Moment of Inertia

Alejandro A. Torassa
Creative Commons Attribution 3.0 License (2013) Buenos Aires, Argentina atorassa@gmail.com

Abstract

This paper presents an equation to calculate the moment of inertia of a system of particles with respect to the unit position vector $\hat{\mathbf{r}}_{i}$.

The moment of inertia of a system of particles with respect to the unit position vector $\hat{\mathbf{r}}_{i}$, is given by:

$$
I=\sum_{i} m_{i}\left(\hat{\mathbf{r}}_{i} \cdot \mathbf{r}_{i}\right)
$$

where m_{i} is the mass of the i-th particle, $\hat{\mathbf{r}}_{i}$ is the unit position vector of the i-th particle, and \mathbf{r}_{i} is the position of the i-th particle ($\hat{\mathbf{r}}_{i}$ and \mathbf{r}_{i} are perpendicular to the axis of rotation)

