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Abstract

This note presents an encoding and a decoding algorithms for a forest of (la-
belled) rooted uniform hypertrees and hypercycles in linear time, by using as few as
n−2 integers in the range [1, n]. It is a simple extension of the classical Prüfer code
for (labelled) rooted trees to an encoding for forests of (labelled) rooted uniform hy-
pertrees and hypercycles, which allows to count them up according to their number
of vertices, hyperedges and hypertrees. In passing, we also find Cayley’s formula for
the number of (labelled) rooted trees as well as its generalisation to the number of
hypercycles found by Selivanov in the early 70’s.
Key words: Hypergraph, Forest of (labelled rooted) hypertrees, Prüfer code,
Encoding-decoding, b-uniform, Enumeration.

1 Notations and definitions

A hypergraph H is a pair H = (V, E), where V = {1, 2, . . . , n} denotes the set of vertices
and E is a family of subsets of V each of size ≥ 2 called hyperedges (see e.g. [1]).
Two vertices are neighbours if they belong to the same hyperedge. The degree of a vertex
is the number of its neighbours. A leaf is a set of b − 1 non-distinguished vertices of
degree (b− 1) belonging to the same hyperedge.
A hyperpath (path) between two vertices u and v is a finite sequence of hyperedges
e1, . . . , ek, such that ei ∩ ei+1 6= ∅ for any 1 ≤ i ≤ k − 1, with u ∈ e1 and v ∈ ek.

A hypergraph H is connected if there exists a path between any two vertices of H.
A connected hypergraph is also called a connected component, or simply a component.

A hypergraph is called b-uniform (or uniform) if every hyperedge e ∈ E contains
exactly b vertices (2 ≤ b ≤ n) [8, 14]. For example, 2-uniform hypergraphs are simply
graphs. In the present note, only connected b-uniform hypergraphs (2 ≤ b ≤ n) are
considered.
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The excess of a connected hypergraph H = (V, E) is defined as

exc(H) =
∑
e∈E

(|e| − 1)− |V|

(see e.g. [8, 14]). Thus, if H is b-uniform, its excess is (b− 1)|E| − |V|. A hypertree is a
component of excess −1, which is the smallest excess possible for a connected hypergraph
H, and hence, exc(H) ≥ −1 for any H (see the above definition).
A component is rooted if one of its vertices is distinguished from all others. A hypergraph
is called a forest if all its components have excess −1 (i.e. are hypertrees), and similarly
a hypercycle has excess 0.

2 Bijective enumeration of a forest of hypertrees

2.1 State of the art and motivations

Concerning connected graphs (2-uniform hypergraphs), there exist several methods for
counting trees (see e.g. [2, 3, 4, 7, 9, 10, 11]), including of course the Prüfer code. Prüfer
sequences were first introduced by Heinz Prüfer to prove Cayley’s enumeration formula in
1918 [13]. In his very elegant proof 1, Prüfer verified Caley’s Theorem [3] by establishing
a one-to-one correspondence between labelled free trees of order n and all sequences of
n− 2 positive integers from 1 to n. The Prüfer codes can thus be generated by a simple
iterative algorithm (see also [9, vol. 1, chap. 2] and [6]).

Remark 1. To compute the Prüfer sequence Seq(T) for a labelled tree T , iteratively
delete the leaf with smallest label and append the label of its neighbor to the sequence.
After n− 2 iterations a single edge remains and we have produced a sequence Seq(T) of
length n− 2.

Since the introduction of Prüfer codes, a linear time algorithm for its computation
was given for the first time only in the 70’s [12, 15], and has been later rediscovered
several times in various forms [2, 4, 5]. Recently for example, the sequential encoding
and decoding schemes presented in [2]. Both require an optimal Θ(n) time when applied
to rooted n-node trees, and provide the first optimal linear time decoding algorithm for
Neville’s codes [2].

Amongst the most recent results, “Prüfer-like” encoding-decoding algorithms are
generalizing the Prüfer code to the case of hypertrees (uniform or arbitrary). In 2009,
S. Shannigrahi, S.P. Pal have shown in [17] that uniform hypertrees can be Prüfer-like
encoded (and decoded) in optimal linear time Θ(n), using only n − 2 integers in the
range [1, n] (see Prüfer’s Theorem in [13]).

1Prüfer’s Theorem is as follows. There are nn−2 sequences (called Prüfer sequence or Prüfer codes)
of length n− 2 with entries being from natural numbers; we establish a bijection between the set of trees
and this set of sequences.
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In the case when hypertrees are arbitrary (non uniform), the same authors’ encoding
and decoding algorithms in [17] require codes of length (n − 2) + p, where p is the
number of vertices belonging to more than one hyperedge, or pivots. Since the number
p of pivots is bounded by |E|, at most (n − 2) + |E| integers are needed to encode a
general hypertree. Therefore, the design of efficient Prüfer-like encoding and decoding
algorithms can be extended to arbitrary hypertrees where each hyperedge has at least
two vertices. Up until now, no better bounds are known for the length of Prüfer-like
codes for arbitrary hypertrees. By contrast, the exact number of distinct hypertrees is

known to be
n−1∑
i=0

{
n− 1

i

}
ni−1, where

{
p

q

}
denotes the Stirling numbers of the second

kind [9].

The main motivation of the present note comes from analytic and bijective combina-
torics of hypergraphs, including the enumeration of (labelled) rooted forests of uniform
hypertrees and hypercycles [14]. These enumeration results are actually tightly linked
to Prüfer-like coding and decoding of such combinatorial structures.

The following two algorithms code and decode forests of rooted uniform hypertrees,
which in turns allows to enumerate these structures bijectively by using a generalization
of the Prüfer sequences. The knowledge of the number of forests of rooted uniform
hypertrees provides a concise and simple description of the structures, e.g. by using a
recursive pruning of the leaves in the forests.

2.2 Encoding and decoding algorithms for a forest of (labelled) rooted
hypertrees

Definition 1. The forests F composed of (k +1) (labelled) rooted b- uniform hypertrees,
with n vertices and s hyperedges, is coded with a 4-tuple (R, r,P, N) defined as follows:

• R is a set of (k + 1) vertices (roots) with distinct labels in [n] ≡ {1, . . . , n},
• r ∈ R is one the (k + 1) roots,
• P is a partition of [n] \R into s subsets, each of size (b− 1) and
• N is an (s− 1)-tuple in [n]s−1.

Note that the above positive integers n ≡ n(s), s and k meet the condition

n = s(b− 1) + k + 1,

and since F is b-uniform, exc(F) = s(b− 1)− n. So, |E| = s and |V| = n.

Algorithm 1 is coding a given forest F of k + 1 (labelled) rooted uniform hypertrees
as input, and returns the 4-tuple (R, r,P, N) coding F as output.
The 4-tuple (R, r,P, N) is obtained from the coding in Definition 1 of a forest F (Algo-
rithm 1) as follows.

1. the number of its components (i.e. the number |R| of its roots),
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Algorithm 1 Encoding a forest of rooted hypertrees.

Input: A forest F of k + 1 (labelled) rooted b-uniform hypertrees, with s hyperedges
and n = s(b− 1) + k + 1 vertices.

Output: The coding (R, r,P, N) of F as in Definition 1.
1. (R, r,P, N)← ({root}, r, { }, ( ))
2. Repeat
3. Add the set of vertices corresponding to the smallest leaf (with respect to the

lexicographical order) to the partition P.
4. Put the vertex linking that set into the (s− 1)-tuple N .
5. Take F as the “new” forest not having the vertices corresponding to the smallest

leaf.
6. Until there is no hyperedge remaining in F .
7. The last vertex in N is necessarily a root and r is redefined as this last vertex.
8. Return (R, r,P, N).

2. the unique root vertex r attached to the leaf of the last hyperedge in the pruning
process,

3. the number of hyperedges |N |+ 1, and finally,
4. the number of hypertrees that are not reduced to their roots, namely the number

of distinct roots in the pair (N, r).

Example.
The forest F = (V, E) of rooted uniform hypertrees depicted in Fig. 1 is as follows:
V = {1, 2, . . . , 22} and
E = {{1, 21, 22}, {2, 17, 18}, {3, 13, 19}{4, 8, 18}, {4, 12, 14}, {6, 7, 13}, {7, 20, 21},
{10, 13, 15}, {11, 18, 21}}.
The roots of the hypertrees are 5, 9, 13 and 16.

In this example, Algorithm 1 outputs (R, r, P, N) s.t.
R = {5, 9, 13, 16},
r = 13,
P = {{1, 22}, {2, 17}, {3, 19}, {4, 8}, {6, 7}, {10, 15}, {11, 18}, {12, 14}, {20, 21}} and
N = (21, 18, 13, 13, 4, 18, 21, 7).

Next, the following Algorithm 2 decodes a given 4-tuple (R, r,P, N) as input, and
returns a forest of (labelled) rooted b-uniform hypertrees as output.
Within the loop of Algorithm 2, the forest F is found with no ambiguity by choosing
the smallest leaf in the lexicographical order.

Remark 2. Encoding Algorithm 1 and decoding Algorithm 2 are both running in optimal
linear time, by using as few as n−2 integers in the range [1, n]. This complexity result is
a direct consequence of the Prüfer-like encoding algorithm designed in [17] (see Prüfer’s
Theorem in [13]). The algorithm computes the hyperedge partial order on the hyperedges
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Figure 1: A forest of 4 (labelled) rooted hypertrees.

of the hypertree in linear time by defining a directed acyclic graph (DAG) with vertex
set E, where each vertex represents a hyperedge of H. (The proof is completed in [17,
Lemma 2].)

2.3 Enumeration of forests, hypertrees and trees

From Algorithm 1, we obtain the enumeration of forests with (k + 1) (labelled) rooted
uniform hypertrees and s hyperedges.

Theorem 1. The number of forests having (k+1) (labelled) rooted b-uniform hypertrees
and s hyperedges is(

n

k + 1

)
(k + 1)

[
(n− k − 1)!
s! (b− 1)!s

]
ns−1 =

n!
k!

ns−1

s! (b− 1)!s
, (1)

where the number of vertices is n ≡ n(s) = s(b− 1) + k + 1.

Proof. The proof stems directly from the one-to-one correspondence constructed in Al-
gorithm 1, which codes forests F with the set of 4-tuples (R, r,P, N) defined as in Defi-
nition 1. Indeed, the number of forests of (k + 1) (labelled) rooted b-uniform hypertrees
and s hyperedges is equal to |R| ×#roots× |P| × |N |.

Now, we have |R| =
(

n

k + 1

)
, the number of roots is (k + 1) , |P| =

(n− k − 1)!
s! (b− 1)!s

and |N | = ns−1. So, after simplifications, Theorem 1 follows.

Setting k = 0 in the above Eq. (1) (Theorem 1) yields n!
ns−1

s!(b− 1)!s
. Whence the

following
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Algorithm 2 Decoding to a forest of rooted hypertrees.

Input: Integers n, k and s meeting the condition n = s(b − 1) + k + 1 and the coding
(R, r,P, N) of F , as in Definition 1.

Output: Forest F of rooted b-uniform hypertrees, whose k + 1 roots are the vertices of
R.

1. Repeat
2. Build one hyperedge with the first vertex in the (s− 1)-tuple N and the vertices

of the first set of P (w.r. to the lexicographic order) having no vertex still in the
remaining set N .

3. Remove the above set from P and delete the first vertex from the (s− 1)-tuple N .
4. Until the set N is empty.
5. Build the (s− 1)-th hyperedge with the last subset of P and the vertex r.
6. Return the forest F obtained.

Corollary 1. The number of (labelled) rooted b-uniform hypertrees with s hyperedges is

(n− 1)!
s! (b− 1)!s

ns,

where the number of vertices is n ≡ n(s) = s(b− 1) + 1.

Note that, whenever b = 2 (and thus s = n − 1), Corollary 1 is a generalization of
Cayley’s Theorem enumerating rooted trees of n vertices: for any n ≥ 1, the number of
(nonplane labelled) rooted trees of n vertices is nn−1 [3].

One of the advantages offered by a bijective construction proof is also the possibil-
ity of performing a random generation and learn some characteristic properties of the
structures in F [14].

A generalization of Subsection 2.3 also gives an explicit expression of the number
of uniform hypercycles and obtain an alternative proof of Selivanov’s 1972 enumeration
result.

3 Enumeration of uniform hypercycles

Together with hypertrees, hypercycles are the simplest structures and they have excess 0.
Along the same lines as in Theorem 1, the following bijective proof gives the enumeration
formula (first given by Selivanov in [16]) of the uniform hypercycles in a forest F .

Theorem 2. [16] The number of b-uniform hypercycles with s hyperedges is(
(b− 1)n! ns−1

2 (b− 1)!s

) s∑
j=2

j

sj(s− j)!
=
(

(b− 1)n! ns−1

2 (b− 1)!s

)
1

s(s− 2)!
,

where the number of vertices is n ≡ n(s) = s(b− 1).
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Proof. A hypercycle having a cycle length j corresponds to a forest F of j(b− 1) rooted
hypertrees, up to an arrangment of the hypertrees in all distinct ways of forming a
cycle. F has (s − j) hyperedges and j(b − 1) components to be arranged into a cycle.
The number of b-uniform hypercycles having a cycle length j (2 ≤ j ≤ s) and with s
hyperedges is thus( n

j(b− 1)

)
j(b− 1)

(
(s− j)(b− 1)

)
!

(s− j)! (b− 1)!s−j

 1
2

(
j(b− 1)

)
!

(b− 2)!j

 , (2)

where n ≡ n(s) = s(b− 1).
In the above Eq. (2) indeed, the left-hand factor (between brackets) counts the number
of forests of rooted b-uniform hypertrees, while the right-hand one counts the number
of smooth hypercycles labelled with the set {1, . . . , j(b− 1)}. j distinct hyperedges, and
thus labelled with the set {1, . . . , j(b− 1)}.

Now, (b − 1)!−s+j(b − 2)!−j = (b − 1)!j(b − 1)!−s and, since n = s(b − 1), we have

(s−j)(b−1) = n−j(b−1). So, Eq. (2) simplifies to
n!(b− 1)
2 (b− 1)!s

(b− 1)!j

(s− j)!
, with j ranging

from 2 to s.
Finally, substituting ns−1/sj for (b− 1)!j and summing on 2 ≤ j ≤ s, gives the finite

sum in Theorem 2:
s∑

j=2

j

sj(s− j)!
=

1
s(s− 2)!

, and the result follows.

4 Conclusions and further results

In the above proof of Theorem 2 we are led to distinghish hypercycles according to the
lengths of the cycles. Therefore, a question arises: for a given number n = s(b − 1) of
vertices, what is the cycle length j of the class that contributes most to the number of
such hypercycles?

It is shown in [17] that there exists at most
nn−2 − f(n, b)

(b− 1)(b−2)(n−1)/(b−1)
distinct labelled

b-uniform hypertrees, where f(n, b) is a lower bound on the number of labelled trees

of maximal (vertex) degree exceeding ∆ = (b − 1) +
n− 1
b− 1

− 2. In view of extending

this result, can we determine a lower bound on the number of labelled trees with no
constraint on their maximal (vertex) degree—or, at least, with maximal degree exceeding
some ∆′ < ∆? This, for example, by designing some generalized counting techniques
based on a bijective or analytic enumeration of b-uniform hypertrees. (See also [15, 17]).

In the spirit of [6], some potential applications of Prüfer-like code may also arise as
fruitful directions of research.

Encoding algorithms (such as the present one or the algorithm designed in [17]) can
be used to generate unique identities (IDs) or PINs. By generating distinct hypertrees
with combinatorial enumeration methods, it is possible to compute distinct codes for
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each of these hypertrees using such encoding algorithms. All codes generated this way
would be distinct and can provide unique IDs. The advantage of the scheme is that no
check for repetitions is needed, since IDs generated from distinct hypertrees are unique.
Besides, the generation of such codes requires time proportional to the length of the
code.

Coding schemes can also be useful for allocating IDs to different users in a system
where disjoint sets of users form different groups. Each group is associated with a
distinct hypertree, whereas the users within a group are allocated distinct codes of the
same hypertree associated with the group. Subgroups can be realized by another level
of Prüfer-like encoding. The actual implementation of such group management schemes
is an open direction of research (see [17]).
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[13] H. Prüfer, Neuer Beweis eines Satzes über Permutationen, Arch. Math. Phys.,
27:742-744, 1918.

[14] V. Ravelomanana, A. L. Rijamamy, Creation and Growth of Components in a
Random Hypergraph Process, Proc. of Cocoon 2006, LNCS 4112:350-359, 2006.
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