. We will therefore formulate another open problem:

Question 2 (thermodynamic cost of cycles)
Given any desired configuration c, how does the free energy (5) of restoring it again
and again grow with the number k of cycles?

In case the energy grows at least linearly in k for physically realistic models, this
would suggest that implementing cycles on microscopic systems involves an experi-
mental setup whose energy content grows linearly in the number of cycles. On the
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one hand, the energy content does not seem to be used up, since it just needs to be
available. On the other hand, this amount of energy cannot be used to implement the
next cycles because, if reusing the energy was possible, the amount of energy that needs
to be present would not grow linearly in k. Note that the above ergodic theory based
framework avoids exploring the thermodynamic cost of an infinite sequence of con-
trollers and meta-controllers as sketched in item 2 at the beginning of this subsection
because the universal CA describes the whole hierarchy of controllers simultaneously.

2.5 Towards a physical analog of Kolmogorov complexity
and Solomonoff’s prior

Several authors have already pointed out the physical relevance of algorithmic infor-
mation (“Kolmogorov complexity”), e.g., [30, 31]. For any binary string {0, 1}∗, the
algorithmic information K(s) is defined by the length of the shortest program on a
universal prefix Turing machine that outputs s and halts then [32, 33, 34].

The thermodynamic relevance of Kolmogorov complexity has, for instance, been
emphasized in [35, 30, 36], its importance for statistical inference has already been de-
scribed by Solmonoff [33], and also the foundation of modern machine learning method-
ology often refer to Kolmogorov complexity, e.g. [37, 38]. Recently, [39, 40, 41] pos-
tulated causal inference rules that also use algorithmic information. A crucial concept
for algorithmic information based inference is Solomonoff’s prior:

Definition 11 (Solomonoff’s prior)
Given a universal Turing machine T with prefix coding. Then, for any binary string
s ∈ {0, 1}∗, one defines m(s) by the probability that T produces the output s and stops
after every bit of the infinite input tape has been randomly set to 0 or 1 with probability
1/2 each.

Note that these random programs do not contain any additional symbol that indi-
cates the end of the program code. Since the Turing machine uses prefix coding, no
valid program is the prefix of another one. For this reason, the uniform distribution
over all binary words (defined by the infinite product of uniform distributions on {0, 1})
automatically defines a distribution on the set of valid programs.

Even though Solmonoff’s prior has shown to be a powerful concept for the foun-
dation of inference, the following modifications may be appropriate for a prior on the
states of the physical world:

1. Symmetries: What prior probability should, for instance, be assigned to the event
that a next lightening hits the earth at a longitude of 0o (up to an error of ε)?
There is no reason why it should be larger than the probability of hitting the
earth at 24.35219o, because nature does not care about whether the numerical
value of the location can be computed by a short program. The physical laws
that govern lightening fulfill some symmetries that should be respected by our
prior. To construct a prior that accounts for these symmetries and still captures
the aspect of description length, we propose to use a computation model that is
inherently symmetric with respect to some transformations.
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2. Complexity of isolating systems: According to Solomonoff’s prior, any state hav-
ing a short program as description is likely to occur in nature, no matter whether
the running time is large or not and no matter how robust the output is with
respect to perturbing the state of the Turing machine during the computation.
Physical prior probability should also account for the robustness of the computa-
tion process since no system is perfectly isolated from its environment. Physically
universal CAs are good models to take this into account because the coupling be-
tween system and its environment is always present by definition.

We now define a prior via a physically universal CA. A naive analog of randomizing
the input of the Turing machine would be to initialize the CA to the uniform distri-
bution over all pure states and then applying the dynamics αt, yields a trivial prior
for every t since our bijective dynamics preserves the uniform distribution. We want
to define a prior that gives higher probability to simple patterns like 0R (all cells in R
are in the state 0). It will therefore be based on the following initial state:

Definition 12 (initial state of the universe)
Let L = L+ ∪ L− be a partition of the lattice into two infinite subsets (L+ could, for

instance, be all cells with x1 > 0). Define a probability measure Q by setting all sites
in L− to zero and choosing the uniform distribution on AL+ (i.e. for every site in L+,
a symbol is chosen independently with probability 1/|A| each).

We consider L+ and L− as hot and cold parts of the world, respectively. Then, inter-
esting structure can only start growing at the boundary between hot and cold regions.
This accounts for the fact that life requires thermal non-equilibrium, which is most
naturally provided by temperature gradients.

Such a state ensures the availability of an infinite amount of free memory space.
– A similar convention would also be required for Solomonoff’s prior if it was defined
with respect to a reversible Turing machine [42]. Then one would also need to provide
free memory space for free in order to ensure that the string 0k obtains a higher prior
probability than a typical k-bit string. We now define:

Definition 13 (physical prior)
For every time t ∈ N, let Pt be the probability distribution on S that is obtained by

applying αt to the initial mixed state Q, as given by Definition 12.

Let us discuss some properties of Pt. As opposed to Solmonoff’s prior, it depends
on t. This is because the Turing machine stops for appropriate inputs whereas the
dynamics of our CA does not. It is not clear whether one should consider this as a
feature rather than as a drawback of our definition – one may argue that in the early
stage of the universe other states were more likely than today and others were less
likely. Note, however, that

P (c) ∝
∑
t∈N0

Pt(c)2
−K(t)

would be an option to define a time-independent prior. To elaborate on this goes
beyond the scope of this paper, but the additional term K(t) will also appear in our
definition of physical complexity below.
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Figure 1: The prior probability of the configuration on the left is the same as for its shifted
copy (middle) and its rotated copy (right) provided that these transformations preserve the
partition into L+ and L−. For instance, if L+ is the set with x1 > 0, then it is allowed to
shift along the x1 = 0 axis. In a lattice with d ≥ 3, there are also rotations that preserve
the axis.

A second feature of Pt is that the prior probability of a configuration (and also
the physical complexity that we define below) depends on its location on the lattice:
creating a cold region in the middle of the hot region involves much more sophisticated
initialization than creating it close to the boundary to the cold region. In the former
case, the entropy of the hot region needs to be transported over a long way to the cold
region.

Recalling our motivation for defining a prior different from Solomonoff’s, we note
that Pt indeed respects some of the symmetries of physical laws. Consider, for some
time t, the probability Pt of the pattern in Fig. 1, left, consisting of symbols 1 and 0.
The empty squares indicate cells whose value is unspecified. Fig. 1, middle, and right,
show shifted and rotated copies of the same pattern, respectively. If the shift and the
rotation are chosen such that they leave L± invariant, then Pt is obviously the same
for these copies.

To discuss item 2 in the above list of desired modifications, we assume that the
generation of some c requires only a short program on a Turing machine but one needs
to initiale a large region Rp to generate it on a physically universal CA. One reason
could be that it involves a long and fragile computation process which only outputs
the correct result if a large environment is correctly initialized. Then Pt(c) would be
small for all t.

In the spirit of Solmonoff’s prior, we would like to ensure that every c ∈ AR (for
an arbitrary finite region R) gets non-zero probability for some t ∈ N0. Note that the
maximally mixed state on L+ can be interpreted as a mixture over “random programs”,
and it is not clear whether programs on L+ are sufficient for preparing any desired
configuration (also on L−). It could be that this defines an even stronger kind of
physical universality. This problem will also be left open.

To define a physical analog of Kolmogorov complexity we first discuss why the
following straightforward definition is inappropriate for our purposes: For any c ∈ AR
one could define the complexity of c as the size of the region Rp for which there is a
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state cp ∈ ARp such that

∃t ∈ N0 αt(cp, e)|R = c ∀e ∈ AR .

Then the complexity of c is at least |R| because αt is a bijection. We want to define
complexity of a state in such a way that simple patterns like 0R have low complexity.
Unfortunately, we are not able to show that this will be the case for the complexity
measure below, but there is at least no obvious argument why it cannot be (as opposed
to the above measure). The decisive assumption that we make is that Rp must be
contained in L+. This is in agreement with the fact that our “random programs” that
define Pt are contained in L+ while L− only contains free memory space.

Even though we must leave it open, whether every configuration can be prepared
by programs in L+ (see also the remarks above regarding the physical prior), we now
define the “program size complexity”, but we phrase it more general and define the
complexity of processes other that state preparation:

Definition 14 (physical complexity)
Let R be some region and

M : AR → AR

be an arbitrary map. The physical complexity of M is defined by the minimum

C(M) := min{|RM | log2 |A|+K(t)} ,

where the minimum is taken over all t ∈ N and all regions RM and initializations
ci ∈ SRM for which

αt(cM , ci)|RM
= M(ci) .

The physical complexity C(c) of a configuration c is defined by the complexity of the
map M with M(ci) = c for all ci ∈ AR.

The additional term K(t) will later be needed to ensure that our complexity measure
satisfies Kraft’s inequality. A more intuitive justification may be that the time pa-
rameter must be provided as external information. Since there is probably no finite
initialization that prepares a state and keeps it forever, we must been told when the de-
sired state is present or the desired transformation is performed. The following relation
between physical complexity and the physical prior is almost obvious:

Lemma 4 (lower bound on physical complexity)

C(c) ≥ min
t∈N0

{− log2 Pt(c) +K(t)} . (8)

Proof: By definition of the physical prior,

Pt(c) ≥ |A|−|Rp| , (9)

for all cp that prepare c after the time t. By definition of physical complexity,

C(c) = min
t∈N0

min
cp
{|Rp| log2 |A|+K(t)} ,
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where the minimum is taken over all cp that prepare c after the time t. Using (9) we
obtain

C(c) ≥ min
t∈N0

{− log2 Pt(c) +K(t)} . (10)

�
Rather than having inequality (8) only one may wish to show a tighter link between

the physical prior and physical complexity – in analogy to the tight connection between
Solomonoff’s prior and Kolmogorov complexity [43]:

Theorem 7 (Coding Theorem of Levin)

− logm(s) = K(s) +O(1) ,

where O(1) means that the error can be bounded by a constant that depends on the
Turing machine, but does not depend on s.

Hence, m(s) ≈ 2−K(s) up to a multiplicative term that is bounded by some constant.
For this reason, tighter connections between the physical prior and physical complexity
are desirable.

The following theorem describes a mathematical property of physical complexity
that it shares with Kolmogorov complexity:

Theorem 8 (Kraft’s inequality)
Let U be a set of mutually exclusive configurations of arbitrary size. Then, physical

complexity satisfies ∑
c∈U

2−C(c) ≤ 1 .

Proof: Let tc be the time that minimizes the right hand side of (10), hence

C(c) ≥ − log2 Ptc(c) +K(tc) .

We conclude ∑
c∈U

2−C(c) ≤
∑
c∈U

Ptc(c)2
−K(tc)

≤
∑
t∈N0

∑
c∈U

Pt(c)2
−K(t)

≤
∑
t∈N0

2−K(t) ≤ 1 ,

where the second last inequality holds because the configurations are mutually exclusive
and the last step uses the usual Kraft inequality for Kolmogorov complexity. �

The fact that Kolmogorov complexity satisfies Kraft’s inequality (which was not
the case in Kolmogorov’s version since he did not use prefix codes) made it possible to
renormalize it to a probability distribution on strings, yielding Solomonoff’s prior.

Although a better understanding of our notion of physical complexity has to be left
to the future, it is, by construction, clear that it takes into account whether running a
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process requires to adjust a large part of the environment – even though the process may
be simple from the point of view of algorithmic information. Such a strong disagreement
between Kolmogorov complexity and physical complexity occurs e.g. if Rp is large but
cp mainly consists of zeros, or some other algorithmically simple pattern. If a physical
process requires, for instance, cooling a large region (e.g. setting many cells to zero)
around the system this could formally appear as large physical complexity.

3 Physical universality in the quantum world

3.1 Informal description of some differences to the classi-
cal case

The main question that arises when we translate the notion of universal state prepa-
ration into the quantum world is whether the configuration of the environment is sup-
posed to be a basis state. In other words, we ask whether the preparation of general
quantum superposition should be reducible to the preparation of basis states in the
environment.

On the one hand, it seems to be artificial to select a certain subset of states as
being more fundamental than others. On the other hand, the following model suggests
that basis states should be sufficient: we could think of the basis states as states in the
register of a classical processor that controls a quantum preparation machine. Then
the register is the region that we act on by changing its classical state only.

3.2 Defining the problem

To formally define quantum CAs, we assume that every site x ∈ L contains a quantum
system with Hilbert space H := Ca, where a := |A| and the basis vectors |j〉 are
labelled by symbols j ∈ A. The Hilbert space of a region R is then given by the tensor
product of copies of H, but to avoid problems with infinite tensor products we follow
[44] and use an operator algebraic framework [45, 46]: Let every site x be described by
a copy of the same matrix algebra Ax of a× a matrices. The self-adjoint part of Ax is
interpreted as the observables corresponding to cite x. For every finite set Λ ∈ L, let
AΛ be the tensor product

AΛ :=
⊗
x∈Λ

Ax .

For Λ ⊂ Λ′, AΛ is considered as subalgebra of AΛ′ in a canonical way by adding the
tensor product of an appropriate number of a× a identity matrices. For every infinite
set Λ, we define AΛ as the C∗-completion over the union of algebras of finite regions
AΛf

. This defines the C∗-algebra AL which contains all local algebras6.
The set S(AL) of states is the set of positive linear functionals φ : AL → C with

φ(1) = 1. The state space S(AL) is a convex set whose extreme points are called pure
states, this definition generalizes density operators of rank one to the infinite system.

6the “quasi-local” algebra [45]
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A pure state φ is said to be a basis state on a region R if it is given by

φ(a) = tr(ρa) ∀a ∈ AR ,

where ρ is a diagonal matrix with diagonal (0, . . . , 0, 1, 0, . . . , 0). A pure state is said
to be a (global) basis state if its restriction to every finite region is a basis state.

It is convenient to describe the dynamics in the Heisenberg picture, it is then given
by a group (αt) of C∗-automorphisms of AL satisfying the following locality condition:

φ(Ax) ∈ AR ,

for every region R that contains the Moore neighborhood of x with radius one. The
dynamics transfers the state φ into φ ◦ αt. For any observable a ∈ AR for which
αt(a) ∈ AR′ for some region R′, the value (φ ◦ αt)(a) is already determined by the
restriction of φ to R′. Therefore, (ρ ◦ αt)(a) is also a well-defined expression if ρ is a
state on AR′ .

The following notion of physical universality can be seen as a quantum analog of
Definition 2 to the quantum world. As opposed to the set of classical configurations of
a finite region, the set of pure states is (uncountably) infinite. On the other hand, the
set of basis states of a region Rp is finite and the ste of all basis states of the whole
lattice still is countable, we cannot prepare all states on R exactly but at most up to
any desired accuracy:

Definition 15 (conditional quantum state preparation)
A quantum CA is said to allow for conditional state preparation if for every pair of

states (ρi, ρf ) ∈ S(AR) × S(AR) of a region R and every ε > 0 there is a basis state
γ ∈ S(AL\R) of the complement and a time t such that

|(γ ⊗ ρi) ◦ αt(a)− ρf (a)| ≤ ε‖a‖ ∀a ∈ AR ,

where ‖.‖ denotes the operator norm.

It is important to note that the program state γ is a basis state, i.e., the program
is classical software. As opposed to the classical case, this notion of universality is not
satisfied by the “trivial” CA that only shifts the state. Instead, it includes problems
like how to prepare sophisticated multi-particle entanglement using a given interaction
via preparing the environment to basis states. We thus formulate the following open
problem:

Question 3 (physically universal quantum CA)
Is there a quantum CA that is physically universal in the sense of Definition 15?

We will not translate Definitions 3 and 4 to the quantum setting since even our
“weak” form of universality is not obvious to exist for quantum CAs.
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3.3 Physically universal Hamiltonians

To account for the fact that time evolutions are actually continuous, we may want
to switch from CAs to Hamiltonians. In the literature there exists a large number of
translation invariant finite range Hamiltonians on lattices that are universal for quan-
tum computing, e.g., [47, 48, 49, 50], but physical universality has not been considered.
A characteristic feature of many constructions for computational universal Hamilto-
nians is the separation between a “program region” and a “data region” where the
former controls the operations performed on the latter. Physical universality would
imply that we are also able to operate on the program region, which could require an
infinite hierarchy of program regions. To formally define physical universality, we can
straightforwardly adapt Definition 15 by replacing the group (αt)t∈Z with the contin-
uous version (αt)t∈R. To properly state what it means that a dynamics of an infinite
lattice is given by a finite range translation invariant Hamiltonian we consider an op-
erator h ∈ AR for some region R and define for every vector x ∈ Zd, the shifted copy
of h by τx(h). Then it is known that the differential equation

d

dt
αt(a) = i

∑
x∈Zd

τx(h), a

 (11)

defines uniquely a group of C∗-automorphisms [46]. Definition 15 and, correspondingly,
Question 3 then straightforwardly translate to the group αt defined by (11).

The considerations on the thermodynamic costs change more significantly because
we replace the maximum entropy state by the state of minimum free energy, i.e., the
Gibbs state (for defining thermal equilibrium states for infinite lattices see [46]), which
ensures that we are getting closer to real physics. We may then even allow for lattices
having an infinite dimensional algebra at each site. We also want to translate the
physical prior and the physical complexity in Subsection 2.5. Now, the notion of hot
and cold parts is taken more literally than above since the definition of Hamiltonians
allows us to defined thermal states for temperatures other than T = 0 and T = ∞.
Thermal equilibrium states on infinite quantum lattice systems can be defined via
limits of Gibbs states for finite regions [46] (we do not care about the potential non-
uniqueness of limit points here). We restrict these states of the infinite lattice to L+

and L−, respectively and “glue” them together to define our initial state:

Definition 16 (initial state of the universe)
Let φT : AL → C be Gibbs states for temperature T on the entire lattice. For some
T2 > T1 > 0, let φ+ be the restriction of φT2 to AL+ and φ− the restriction of φT1 to
AL−. Then we define the “initial state of the universe” by

φ := φ+ ⊗ φ− .

Definition 17 (physical prior for Hamiltonian systems)
For every t we define the mixed state

φt := φ ◦ αt .
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Let |ψ〉 be the state vector of some pure state on AR. Then

φt(|ψ〉〈ψ|)

is the probability for obtaining the state |ψ〉〈ψ| after the time t when measuring a non-
degenerate self-adjoint operator that contains |ψ〉 as one of its eigenvectors.

In the spirit of Solomonoff’s prior, we would like to give higher prior to states that
are simple in an intuitive sense than to complex ones. For instance, we would consider
the basis state |0〉〈0|R (i.e., all cells in the region R are in the state |0〉〈0|) as simple.
It is possible that a small program makes the Hamiltonian dynamics generating free
memory space via using the temperature gradient. This is at least not forbidden by
any obvious thermodynamic laws. Thermodynamics also allows for processes that use
the existing temperature gradient to either lower the temperature of some region in
L− (refrigerator driven by a heat engine, see also [23]) or increase the temperature of
L+ even further. The size of the program required to make αt implementing such a
process would then be the physical complexity of the process. This is only meant to be
one of many examples how physically universal CAs define the complexity of physical
processes, no matter whether they are computation processes or not.

An interesting modification of the above would be given by replacing the lattice
with a field-theoretic model, where nets of subalgebras AΛ are assigned to regions in
Rd [51] and define physical universality for a field theory. As opposed to the discrete
model, this would allow for the definition of an even “more physical” prior that is
invariant under the full Lorentz group.

4 Conclusions

The main contribution of this paper is to introduce and motivate the concept of phys-
ically universal CAs and Hamiltonians. Their non-existence would probably have in-
teresting consequences for the limits of controlling microscopic systems. But also their
existence poses questions that are equally fundamental, because such CAs are nice
models for studying the thermodynamic cost of computation and control.

We also use physically universal CAs to define the complexity of states and a
corresponding prior probability that is considered as a physically motivated analog of
Solomonoff’s prior. An interesting feature of this prior is that it is invariant under
some physical symmetries. Moreover, it tries to capture the amount of adjustments
that is needed in the environment to run a preparation process, which includes also
the cost of removing disturbing heat and the cost of keeping it away from the system
during the implementation of the process.

The author would like to thank Bastian Steudel and David Balduzzi for helpful
comments on an earlier draft and Aram Harrow and Armen Allahverdyan for interesting
discussions. This work has partially been supported by the VW-project “Quantum
Thermodynamics: energy and information flow at nanoscale”.
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