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Abstract

In the framework of an arbitrary D-dimensional metric theory, perturbations are

considered on arbitrary backgrounds that are however solutions of the theory. Con-

served currents for perturbations are presented following two known prescriptions:

canonical Nœther theorem and Belinfante symmetrization rule. Using generalized for-

mulae, currents in the Einstein-Gauss-Bonnet (EGB) gravity for arbitrary types of

perturbations on arbitrary curved backgrounds (not only vacuum) are constructed in

an explicit covariant form. Special attention is paid to the energy-momentum tensors

for perturbations which are an important part in the structure of the currents.

We use the derived expressions for two applied calculations: a) to present the

energy density for weak flat gravitational waves in D-dimensional EGB gravity; b) to

construct the mass flux for the Maeda-Dadhich-Molina 3D radiating black holes of a

Kaluza-Klein type in 6D EGB gravity.
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1 Introduction

As multidimensional theories become more and more popular, the study of the behaviour

and properties of solutions in these theories has gained prominence. In particular, it is

especially important to describe perturbations in such theories (see, for example, [1] - [6],

and numerous references there in). It is very important to construct conserved quantities

for such perturbations. Although several approaches have been developed, including our

recent results (see [7] and references there in), these have been restricted, as a rule, to

only constructing surface (non-local) expressions. The surface expressions are obtained after

integration of so-called superpotentials. However, keeping in mind cosmological and astro-

physical applications it is important to construct local conserved quantities (which usually

are expressed by conserved currents for perturbations), and to connect them with non-local

conserved quantities. In this approach, conservation laws are presented in a form where

superpotentials are connected with correspondent conserved currents.

Arguably, at the present moment, among multidimensional generalizations of usual 4-

dimensional general relativity (4D GR), a Gauss-Bonnet (GB) modification is the most

popular. The action of the Einstein-Gauss-Bonnet (EGB) theory has a lower (quadratic in

curvature) order of the action of the Lovelock gravity [8]. The latter is a generalization of

GR, when an action includes higher order curvature terms preserving the diffeomorphism

invariance and still leading to field equations containing no more than second order deriva-

tives. On the other hand, independently, the GB term occurs in the effective lower energy

action of superstring theory [9]. The EGB gravity has many new useful and interesting

properties. Therefore in the framework of the EGB gravity numerous important topics and

problems are intensively studied. They are multidimensional black hole solutions, black hole

thermodynamics and conserved charges, AdS/CFT correspondence, wormhole solutions and

their properties, cosmological dynamics, membrane paradigm, etc. It is impossible to give a

full bibliography on studies related to Lovelock and EGB theories; for a review and further

references one can recommend, e.g., [10], where many aforementioned aspects are discussed.

In [7], where superpotentials and correspondent charges in EGB gravity were constructed,

we have used the following three approaches well known in 4D GR. The first approach,

canonical (direct application of Nœther theorem), starts from the Einstein pseudotensor

[11] and the Freud superpotential [12]. The final and maximally generalized form in 4D

GR is presented by Katz, Bičák and Lynden-Bell [13]. The second approach is based on

the Belinfante symmetrization method [14], which firstly in 4D GR has been applied by

Papapetrou [15] for symmetrization of the Einstein pseudotensor and for the correction of the

Freud superpotential. Maximally generalized application of the Beinfante method in 4D GR
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is presented in the works [16, 17]. The third approach is frequently called as field-theoretical

(or symmetrical) one, where all perturbations (including metric ones) are presented as an

united field configuration, which propagates in a background spacetime and is described by

symmetrical (metric) energy-momentum tensor. For review of the above methods see [18].

To the best of our knowledge, unlike superpotentials, authors have not paid attention to

constructing currents in modified theories. Here, at least in part, we try to close this gap.

Following the proposals in [18], we present currents of a generalized form in an arbitrary

metric theory in the canonical and Belinfante symmetrization approaches. Following this,

the generalized formulae are used to construct the currents in EGB gravity. Thus, continuing

the research begun in [19] and [7], we add superpotentials presented in [7] by corresponding

currents. The symmetrical approach, due to its technical particularities, requires a separate

investigation, therefore we do not consider it here.

The paper is organized as follows. In section 2, general definitions in an arbitrary D-

dimensional metric theory are given, and general identities necessary for constructing con-

served quantities are presented and discussed. In section 3, in an arbitrary metric theory

conserved currents for arbitrary perturbations on arbitrary curved backgrounds that are

however solutions of the theory, are presented in the framework of both the approaches. In

section 4, the results of section 3 are used to construct explicit covariant expressions for the

currents in EGB gravity. In section 5, the new expressions for the currents are used to con-

struct energy density for weak flat gravitational waves and mass flux for radiating solutions

in the EGB gravity. The concluding remarks are placed in the last section. In Appendix,

we present the necessary, although somewhat cumbersome, expressions from EGB gravity.

2 Arbitrary D-dimensional metric theories. The main

identities

2.1 Preliminaries

To present an arbitrary D-dimensional metric theory we consider the Lagrangian:

L̂D = − 1

2κD

L̂g(gµν) + L̂m(gµν ,Φ) . (2.1)

One includes derivatives up to the second order of the metric gµν and Φ, where the last

defines matter sources without concretization. Here and below “hat” means densities of

the wight +1, for example, ĝµν =
√−ggµν , L̂ =

√−gL, etc; (, α) ≡ ∂α means ordinary

derivatives; Greek indexes enumerate D-dimensional spacetime coordinates. Variation of
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(2.1) with respect to gµν leads to the gravitational equations:

Ĝµν = κDT̂µν . (2.2)

Variation (2.1) with respect to Φ gives corresponding matter equations. In this section,

we derive the identities applying both the Nœther theorem only and the Nœther theorem

together with the Belinfante procedure to the gravitational part of the Lagrangian (2.1).

To examine perturbations, we need to consider the background D-dimensional spacetime.

Let it belong the metric gµν , from which the background Christoffel symbols Γ
σ

τρ, covariant

derivatives Dα and the background Riemannian tensor R
σ
τρπ are constructed; here and below

“bar” means that a quantity is a background one. We also use the background Lagrangian

defined as L̂D = L̂D(ḡµν ,Φ) and corresponding background gravitational and matter equa-

tions. We assume that the background fields ḡµν and Φ satisfy the background equations,

and, thus are known (fixed). Here, for our purposes, we incorporate the background metric

gµν into L̂g changing the ordinary derivatives ∂α by the covariant Dα ones in the usual way:

∂αgµν ≡ Dαgµν −Γ
σ

αρ gµν |ρσ. The generalized notation gµν |αβ corresponds to the Lie derivative

definition:

£ξgµν = −ξαDαgµν + gµν |αβ Dαξ
β , (2.3)

thus gµν |αβ = −2gβ(µδ
α
ν); the choice of a sign corresponds to [20]. Then, using

∆α
µν = Γα

µν − Γ
α

µν = 1
2
gαρ

(

Dµgρν +Dνgρµ −Dρgµν
)

, (2.4)

Rλ
τρσ = Dρ∆

λ
τσ −Dσ∆

λ
τρ +∆λ

ρη∆
η
τσ −∆λ

ησ∆
η
τρ +R

λ
τρσ = δRλ

τρσ +R
λ
τρσ , (2.5)

we transform the pure metric Lagrangian L̂g into an explicitly covariant form: L̂g = L̂c =

L̂c(gµν ;Dαgµν ;Dβαgµν), where Dβα ≡ DβDα. Here and below δ means a difference between

a dynamical and a background quantity. Thus for an arbitrary tensor density Q:

δQ = Q−Q (2.6)

that is a finite (exact, not infinitesimal) perturbation.

2.2 The Nœther method and identities

A direct application of the canonical Nœther procedure to −L̂c/2κD, as a scalar density,

gives the identity −1/2κD

(

£ξL̂c + ∂α(ξ
αL̂c)

)

≡ 0, which is equivalent to

−Dα

[

ûσ
αξσ + m̂σ

ατDτξ
σ + n̂σ

ατβDβDτξ
σ
]

≡ Dαı̂
α
C ≡ ∂α ı̂

α
C ≡ 0 . (2.7)

Here, the coefficients are defined in unique way (without ambiguities) by the Lagrangian:

ûσ
α = − 1

κD

[

Ĝα
σ + κDÛσ

α + κDn̂λ
ατβR

λ

τβσ

]

, (2.8)
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m̂σ
ατ = − 1

2κD

[

δL̂c

δ(Dαgµν)
gµν |τσ −

∂L̂c

∂(Dταgµν)
Dσgµν +

∂L̂c

∂(Dβαgµν)
Dβ(gµν |τσ)

]

, (2.9)

n̂σ
ατβ = − 1

4κD

[

∂L̂c

∂(DβDαgµν)
gµν |τσ +

∂L̂c

∂(DτDαgµν)
gµν |βσ

]

. (2.10)

It can be seen that n̂σ
ατβ = n̂σ

αβτ . We use the notations

Ĝα
σ ≡ 1

2

δL̂c

δgµν
gµν |ασ ≡ − δL̂c

δgµα
gµσ ≡ δL̂c

δgµσ
gµα , (2.11)

Ûσ
α ≡ − 1

2κD

(

∂L̂c

∂(Dβαgµν)
Dσβgµν +

δL̂c

δ(Dαgµν)
Dσgµν − δασ L̂c

)

, (2.12)

δL̂c

δ(Dαgµν)
≡ ∂L̂c

∂(Dαgµν)
−Dβ

(

∂L̂c

∂(Dαβgµν)

)

. (2.13)

As usual, δL̂c/δgµν means Lagrangian derivatives, Ĝα
σ is exactly the symmetrical left hand

side of (2.2), and Ûα
σ is the generalized canonical energy-momentum related to the gravita-

tional Lagrangian in (2.1).

The generalized current in (2.7) can be rewritten as

ı̂αC = −
[

(ûσ
α + n̂λ

αβγR
λ

βγσ)ξ
σ + m̂ραβ∂[βξρ] + ẑαC

]

(2.14)

where z-term is defined as

ẑαC(ξ) = m̂σαβζσβ + n̂ραβγ
(

2Dγζβρ −Dρζβγ
)

, (2.15)

and 2ζρσ = −£ξgρσ = 2D(ρξσ). Thus, z-term disappears, if ξµ = λµ is a Killing vector of the

background spacetime. Then only the current (2.14) is determined by the energy-momentum

(u+ nR)-term and the spin m-term.

Opening the identity (2.7) and, since ξσ, ∂αξ
σ, ∂βαξ

σ and ∂γβαξ
σ are arbitrary at ev-

ery world point, equating independently to zero the coefficients at ξσ, Dαξ
σ, D(βα)ξ

σ and

D(γβα)ξ
σ we get a system of covariant identities of the Belinfante-Rosenfeld type:

Dαûσ
α + 1

2
m̂λ

αρR
λ

σ ρα + 1
3
n̂λ

αργDγR
λ

σ ρα ≡ 0, (2.16)

ûσ
α +Dλm̂σ

λα + n̂λ
ταρR

λ

σ ρτ +
2
3
n̂σ

λτρR
α

τρλ ≡ 0, (2.17)

m̂σ
(αβ) +Dλn̂σ

λ(αβ) ≡ 0, (2.18)

n̂(αβγ)
σ ≡ 0. (2.19)

These are the generalization to arbitrary curved backgrounds of the expressions given by

Mitzkevich [20]. The above identities are not independent: the first one (2.16) is a conse-

quence of the other three.
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As a rule, a divergence L̂′ = d̂ν,ν in the Lagrangian is not essential for deriving field

equations. However, in a definition of canonical conserved quantities it plays an important

role. Let us illustrate this below. For the scalar density L̂′ = d̂ν ,ν one has the Nœther

identity

(£ξd̂
α + ξαd̂ν ,ν),α ≡ 0 , (2.20)

which has to be considered together with (2.7). An expression under divergence in (2.20)

defines an additional contribution

ı̂′α = −
[

û′

σ
αξσ + m̂′

σ
ατDτξ

σ
]

; (2.21)

û′

σ
α = 2Dβ(δ

[α
σ d̂β]) , m̂′

σ
αβ = 2δ[ασ d̂β] , n̂′

σ
αβγ = 0 . (2.22)

into the current (2.14). Note that the construction of the quantities (2.22) in the additional

current (2.21) does not depend on the inner structure of d̂ν .

2.3 The Belinfante symmetrization

Using the Belinfante rule [14] generalized in [17] we define the Belinfante correction:

ŝαβσ = −ŝβασ = −m̂λ
σ[αḡβ]λ − m̂λ

α[σḡβ]λ + m̂λ
β[σḡα]λ , (2.23)

and modify (2.14). Thus, the Belinfante corrected current is

ı̂αB = ı̂αC +Dβ(ŝ
αβσξσ) = −

[(

ûσ
α + n̂λ

αβγR
λ

βγσ −Dβ ŝ
αβ

σ

)

ξσ + ẑαB(ξ)
]

. (2.24)

By definition, it does not contain the spin term (coefficient at ∂[βξρ]). The new z-term

ẑαB(ξ) =
(

gλσm̂λ
βα + 2gλ[σm̂λ

α]β
)

ζσβ + n̂ρ
αβγ

(

2Dγζ
ρ
β −D

ρ
ζβγ
)

(2.25)

disappears for Killing vectors of the background as well. Due to antisymmetry in (2.23), this

current (2.24) is also identically conserved:

∂α ı̂
α
B ≡ Dα ı̂

α
B ≡ 0 . (2.26)

It is important to note that the Belinfante procedure cancels the addition (2.21) induced by

a divergence in Lagrangian.

Because the currents ı̂αC and ı̂αB satisfy the identities (2.7) and (2.26) they have to be

expressed through correspondent antisymmetrical tensor densities (superpotentials) ı̂αβC and

ı̂αβB , for which ∂α∂β ı̂
αβ
C ≡ ∂α∂β ı̂

αβ
B ≡ 0. Indeed, following the standard prescription [18] and

(2.17) - (2.19), one can construct these superpotentials satisfying

ı̂αC ≡ Dβ ı̂
αβ
C ≡ ∂β ı̂

αβ
C , (2.27)

ı̂αB ≡ Dβ ı̂
αβ
B ≡ ∂β ı̂

αβ
B . (2.28)
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These demonstrate a principal form of a connection of the currents constructed here with

the superpotentials in [7].

Here, the coefficients (2.8) - (2.10) are uniquely defined by the pure metric part of the

Lagrangian (2.1). Consequently, Nœther’s and Nœther-Belinfante’s procedures give uniquely

defined currents. The same claim is related, of course, to all the quantities constructed below

for perturbations and based on the identities presented here.

3 Currents in arbitrary D-dimensional metric theories

In previous section, we have derived the identities and the identically conserved currents

related to the external background spacetime which looks as an auxiliary structure. Here,

we use these results to describe perturbations, which are determined when one (dynamical)

solution of the theory is considered as a perturbed system with respect to another solution

(background) of the same theory. Perturbations in such a scenario are exact (not infinitesimal

or approximate), and the background spacetime acquires a real sense, and is not just an

auxiliary structure. The same scheme, which can be named as bimetric, has been explored

in [7]. Linear and higher order approximations simply follow once the exact form is presented.

3.1 Canonical Nœther current

The expressions presented in subsection 2.2 are maximally adopted to construct Nœther

canonical conserved quantities in the framework of the bimetric formulation. Following the

Katz-Bičák-Lynden-Bell (KBL) ideology [13] we construct the Lagrangian:

L̂G = − 1

2κD

(

L̂g − L̂g + ∂αd̂
α

)

. (3.1)

This Lagrangian, constructed for perturbations, has to be vanishing for vanishing perturba-

tions. Thus usually d̂α is chosen to satisfy this requirement, i.e., to disappear for vanishing

perturbations, see, e.g., [13, 21]. Applying the barred procedure to (2.14) and taking into

account the divergence (using (2.21) and (2.22)), one obtains the current corresponding to

(3.1): ÎαC = ı̂αC − ı̂αC + ı̂′α. We then use the dynamical equations (2.2) in ûσ
α. We change

Gµν (as a part of ûσ
α, see (2.8)) by the matter energy-momentum Tµν at right hand side of

(2.2). Next, we do the same combining ûσ
α and the barred equations (2.2). In the result one

obtains that the identically conserved current ÎαC related to (3.1) transforms into the current

Îα
C(ξ) = CΘ̂σ

αξσ + CM̂σαβ∂[σξβ] + CẐα(ξ) (3.2)
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for perturbations. Now, the conservation law:

DαÎα
C(ξ) = ∂αÎα

C(ξ) = 0 (3.3)

holds in place due to the field equations (not identically). The generalized canonical energy-

momentum, spin and Z-term are

CΘ̂σ
α ≡ δT̂ α

σ + δÛσ
α + κ−1

D Dβ(δ
[α
σ d̂β]) , (3.4)

CM̂σαβ ≡ δm̂ρ
αβ ḡσρ − κ−1

D ḡσ[αd̂β] , (3.5)

CẐα(ξ) ≡ −δẑαC + κ−1
D ζ

[α
β d̂β] (3.6)

where perturbations are constructed following the general definition (2.6). To calculate

perturbations one has to use quantities presented in (2.2), (2.9), (2.10), (2.12) and (2.15).

3.2 Belinfante symmetrized current

To construct the Belinfante corrected conserved currents for the perturbed system (3.1) we

turn to subsection 2.3. We subtract the barred expression (2.24) from the original one (2.24):

ÎαB = ı̂αB − ı̂αB. Of course, the same is obtained after applying the Nœther-Belinfante method

directly to the Lagrangian in (3.1). Again, using the equations (2.2) and their barred version

in ûσ
α and ûσ

α, the current ÎαB related to (3.1) transforms into

Îα
B(ξ) = BΘ̂σ

αξσ + BẐα(ξ) . (3.7)

Thus, one has a conservation law

DαÎα
B(ξ) = ∂αÎα

B(ξ) = 0 (3.8)

for perturbations satisfying the field equations. As it has to be, the current (3.7) does not

contain a spin term, unlike (3.2). The Belinfante corrected energy-momentum and Z-term

are

BΘ̂σ
α ≡ δT̂ α

σ + δÛσ
α +Dβδŝ

αβ
σ , (3.9)

BẐα(ξ) ≡ −δẑαB(ξ) . (3.10)

To calculate perturbations one has to use quantities presented in (2.2), (2.9), (2.10), (2.12),

(2.23) and (2.25).

Note that, the energy-momenta (3.4) and (3.9) are separated into the two parts: matter

and pure gravitational ones. However, this separation is conventional because the relation

between these two parts can be changed easily by another combination with the field equa-

tions (2.2) that is quite permissible.
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4 Currents in the Einstein-Gauss-Bonnet gravity

4.1 Preliminaries

In this section, we apply the theoretical results of the previous sections to derive the explicit

structure of the currents in the EGB gravity of both the kinds (3.2) and (3.7). We search

for the expressions in the most general form: they are not to be restricted by any concrete

backgrounds or dynamic solutions. As a basis for calculation, we use expressions presented

in the Appendix. Because Z-terms in (3.2) and (3.7) disappear for the Killing vectors of the

background they are not so essential. Therefore, we do not give their explicit form, since

these can be easily reconstructed using the auxiliary expressions from the Appendix.

The action of the Einstein D-dimensional theory with a bare cosmological term Λ0 and

a Gauss-Bonnet correction term (see, for example, [22]) is

S = − 1

2κD

∫

dDxL̂EGB +
∫

dDxL̂m

= − 1

2κD

∫

dDx
√−g [R− 2Λ0 + α(RR)GB] +

∫

dDxL̂m , (4.1)

(RR)GB ≡ R2
αβγδ − 4R2

αβ +R2 , (4.2)

where κD = 2ΩD−2GD > 0 and α > 0; GD is the D-dimension Newton’s constant. Below,

the subscripts “E” is related to the pure Einstein part of the action (4.1), and the subscript

“GB” is related to the Gauss-Bonnet part connected with α-coefficient. The field equations

that follow from (4.1) have the form of (2.2) with

Ĝµν = − δ

δgµν
L̂EGB =

√−g
{(

Rµν − 1
2
gµνR + gµνΛ0

)

+ 2α
[

RRµν − 2Rµ
σ
ν
ρR

σρ +Rµ
σρτR

νσρτ − 2Rµ
σR

σν − 1
4
gµν (RR)GB

]}

. (4.3)

4.2 Canonical prescription

Let us turn to the current (3.2). Its structure (3.4) - (3.6) essentially depends on the diver-

gence in the Lagrangian. We choose the divergence induced by the Katz-Lifshits approach

[23] (see discussions in [7, 24]). Thus, in (3.4) - (3.6) we consider

d̂α = (E)d̂
α + (GB)d̂

α = 2∆
[τ
τβ ĝ

α]β + 4α
(

R̂ρ
βτα − 2R̂[τ

ρ g
α]β − 2δ[τρ R̂

α]β + δ[τρ g
α]βR̂

)

∆ρ
τβ . (4.4)

In D-dimensional GR, the Katz and Livshits superpotential [23] turns out uniquely the KBL

superpotential [13]. In EGB gravity, their superpotential (essentially connected with (4.4)

and the GB term (4.2)) naturally transfers into the KBL superpotential for D = 4. Thus,
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although the GB term does not affect the derivation of the field equations for D = 4, it

plays an important role (as a criterium) in definition of superpotentials of canonical type.

The use of the term (4.2) in the Lagrangian even in four dimensions turns out important

when the other ideas are elaborated. For example, in [25] Olea includes the GB term to

regularize conserved quantities, in [26] Mǐsković and Olea show that the standard holographic

regularization procedure of AdS gravity with counterterms is topological and, thus, can be

presented by the addition of the GB term.

Now, not calculating Z-term, we construct (3.4) and (3.5). The matter part in (3.4) is

defined by the sources in (2.2), however its concrete form will not be presented here. For

present purpose, it is more interesting to focus on the gravitational part of (3.4) denoted

below as CT̂σ
α. Thus, we calculate (3.4) with the use of (A.5) and (4.4):

CΘ̂σ
α = δT̂σ

α + CT̂σ
α =

√−gTσ
α −

√
−g T σ

α +
1

2κD

δασ
[

Rρτ l̂
ρτ − 2Λ0δ

√−g
]

+

√−g

κD

[(

∆α
ρ[τ∆

π
π]σ +∆α

ρ[σ∆
π
π]τ + δασ∆

π
β[τ∆

β
π]ρ − δαρ∆

β
β[σ∆

π
π]τ

)

gτρ
]

+
1

κD

Dβ(δ
[α
σ (GB)d̂

β]) +
α

2κD

δασ δ
(

R̂R
)

GB

+
2α

√−g

κD

[(

Rαβρ
τ − 4gρ[αRβ]

τ +Rgρ[αδβ]τ
)

Dσ∆
τ
βρ

+ 2gβµ
(

DβR
αν + 2∆

(α
βρR

ν]ρ
)

∆τ
σ(µgν)τ − gρ(α∆ν)

σρ∂νR
]

. (4.5)

The symbol δ without subscripts, once again, means a perturbation of a quantity with respect

to a background (2.6); we also use the notation: l̂ρτ = δĝρτ = δ(
√−ggρτ ) [17].

To calculate the spin term (3.5) we use (A.6) subtracting the barred (A.6) and taking

into account (4.4). Thus

CM̂σαβ = −
√−g

2κD

[

∆τ
ρτ

(

2gσ[αgβ]ρ + gσρgαβ
)

−∆α
ρτ

(

2gσ[τgβ]ρ + gσρgτβ
)]

− 1

κD

ḡσ[α(GB)d̂
β] +

2α
√−g

κD

[

Rατρ
λ∆

β
τρ − 2Rα(τβ)

ρ∆
ρ
τλ

]

gλσ

+
4α

√−g

κD

[

4gρ[αRβ]
τ ∆

τ
ρλ + 2R

[α
λ g

τ ]ρ∆β
τρ + 2gα[βRτ ]

ρ ∆
ρ
τλ + gτβ

(

Rα
ρ∆

ρ
τλ − Rρ

(τ∆
α
λ)ρ

)

−
(

gρβ∆τ
ρ(τ + gρτ∆β

ρ(τ − gτβ∆ρ
ρ(τ

)

Rα
λ)

]

gλσ − 4α

κD

gλσD(τδ
(

ĝτβRα
λ)

)

+
2α

√−g

κD

R
[

∆
[α
ρλg

ρ]β +∆
(α
ρλg

β)ρ)
]

gλσ +
2α

κD

gσ(αDρ δ
(

ĝρ)βR
)

. (4.6)

As expected, these expressions disappear for vanishing perturbations. The Einstein parts in

(4.5) and (4.6) exactly coincide with the energy-momentum and the spin tensor presented

in [13]. We do not present explicitly the terms with (GB)d̂
α because this does not simplify

the expression as a whole.
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4.3 Prescription of the generalized Belinfante procedure

Here, we turn to the current (3.7). Its structure, see (3.9) and (3.10), unlike the canonical

case, does not depend on a spin term and a divergence in the Lagrangian. As before, we do

not consider Z- term. Constructing (3.9) we calculate explicitly the pure gravitational part

only, it is denoted below as BT̂ σα. We substitute (A.5) and (A.8) into (3.9), raise indices,

use the field equations (2.2) with (4.3) and, as a result, obtain

BΘ̂
σα = δT̂ (α

ρ gσ)ρ + BT̂ σα =
√−g T (α

ρ gσ)ρ −
√
−g T

ασ

+
1

2κD

[

l̂ρτRρτg
ασ + 2l̂λ[αR̄

σ]
λ − 2gασΛ0δ

√−g
]

+
1

2κD

[(

l̂ασgρτ − gασ l̂ρτ
)

Dτ∆
λ
ρλ + 2

(

l̂ρτgλ(α − gρτ l̂λ(α
)

Dτ∆
σ)
λρ

]

+
1

2κD

[

gρτ
(

ĝασ∆λ
ρλ∆

η
τη + 2ĝλη∆

(α
λρ∆

σ)
ητ

)

+ ĝληgασ∆τ
ρλ∆

ρ
τη

]

+
1

κD

[

gρτ
(

∆λ
τη∆

(α
λρĝ

σ)η − 2∆λ
τλ∆

(α
ηρĝ

σ)η
)

+ ĝλη
(

∆τ
ρτ∆

(α
λη −∆τ

λη∆
(α
ρτ −∆τ

λρ∆
(α
ητ

)

gσ)ρ
]

+
2α

√−g

κD

gλσ
[(

Rαβρ
τ − 4gρ[αRβ]

τ +Rgρ[αδβ]τ
)

Dλ∆
τ
βρ − gρ(α∆

β)
λρDβR

+ 2gβµ
(

DβR
αν + 2Rρ(α∆

ν)
βρ

)

∆τ
λ(µgν)τ

]

+
α

2κD

gασδ (R̂R)GB +Dβδ(GB)ŝ
αβσ

− α
√−g

κD

gλ[α
[

Rσ]
πρτRλ

πρτ − 2Rσ]
πλρR

πρ − 2Rσ]
ρ R

ρ
λ +R

σ]
λ R

]

. (4.7)

The Einstein part exactly coincides with the one presented in [17]. Recall that, even this part

(symmetrized) is not symmetrical in general, see [17]. Here, we do not open the divergence of

the GB-part δ(GB)ŝ
αβσ of the Belinfante correction, see (2.23), because this does not simplify

the expression; for calculations it is more convenient to use the already known/calculated

components obtained with using (A.8). The symmetrical matter part and the last line in

(4.7) are the result of the secondary use of the field equations (2.2) with (4.3). Like (4.5),

the energy-momentum (4.7) disappears for vanishing perturbations, note that the barred

last line in (4.7) vanishes due to the antisymmetrization.

5 Applications

5.1 Weak flat gravitational waves

Here, we use formulae from previous sections to calculate energy density for weak flat grav-

itational wave in the EGB gravity. Such a gravitational wave propagates in D-dimensional

flat spacetime and is described by the linearized vacuum equations (2.2) with (4.3). Due
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to the requirement of the flat background the GB part in (4.3), being quadratic in cur-

vature components, does not contribute to the linearized equations, and Λ0 = 0. Thus,

effectively, these are the linear Einstein equations in D dimensions without cosmological

term. Assume that gµν = ηµν + hµν and that the Lorentz coordinates are used. Then one

has ηµν = diag(−1, 1 . . . 1) and ∆∗

∗∗
∼ h∗∗,∗. Linear Einstein equations after applying the

standard technique of the TT -gauge [27] have a form

Rµν = −1
2
hµν,α

,α = 0 . (5.1)

Assuming hµν = hµν(t − x) = hµν(x
0 − x1) one obtains h0α = h1α = hα

α = 0, and non-

zero components are hkl where the Latin indices from the middle of alphabet numerate:

k, l . . . = 2, 3 . . . , D − 1.

Let us turn to the canonical prescription. To calculate the energy density one has to cal-

culate the 0-component of the current (3.2) with the Killing vector ξα = λα = (−1, 0); λα =

(1, 0) . Then, only the 00-component of the pure gravitational energy-momentum C T̂0
0 in

(4.5) contributes (without spin term (4.6)); for the linearized wave we calculate C T̂0
0 up to

the second order. In direct calculations we take into account: a) a flat background with zero

Riemannian tensor and its contractions; b) zero linear parts of the Ricci tensor and curvature

scalar due to (5.1); c) proportionality ∆∗

∗∗
∼ h∗∗,∗. In the end we show that, including the

quadratic terms, the GB part of C T̂0
0 is equal to zero as a whole. Considering the Einstein

part one obtains in quadratic approximation:

CT0
0 = − 1

4κD

D−1
∑

k,l=2

ḣ2
kl (5.2)

where dot means differentiation with respect to t = x0.

Now we turn to the Belinfante prescription to calculate the 0-component of the current

(3.7). Keeping in mind the above assumptions and using the Killing vector λα we need to

calculate only the 00-component of the pure gravitational energy momentum BT̂ 00 in (4.7).

Again the GB part is equal to zero in quadratic approximation. Thus, BT̂ 00 is also defined

by the Einstein part only:

BT 00 =
1

4κD

D−1
∑

k,l=2

ḣ2
kl . (5.3)

Contracting both (5.2) and (5.3) with the Killing vector λα one obtains the unique

expression for the energy density of the flat weak gravitational waves:

I0
C = I0

B =
1

4κD

D−1
∑

k,l=2

ḣ2
kl . (5.4)
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This is in a full correspondence with the standard results in 4D GR [27]. Because the

equations (5.1), in fact, are the Einstein ones the energy density (5.4) is acceptable. Thus,

the new energy-momentum expressions applied here to describe flat gravitational waves

satisfy simple, but important and non-trivial, test. Indeed, the equations (5.1) are from the

start the linearized EGB equations, not the Einstein equations; the currents (3.2) (with (4.5)

and (4.6)) and (3.7) (with (4.7)) from the start have been constructed in the framework of

the EGB gravity, not the Einstein gravity.

5.2 Radiative 3D black hole of the Kaluza-Klein type

In this subsection, we apply the new formulae to describe mass fluxes for interesting and

important solutions obtained recently in the works [28, 29]. The main assumption is that a

spacetime is to be locally homeomorphic toMd×KD−d with the metric gµν = diag(gAB, r
2
0γab),

A,B = 0, · · · , d − 1; a, b = d, · · · , D − 1. Thus, gAB is an arbitrary Lorentz metric on Md;

γab is the unit metric on the (D − d)-dimensional space of constant curvature KD−d with

k = 0, ±1. Factor r0 is a small scale of extra dimensions. Vacuum gravitational equations

Gµ
ν = 0 (see (4.3)) are decomposed into two separate systems GA

B = 0 and Ga
b = 0. The

first one is a tensorial equation onMd, whereas the second one is a constraint for it. However,

to obtain more interesting solutions one has to consider a special case, when the expression

GA
B disappears identically. This is possible for d ≤ 4 only. In this case, constants are chosen

so as to suppress the coefficients in GA
B, which is possible when D ≥ d + 2, k = −1 and

Λ0 < 0. After taking into account all of the above, a single governing equation is Ga
b = 0.

In reality it is the unique scalar equation on Md because Ga
b ∼ δab and depends on gAB only.

Here, we consider the case D = 6 and d = 3 presented in [29]. A suitable set of constraints

for the constants is r20 = 12α = −3/Λ0. Then, the unique scalar equation is

(d)R = 2Λ0 , (5.5)

where subscript ‘(d)’ imply that a quantity is constructed with the use of gAB only. This scalar

equation is satisfied by both the static and the radiative metric [29]. Here, for constructing

the mass fluxes, it is quite appropriate to use the new current expressions. We apply them

to radiative solution gAB(v, r) of the Vaidya type [29]:

ds2 = −fdv2 + 2dvdr + r2dφ , f ≡ r2/l2 + q(v)/r − µ(v) (5.6)

where l2 ≡ −3/Λ0. In this conctrete case µ(v) and q(v) depend on the advanced time

v. Non-zero components corresponding to the solution (5.6), d = 3 sector, are as follows.
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Metric components are g00 = −f(v), g01 = 1, g22 = r2 ; Christoffel symbols, components of

Riemannian and Ricci tensors, curvature scalar, and components of the Einstein tensor are

Γ1
00 = (ff ′ − ḟ)/2, Γ0

00 = f ′/2, Γ1
01 = −f ′/2, Γ2

12 = 1/r, Γ1
22 = −rf, Γ0

22 = −r, (5.7)

R0101 = 1
2
f ′′ , R0212 = − f ′

2r3
, R1212 = − 1

2r3
(ff ′ + ḟ) ;

R11 = − 1

2r

[

f (rf ′′ + f ′) + ḟ
]

, R01 = − 1

2r
(rf ′′ + f ′) , R22 = −f ′

r3
;

R = −1

r
(rf ′′ + 2f ′) , (5.8)

G0
0 = G1

1 = 1/l2 − q/2r3, G1
0 = (µ̇r − q̇)/2r2, G2

2 = 1/l2 + q/r3 , (5.9)

where ‘prime’ and ‘dot’ mean ∂/∂r and ∂/∂v. The scalar curvature of D − d = 3 sector is

(D−d)R = 6k/r20 = 2Λ0 = −1/2α . (5.10)

In fact, (5.6) - (5.9) together with (5.10) present 6D solution in EGB gravity. Whereas

(5.6) - (5.9) without (5.10) can be considered as a solution to the Einstein 3D equations on

M3, which are not vacuum equations with redefined cosmological constant Λ = −1/l2:

(3)RAB − 1
2
gAB(3)R + gABΛ = κ3TAB . (5.11)

A natural treating in [29] is that TAB, corresponding to (5.9), is created by extra dimensions.

Here, both the full 6D presentation in the framework of the EGB gravity and the 3D

interpretation (5.11) are explored. We consider a cylinder S := r = const. The wall S can

be thought as 5D timelike hypersurface in 6D spacetime, or as 2D timelike hypersurface

in 3D spacetime; ∂Σ is an intersection of S with a lightlike hypersurface v = const. To

present a mass flux through ∂Σ one has to calculate the component Î1 of the currents (3.2)

or (3.7) and integrate it over ∂Σ. The total background metric in the 6D derivation can be

chosen as gµν = gAB × r20γab with the AdS3 metric gAB presented by f ≡ r2/l2 + 1 in the

element of the type (5.6), see [24]. Whereas the background metric in the 3D derivation is

chosen as the same AdS3 metric gAB only. Background components are derived from (5.6) -

(5.10) after applying the barred procedure. To calculate the mass flux we use the timelike

background Killing vector ξα = λα = (−1, 0); λα = (f, −1, 0) where 0 includes all the rest

space dimensions both for 6D and for 3D derivations.

Let us present results of calculations in the framework of the canonical prescription of

subsection 3.1 with the formulae of subsection 4.2 in detail. Turn to the 6D derivation. Then

using all the components (5.6) - (5.10) together with the barred ones, we substitute them

into (4.5) and (4.6). Recall that Z(λ)-term disappears, and note that, unlike subsection 5.1,
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we need to calculate the spin term (4.6). After very prolonged and cumbersome calculations

we obtain for (3.2): (E)Î1
C(λ) ≡ (GB)Î1

C(λ) ≡ 0 that gives Î1
C(λ) ≡ 0. Thus,

Ṁ =
∮

∂Σ
dxD−2Î1

C ≡ 0 . (5.12)

At a first glance, the result (5.12) looks strange. However, it is in full correspondence

with the results in [24] where we have just calculated the masses of d = 3 objects in D = 6

EGB gravity with the use of the superpotentials constructed in [7]. Let us demonstrate

this correspondence. A general expression for the total mass has been obtained as a surface

integral in D = 6 dimensions [24]:

M =
∮

∂Σ
dxD−2

√

−gD I01 =
∮

r→∞

dφ
√

−gd I01
∮

r0

dxD−d
√

−gD−d = Vr0

∮

r→∞

dφ
√

−gd I01.

(5.13)

Integration over d = 3 sector gives zero. In the canonical approach, it is so because I01
C ≡

0 (in more details (GB)Î01
C ≡ −(E)Î01

C 6= 0). For the Belinfante corrected approach the

integration over d = 3 sector gives zero due to the asymptotic behaviour of I01
B , in spite of

I01
B 6= 0. The formula (5.13) shows that one needs to consider two possibilities: (i) when extra

D − d = 3 dimensions are not compactified; (ii) when they are compactified by appropriate

identifications.

In the case (i), one has to consider objects as 6 dimensional ones. Of course, in spite of

Vr0 → ∞, their masses in (5.13) have to be equated to zero. Next, because M is defined for

arbitrary ∂Σ one has M∂Σ0
= M∂Σ1

= 0 that determines null flux through ∂Σ. One finds

just a correspondence of (5.12) with the corresponding conclusion in [24].

The case (ii), in our opinion, has a more physical sense. Now, Vr0 in (5.13) is finite.

Then, because I01 ∼ 1/κ6 one can set κ3 = κ6/Vr0, and, really, in (5.13) one has M ∼ 1/κ3.

This means that the 6D Einstein constant κ6 is reduced to the 3-dimensional one κ3 that

is the standard Kaluza-Klein prescription. One has to reject 6D derivation and turn to 3D

derivation with the Einstein presentation (5.11) and with the evident interpretation of κ3.

In this case, null mass is quite unacceptable. Therefore one has to use ingredients of the

Einstein theory only, and not the EGB one. Thus, applying superpotentials constructed in

[7], we have used their Einstein parts only, changing κ6 by κ3: (E)Î01 = (µ + 1 − q/r)/2κ3

that gives acceptable mass for the solution (5.6) on the AdS3 background [24]:

(E)M =
∮

∂Σ
dxD−2

(E)Î01
C = (µ+ 1)π/κ3 . (5.14)

Exploring the expressions for currents presented here one has to use the Einstein inter-

pretation (5.11) also. However now, unlike the superpotential application, we cannot use the

reduced the Einstein part of the current of the 6D description because (GB)Î1
C ≡ (E)Î1

C ≡ 0.
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Nevertheless, there is no a contradiction. Recall that in 6D picture we are based on the

vacuum EGB equation (pure gravitational), whereas for the 3D description (5.11) construct-

ing currents (see (3.2) and (3.4)) we must use the created matter at the right hand side of

(5.11). Thus, in 3D derivation, the component T 1
0 = (µ̇r−q̇)/2κ3r

2 in (5.11) just determines

(E)Î1
C =

√−gT 1
0λ

0 = −(µ̇− q̇/r)/2κ3 by a crucial way. This gives the flux:

(E)Ṁ =
∮

∂Σ
dxD−2

(E)Î1
C = −µ̇π/κ3 . (5.15)

Differentiating mass (5.14) (obtained in the framework of the superpotential derivation) with

respect to v one obtains: (E)Ṁ = µ̇π/κ3 [24]. One can see a difference in a sign, however

there is no contradiction. A simplified differentiation of M with respect to v gives, in fact,

an absolute value of the flux. A check with using Î1 = ∂0Î10 and antisymmetry Î10 = −Î01

shows a correspondence in signs also.

The same conclusions follow when the Belinfante symmetrization method developed in

subsections 3.2 and 4.3 is applied. Though, unlike the canonical approach, in 6D description:

I1
B 6= 0; and, in 3D interpretation, (E)I1

B is not determined by the created energy-momentum

in (5.11) only. However, due to the asymptotic behaviour, additional terms do not contribute

into the final expressions after integration. Thus, once again, in the case (i), one obtains a

zero mass flux (5.12), whereas, in the case (ii), one needs to use the 3D (5.11) interpretation

and has the flux (5.15).

6 Concluding remarks

The modern development of multidimensional metric theories themselves, naturally, in-

cludes/induces a development of methods for constructing conserved quantities. In the

present paper, in the framework of the D-dimensional EGB gravity we have presented the

explicit covariant expressions for the conserved currents of perturbations of an arbitrary type

on arbitrary curved backgrounds. The two methods, canonical and Belinfante corrected, have

been applied. The main parts in the structure of the canonical and Belinfante corrected cur-

rents, which are the energy-momentum tensors (4.5) and (4.7), are the generalization of the

Einstein pseudotensor [11] and of the Papapetrou pseudotensor [15], respectively.

Together with an evident academic interest, a construction of such currents can be very

useful in applications. Indeed, many solutions of modified metric theories need to be exam-

ined in detail. It is necessary because frequently such solutions look quite exotic, and one has

to understand the physical meaning they represent, how contradictive or non-contradictive

they are, etc. Thus, by presenting rules for constructing conserved quantities including
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conserved currents that are important physical characteristics of objects, we present the

instrument for analyzing these objects.

Applications in section 5, should be seen as tests for the new expressions. Indeed, weak

flat gravitational wave is the standard object with well studied properties; also properties

of the 3D radiating black holes already have been studied by us in [24]. However, the

direct calculation of the mass flux using the new current expressions can be viewed as an

important independent result. In [28, 29], the matter presented by the energy-momentum

at the right hand side of (5.11) is treated as being created by all the extra dimensions

as a whole. Of course, such a derivation differs from the standard Kaluza-Klein picture

where each of compactified extra dimensions determines its own charge. Nevetherless, as

we show in subsection 5.2, the compactified dimensions are reduced in the standard Kaluza-

Klein prescription. Also, we demonstrate that the created matter in (5.11) determines the

classically defined mass (5.14) (see [24]) and mass flux (5.15) of the objects. Thus, keeping

in mind the above comments, we support the claim of the authors of [28, 29] that their

solutions present the objects of the Kaluza-Klein type.

It is important to compare our results with the results by Cai, Cao and Ohta [30]. The

authors, in the framework of the Lovelock gravity of an arbitrary order, have constructed and

analyzed a new solutions analogous to (5.6)-(5.10), only static. Using the Wald technique

[31], they have proved that the objects corresponding to such solutions have zero entropy

and, consequently, zero mass. This coincides with our conclusions. Indeed, [30] uses the

EGB Lagrangian in all D dimensions. In our consideration, in the case (i), when objects

are examined in all 6 dimensions, both mass of the objects [24] and their mass flux (even in

radiative regime (5.12)) are equal to zero.

In the future, we intend to continue to construct conserved quantities in EGB gravity, and

present conserved currents in the framework of the symmetrical approach (see Introduction).

Also, we plan to use the new expressions, both for the superpotentials and for the currents

in EGB gravity, to describe interesting solutions, say, 4D objects in D-dimensional EGB

gravity [28].

Lastly, the possibility of a connection between AdS gravity and a conformal field theory

(CFT) living on its boundary induces a considerable attention. A definition of conserved

quantities and an existence of nonzero energy for asymptotically AdS vacuum spacetime

could be useful to identify the AdS/CFT correspondence at the boundary. To define finite

conserved quantities one requires a regularization procedure, the mechanism of which does

not invoke the substraction of background configurations. In this context, one of more

popular approaches is the boundary counterterm method. It is developing more intensively
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in the framework of EGB gravity, one can recommend, e.g., interesting works [32, 33] and

numerous references there in. Unlike the boundary counterterm method, the prescriptions

explored here (and in [7, 18, 24]) use the background spacetime in a crucial way. Nevertheless,

it could be very useful to compare these approaches, and we plan to do this in future.
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A Auxiliary expressions in EGB gravity

In this appendix, we calculate the coefficients, which are derived following the definitions

(2.8), (2.9) and (2.10), and correspond to the Lagrangian L̂EGB in (4.1). However, at the

first it is useful to present the next derivatives:

−2κD√−g

∂L̂EGB

∂gµν
=

−2κD√−g

(

∂L̂E

∂gµν
+

∂L̂GB

∂gµν

)

= 1
2
gµν(R − 2Λ0) +

[

2
(

gρ(µ∆
ν)
α[σ∆

α
ρ]τ + gαρ∆

(µ
τ [σ∆

ν)
ρ]α + gρ(µD[σ∆

ν)
ρ]τ

)

gτσ −Rµν
]

+
αgµν

2

(

RλτρσR
λτρσ − 4RρσR

ρσ +R2
)

+ 2α
[

2
(

gλ(µ∆ν)
ασ∆

α
ρτ + gαλ∆(µ

τσ∆
ν)
ρα + gλ(µDσ∆

ν)
ρτ

)

Rλ
τρσ −RµτρσRν

τρσ

]

− 8α
[

2
(

gρ(µ∆
ν)
α[σ∆

α
ρ]τ + gαρ∆

(µ
τ [σ∆

ν)
ρ]α + gρ(µD[σ∆

ν)
ρ]τ

)

Rτσ −RµρRν
ρ

]

+ 2αR
[

2
(

gρ(µ∆
ν)
α[σ∆

α
ρ]τ + gαρ∆

(µ
τ [σ∆

ν)
ρ]α + gρ(µD[σ∆

ν)
ρ]τ

)

gτσ − Rµν
]

; (A.1)

−2κD√−g

∂L̂EGB

∂(Dαgµν)
=

−2κD√−g

(

∂L̂E

∂(Dαgµν)
+

∂L̂GB

∂(Dαgµν)

)

= 2
[

∆α
σρg

σ[ρgµ]ν + gασ∆(µ
σρg

ν)ρ − gα(µ∆ν)
σρg

σρ
]

+ 4α
[

2Rασρ(µ∆ν)
σρ −∆α

σρR
σµνρ

]

− 4α
[

2Rασ∆(µ
σρg

ν)ρ − 2gα(µ∆ν)
σρR

σρ + 2gασ∆(µ
σρR

ν)ρ − 2Rα(µ∆ν)
σρg

σρ

+ ∆α
σρR

σρgµν +∆α
σρg

σρRµν − 2∆α
σρR

σ(µgν)ρ
]

+ 4αR
[

∆α
σρg

σ[ρgµ]ν + gασ∆(µ
σρg

ν)ρ − gα(µ∆ν)
σρg

σρ
]

; (A.2)

−2κD√−g

∂L̂EGB

∂(Dβαgµν)
=

−2κD√−g

(

∂L̂E

∂(Dβαgµν)
+

∂L̂GB

∂(Dβαgµν)

)

=
[

gα(µgν)β − gαβgµν
]

+ 2α
[

2Rα(µν)β − 4Rα(µgν)β + 2gµνRαβ + 2gαβRµν +R
(

gα(µgν)β − gαβgµν
)]

. (A.3)
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With using (A.1) - (A.3) we calculate the coefficients (2.8) - (2.10) for the EGB La-

grangian in (4.1). Because (2.8) is defined by (2.11), (2.12) and (2.10) we present these parts

separately. Thus

Ĝα
σ = (E)Ĝα

σ + (GB)Ĝα
σ (A.4)

=
√−g

(

Rα
σ − 1

2
δασR + δασΛ0

)

+ α
√−g

[

2
(

RRα
σ − 2Rα

τσρR
τρ +Rα

πρτRσ
πρτ − 2Rα

ρR
ρσ
)

− 1
2
δασ (RR)GB

]

.

Ûσ
α = (E)Ûσ

α + (GB)Ûσ
α (A.5)

= −
√−g

2κD

[

2gρ[τDσ∆
α]
ρτ − δασ (R− 2Λ0)

]

+
2α

√−g

κD

[(

Rαβρ
τ − 4gρ[αRβ]

τ +Rgρ[αδβ]τ
)

Dσ∆
τ
βρ

+ 2gβµ
(

DβR
αν + 2Rρ(α∆

ν)
βρ

)

∆τ
σ(µgν)τ − gρ(α∆β)

σρDβR
]

+
α
√−g

2κD

δασ (RR)GB .

m̂σ
αβ = (E)m̂σ

αβ + (GB)m̂σ
αβ (A.6)

= −
√−g

2κD

[

δασ∆
β
ρτg

ρτ − 2∆α
σρg

βρ +∆ρ
ρσg

αβ
]

+
2α

√−g

κD

[

Rατρ
σ∆

β
τρ − 2Rα(τβ)

ρ∆
ρ
τσ

]

+
4α

√−g

κD

[

4gρ[αRβ]
τ ∆

τ
ρσ + 2R[α

σ g
τ ]ρ∆β

τρ + 2gα[βRτ ]
ρ ∆

ρ
τσ

− gτβ
(

D(τR
α
σ) +Rρ

(τ∆
α
σ)ρ − Rα

ρ∆
ρ
τσ

)]

− α
√−g

κD

[(

δασ∆
β
ρτg

ρτ − 2∆α
σρg

βρ +∆ρ
ρσg

αβ
)

R − 2δ(ασ gτ)β∂τR
]

n̂σ
λαβ = (E)n̂σ

λαβ + (GB)n̂σ
λαβ (A.7)

=

√−g

2κD

{

gαβδλσ − gλ(αδβ)σ
}

+
α
√−g

κD

{

−2Rσ
(αβ)λ − 4Rλ

σg
αβ + 4R(α

σ gβ)λ +R
(

gαβδλσ − gλ(αδβ)σ
)}

.

It was checked directly that the coefficients ûσ
α in (2.8) (calculated with the use of (A.4),

(A.5) and (A.7)), and the coefficients (A.6) and (A.7) themselves satisfy exactly the identities

(2.16) - (2.19).

At last, using (A.6) we calculate the Belinfante correction (2.23) for the EGB gravity:

ŝαβσ = (E)ŝ
αβσ + (GB)ŝ

αβσ

=

√−g

κD

[

∆[α
τρg

β]σgτρ +∆ρ
λρg

σ[αgβ]λ −∆σ
λρg

ρ[αgβ]λ − 2∆
[α
λρg

β]λgρσ +∆
[α
λρg

β]ρgσλ
]
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+
2α

√−g

κD

[

gλ[α
(

Rβ]στ
ρ − 2Rβ]τσ

ρ

)

∆ρ
λτ + gλ[α∆β]

τρR
στρ

λ + gλ[αRβ]τρ
λ∆

σ
τρ

+ gσλ
(

Rλ
τρ[α∆β]

τρ − 3
2
Rαβτ

ρ∆
ρ
λτ

)]

+
4α

√−g

κD

[(

Rτ
λg

ρ(σ∆α)
τρ − gτρR

(σ
λ ∆α)

τρ − gσαRτ
ρ∆

ρ
τλ +D(τR

(σ
λ)g

α)τ +Rρ
(τ∆

(σ
λ)ρg

α)τ
)

gβλ

−
(

Rτ
λg

ρ(σ∆β)
τρ − gτρR

(σ
λ ∆β)

τρ − gσβRτ
ρ∆

ρ
τλ +D(τR

(σ
λ)g

β)τ +Rρ
(τ∆

(σ
λ)ρg

β)τ
)

gαλ

+
(

2gτ [αRβ]
ρ ∆

ρ
τλ − Rτ

λg
ρ[α∆β]

τρ + gτρR
[α
λ ∆

β]
τρ −D(τR

[α
λ)g

β]τ − Rρ
(τ∆

[α
λ)ρg

β]τ
)

gσλ
]

+
2α

√−g

κD

[(

gσ[αgβ]λ∆ρ
λρ −∆

(σ
λρg

α)ρgβλ +∆
(σ
λρg

β)ρgαλ − gσ[α∆
β]
λρg

λρ − gσλgρ[α∆
β]
λρ

)

R

+
(

gλ[αgβ]σ + gσ[αgβ]λ
)

∂λR
]

(A.8)

Of course, the Einstein part exactly coincides with the one presented in [17].

References

[1] Kodama H, Ishibashi A and Seto O 2000 Brane world cosmology — gauge-invariant

formalism for perturbation Phys. Rev. D 62 064022 (Preprint hep-th/0004160)

[2] Van de Bruck C, Dorca M, Brandenberger R H and Lukas A 2000 Cosmological per-

turbations in brane-world theories: Formalism Phys. Rev. D 62 123515 (Preprint hep-

th/0005032)

[3] Deruelle N, Dolezel T and Katz J 2001 Perturbations of brane worlds Phys. Rev. D

63 083513 (Preprint hep-th/0010215)

[4] Gorbunov D S, Rubakov V A and Sibiryakov S M 2001 Gravity waves from inflating

brane or mirrors moving in AdS5 JHEP 0110 015 (Preprint hep-th/0108017)

[5] Binetruy P, Bucher M and Carvalho C 2004 Models for the brane-bulk interaction:

Toward understanding braneworld cosmological perturbation Phys. Rev. D 70 043509

(Preprint hep-th/0403154)

[6] Libanov M V and Rubakov V A 2005 Lorentz-violating brane worlds and cosmological

perturbations Phys. Rev. D 72 123503 (Preprint hep-th/0509148)

[7] Petrov A N 2009 Three types of superpotentials for perturbations in the Einstein-

Gauss-Bonnet gravity Class. Quantum Grav. 26 135010 (16pp); Corrigendum: Class.

Quantum Grav. 27 (2010) 069801 (2pp) (Preprint arXiv:0905.3622 [gr-qc])

[8] Lovelock D 1971 The Einstein tensor and its generalizations J. Math. Phys. 12 498

20



[9] Lust D and Theisen S 1989 Lectures on string theory Lect. Notes Phys. 346 1

[10] Charmousis C 2009 Higher order gravity theories and their black hole solutions Lect.

Notes Phys. 769 299 (Preprint arXiv:0805.0568 [gr-qc])

[11] Einstein A 1916 The Hamiltonian principle and general theory of relativity Sitzungsber.

preuss. Akad. Wiss. 2 1111

[12] Von Freud Ph 1939 Über die ausdrücke der gesamtenergie und des gesamtimpulses eins

materiellen systems in der allgemeinen relativitätstheorie Ann. of Math. 40 417
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