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Abstract

We consider the string, the left end of which is fixed and the
right end of the string is in periodic motion. We derive the
quantum internal motion of this system.

1 Introduction

According to Nielsen and Olesen (1973) there is parallelism between
the Higgs model of broken gauge invariance and the Landau-Ginzburg
superconductivity theory on the one hand and and the dual string model
and at the same time between Abrikosov flux lines in superconductors
II. So dual string is mathematical realization of magnetic flux tube in
equilibrium againts the pressure of the surrounding charged superfluid.
Only strings with no ends were considered by them (Nambu, 1974). The
internal quantum motion of strings is not considered by the authors.

We consider here the string, the left end of which is fixed and the right
end of the string is in periodic motion. We derive the quantum internal
motion of this system. We use the so called the oscillator quantization of
string.
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The non-relativistic quantization of the equation for the energy of a free
particle

p2

2m
= E (1)

consists in replacing classical quantities by operators. We get the non-
relativistic Schrödinger equation for a free particle. The operator replacings
are E → ih̄ ∂

∂t , p → −ih̄∇.
The Schrödinger equation suffers from not being relativistically covari-

ant, meaning it does not take into account Einstein’s special relativity.
It is natural to perform the special relativity generalization of the energy

relation describing the energy:

E =
√
p2c2 +m2c4. (2)

Then, just inserting the quantum mechanical operators for momentum
and energy yields the equation

ih̄
∂

∂t
=
√
(−ih̄∇)2c2 +m2c4. (3)

This, however, is a cumbersome expression to work with because the
differential operator cannot be evaluated while under the square root sign.

Klein and Gordon instead began with the square of the above identity,
i.e. E2 = p2c2 +m2c4, which, when quantized, gives

(
ih̄
∂

∂t

)2
= (−ih̄∇)2c2 +m2c4. (4)

So, we have seen that the quantization of classical mechanics is the
simple replacing classical quantities by operators. We use here the novel
quantization method where classical oscillators forming the classical sys-
tems are replaced simply by the quantum solution of quantum oscillators.
The natural step is to apply the method to motion of the classical string.

2 The classical derivation of the string motion

The differential equation of motion of string elements can be derived by the
following way (Tikhonov et al., 1977). We suppose that the force acting
on the element dx of the string is given by the law:

T (x, t) = ES

(
∂u

∂x

)
, (5)
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where E is the modulus of elasticity, S is the cross section of the string.
We easily derive that

T (x+ dx)− T (x) = ESuxxdx. (6)

The mass dm of the element dx is ϱESdx, where ϱ = const is the mass
density of the string matter and the dynamical equilibrium gives

ϱSdxutt = ESuxxdx. (7)

So, we get

1

c2
utt − uxx = 0; c =

(
E

ϱ

)1/2
. (8)

Now, let us consider the following problem of the mathematical physics.
The right end of the string is in the periodic motion u(l, 0) = A sin(ωt+φ).
So we solve the mathematical problem:

utt = c2uxx (9)

with the initial conditions

u(x, 0) = 0; ut(x, 0) = 0 (10)

and with the boundary conditions

u(0, t) = 0; u(L, t) = A sin(ωt+ φ). (11)

The equation (10) with the initial and boundary conditions (10) and
(11) represents one of the standard problems of the mathematical physics
and can be easily solved using the the standard methods . The solution is
elementary (Lebedev et al., 1955) and it is the integral part of equations
of mathematical physics (Tikhonov et al., 1977):

u(x, t) =
Ac

ES

sin ωx
c

cosωl
c

 sin(ωt+ φ). (12)

So, we see that the string motion is a such that at every point X ∈ (0, l)
there is an oscillator with an amplitude

A =
Ac

ES

sin ωX
c

cosωl
c

 ; X ∈ (0, l). (13)

3



3 Quantization of the string motion by harmonic

oscillators

It is well known that harmonic oscillator equation

ẍ+ ω2x = 0; ω =
√
k/m (14)

has the solution

x(t) = A cos(ωt+ φ). (15)

In case of the quantum mechanical oscillator motion, the solution for
the stationary sates is (Grashin, 1974)

ψn = NnHn exp (−ξ2/2); ξ = x
√
mω/h̄, (16)

where Nn is the normalization constant

Nn =

(
mω

πh̄

)1/4√√√√ 1

2nn!
(17)

and Hn are the Hermite polynomials defined by the following relation

Hn = (−1)neξ
2 dn

dξn
exp (−ξ2/2). (18)

So, the wave function of the one oscillator of the string with the periodic
end in the form ψi(xi − x, t)):

ψi(x, t) =
Ac

ES
Nni

sin ω(xi−x)
c

cosωl
c

Hni
. (19)

The total wave function of the string system of oscillator is then

Ψ(x, t) = Π∞
i ψi(x, t) = Π∞

i

Ac

ES
Nni

sin ω(xi−x)
c

cosωl
c

Hni
, (20)

Or,

Ψ(x, t) =
Ac

ES

(
mω

πh̄

)1/4
Π∞

i

√√√√ 1

2nini!

sin ω(xi−x)
c

cosωl
c

 (−1)nieξ
2 dni

dξni
exp (−ξ2/2).

(21)
with
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ξ = (xi − x)
√
mω/h̄. (22)

So, the quantization of string is possible only if we devide the string
into elementary discrete points with supposing that in every point of
string X ∈ (0, l), there is a quantum oscillator with the stationary states
described by eq. (19). There is an analogue representation to eq. (21),
which was applied by Feynman for determination of the quantum theory
of the Mössbauer effect (Feynman, 1972).

4 Discussion

The starting point for string theory is the idea that the point-like particles
are modeled by one-dimensional objects called strings. Strings propagate
through space and interact with each other. In a given version of string
theory, there is only one kind of string, which may look like a small loop,
or, segment of ordinary string, and it can vibrate in different ways. On
distance scales larger than the string scale, a string will look just like an
ordinary particle, with its mass, charge, and other properties determined
by the vibrational state of the string. In this way, all of the different
elementary particles may be viewed as vibrating strings. In string theory,
one of the vibrational states of the string gives rise to the graviton, a
quantum mechanical particle that carries gravitational force. Thus string
theory is also theory of quantum gravity and replaces the quantum gravity
with the gravitons with spin 2.

The string theory can be extended to the quark-quark interaction by
the string potential, defined as the quark mass correction to the string
potential, which was performed by Lambiase and Nesterenko (1996). The
calculation of the interquark potential generated by a string with massive
ends was performed by Nesterenko and Pirozhenko (1997), and others. The
propagation of a pulse in the real strings and rods which can be applied to
the two-quark system as pion and so on, was calculated by author (Pardy,
2005). So, it is not excluded that our aproach can be extended to generate
the new way of the string theory of matter and space-time.

Let us only remark that author considered the string model of gravity
where the gravitational mediation was modeled by string with the results,
which are identical with the classical theory of gravity (Pars, 1964). The
extra result was the vibration of a body at the end of the string, which it
was still not confirmed by experiment (Pardy, 1996).
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