Enhancement of Geometric Phase by Frustration of Decoherence:
A Parrondo like Effect
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Geometric phase plays an important role in evolution of pure or mixed quantum states. However,
when a system undergoes decoherence the development of geometric phase may be inhibited. Here,
we show that when a quantum system interacts with two competing environments there can be
enhancement of geometric phase. This effect is akin to Parronodo like effect on the geometric phase
which results from quantum frustration of decoherence. Our result suggests that the mechanism of
two competing decoherence can be useful in fault tolerant holonomic quantum computation.

Introduction.- Geometric phase (GP) is a consequence
of the holonomy of the path traced by a quantum system
in its Hibert space, thereby highlighting its connection
to the intrinsic curvature of the space [I]. Even though
its classical foundation was laid by Pancharatnam [2], in
dealing with questions related to the characterization of
interference of classical light in distinct states of polariza-
tion, its quantum counterpart was discovered much later
by Berry [3] for cyclic adiabatic evolution. This was sub-
sequently generalized to non-adiabatic [4] and non-cyclic
evolutions [5]. Later, a quantum kinematic approach was
provided for the GP [6] and a generalized gauge poten-
tial for the most general quantum evolution was intro-
duced [7]. The concept of geometric phase is not limited
to pure state quantum evolution, but do appear for mixed
states [8HI0] also. Experimentally measurable geometric
phase for mixed states under unitary evolution was first
introduced in [9] and then generalized to nonunitary evo-
lutions [I0]. Since geometric phase depends on the evo-
lution path and not on the detailed dynamics, thereby
suggesting an inherent fault tolerance [I1], it can be a use-
ful resource for quantum computation. Using NMR [12]
and atom interferometry [I3] pure and mixed state geo-
metric phases have been realized experimentally. There
have been various other proposals to observe GP in a
coupled two-mode Bose-Einstein condensate [I4], Bose-
Einstein Josephson junction [I5] and a superconducting
nanostructure [16], in all of which it is imperative to con-
sider the effect of the ambient environment on the system
of interest [I7]. In recent times, there have been attempts
to connect GP with quantum correlations, in particular
entanglement [18)], in a variety of quantum systems.

The above reasons bring to focus the need to have an
understanding of the impact of the environment on the
study and practical implementation of GP. In fact, the
effect of measurement on the GP was first investigated
in [I9] and it was shown that in the limit of continuous
observation the GP can be suppressed. For mixed states
it was shown that the Uhlmann phase also decreases un-
der isotropic decoherence [20]. Open quantum systems is

the systematic study of the influence of the environment,
alternatively called the reservoir or bath, on the evolu-
tion of the system of interest. The basic idea is that one
follows the evolution of the system of interest by tracing
out the environmental degrees of freedom, resulting in a
non-unitary evolution. Decoherence and dissipation are a
natural consequence of this. Open quantum systems can
be broadly classified into two categories, one that involves
decoherence without dissipation [21, 22] and the other
where dissipation occurs along with decoherence [22] [23].
Experiments with trapped atoms have been performed
where both pure decoherence as well as dissipative type
of evolution have been generated by coupling the atomic
system to appropriate engineered reservoirs [24]. A prac-
tical implementation of GP would involve, for example,
a qubit interacting with its environment, resulting in its
inhibition. This calls for the need to have settings where
the inhibition of GP, due to the ubiquitous environment,
could be arrested. Quantum frustration of decoherence
(QFD), as demonstrated in this letter, would be a poten-
tial candidate for achieving this.

QFD [25] is the term ascribed to the general phenom-
ena when a quantum system coupled to two indepen-
dent environments by canonically conjugate operators re-
sults in an enhancement of quantum fluctuations, that
is, decoherence gets suppressed. The reason for this is
attributable to the non-commuting nature of the con-
jugate coupling operators that prevents the selection of
an appropriate pointer basis to which the quantum sys-
tem could settle down to. It has been studied in various
guises, such as an extension of the dissipative two-level
system problem [25], where the two non-commuting spin
operators of the central spin system were coupled to in-
dependent harmonic oscillator baths, or a harmonic os-
cillator, modelling a large spin impurity in a ferromag-
net, coupled to two independent oscillator baths via its
position and momentum operators [26]. In each case, ir-
respective of the system of interest or the coupling oper-
ators, QFD was observed. Another scenario where this
has been put to use is in quantum error correction [27].



These considerations were extended to the case of spin
baths [28], present, for example, in the case of quantum
dots, with similar results. These motivate us to study GP
in the presence of QFD. Interestingly, this could be also
thought of as an example of Parrondo’s paradox involving
two games which when played individually lead to a loos-
ing expectation, but when played in an alternative order
produce a winning expectation [29, B0]. The underlying
reason behind the surprising aspect of Parrondo’s game
is the breaking of an inherent symmetry in the problem.
This feature is also shared by quantum frustration mod-
els where the symmetry in the decay channel, were only
one bath present, is broken by the presence of coupling to
two independent baths by non-commuting operators. In
this letter, we take up a simple model of a frustrated open
quantum system and explicitly show the enhancement of
GP. This highlights the role of quantum frustrated deco-
herence leading to Parrondo like effect on the geometric
phase.

Model.- We study the influence of QFD on GP by tak-
ing up a simple model involving a central spin, or a qubit
which would be our system of interest, interacting with
two independent spin baths via two non-commuting spin
operators
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where Hg is the system (single qubit) Hamiltonian and
Hgpr is the system-reservoir interaction Hamiltonian.
Here o;, i = x,y, 2 are the three Pauli matrices for the
central spin, I¥ and Jé are the bath spin operators. Also,
a1, ag are the two spin-bath coupling constants and w
comes from the basic system Hamiltonian, representing
the initial magnetic field. The bath dynamics itself is
not considered. This serves two purposes; it allows for
an analytical treatment of the model and at the same
time captures its essence, since in solid state spin sys-
tems with dominant spin-environment interactions, such
as quantum dots where such a model could be envisaged,
the internal bath dynamics composed of nuclear spins
would be very slow compared to the central electronic
spin [31].

Assume an uncorrelated system-reservoir initial state
with the central spin in
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Eq. is the most general single qubit density matrix
where 0 € {0,7} and ¢ € {0,27} are the polar and az-
imuthal angles, respectively. The full form of the initial
density matrix with an unpolarized initial bath state is
psr(0) = 53w ps(0) ® oy @ Iyn, where N is the total

number of spins present in each bath. Under the inter-
action Hamiltonian, the total state evolves as psr(0) —
psr(t) = exp[—i(Hs + Hsr)t|psr(0) expl[i(Hs + Hsr)t].
After interaction, the reduced state of the spin is given
by ps(t) = Trr[psr(t)]. The Bloch vector representation
of a spin—% particle, which is the central spin here, is
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where (0;(1)) = Y02 o Gy Gona T (P s (0) (1))
and my, mo label the eigenvalues of bath spin operators
and range from f% to % The average polarizations of
the central spin come out to be
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The vector v(t) = Tr {ps(t)a(O)} is called the Bloch

vector of the system. For pure states |v(t)] = 1 while
for mixed states, |v(t)| < 1, that is, the Bloch vector
penetrates into the Bloch sphere.

GP of frustrated spin system: Explicit solution and
analysis.- A general mixed state density matrix p(t) =



>k AME) |0k (t))(@r(t)| is subject to purification, by the

introduction of an ancilla, as
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where A(k), |¢or(t)) are the eigenvalues and eigenvectors
of the reduced density matrix p(t) under consideration,
respectively, and |ag) represent the ancilla. The Pan-
charatnam relative phase, a(t) = arg({(¥(0)|¥(¢))) re-
duces to the GP when the parallel transport condition,
(pr(t)|d/dt|¢r(t)) = 0,k = 1...P corresponding to the P
eigenstates is satisfied. The GP for the mixed state,
ps(t) [Eq. (3] . satisfying the parallel transport condi-
tlons assumes the form
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where A, (7) are the eigenvalues and ¢ (7) are the cor-
responding eigenvectors of the reduced density matrix

ps(7) [Eq. (@]
The Eq. (8) can be shown to be
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Here 4 = (02(0)), R = 5y/{oa @07 T {0,@NF and
tan(x(t)) = <Zy(?>. Also, sin (%) = # and

cos (%) = \/@ A% + AR?. The GP in the

presence of two competing decoherence processes | Eq.@ﬂ
can also be expressed as
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where dx(t) = (x(t) — x(0)). It can be easily seen from

Eq. . ) that if we remove the influence of the environ-
ment, we obtain for 7 = =&, v, = —m(1 — cos(byp)), as
expected, which is the standard result for the unitary
evolution of an initial pure state. If we take the angle
0o = m, that is, the South Pole of the Bloch sphere of the
spin of interest, then Eq. simplifies to

yy(7) = ;/0 dt () (1 — cosby) . (11)
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FIG. 1:

(Color online) GP [vq4
(a) when aq = 1 and az = 0, that is, for the case of a single

()] with respect to 6 and ¢
bath, (b) when a1 = as = %, (c) when a1 = 73 and asp = %
(d) when ay = ap = . Here w = 2, and time ¢t = 50. A
comparison between (a), (b), (c), and (d) reiterates the point
that the decay of GP gets frustrated when both the baths are
acting and one of the best strategies is seen to be the case

where a1 = as = i.

It can be noticed that a contribution to the GP, in Eq.
, coming from the argument of the exponential, re-
sembles the solid-angle expression for GP in the usual
demonstrations.

In Fig.[I] GP with respect to § and ¢ for different val-
ues of coupling constants a; and as for an evolution
time ¢ = 50 and w = 2 is depicted. A comparison be-
tween Figs.[L(a)ll(b)} [L(c)| and |[1(d)[ where a; = 1 and
ay =0, 00 =ay =1/v2, a1 = v/3/2 and ap = 1/2, and
a1 = ae = 1/4, respectively, brings out the point that
the decay of GP gets frustrated when both the baths are
acting and one of the best strategy seems to be the case
of a1 = ag = l In Flgl GP for a; = ag = 1/4 when
t = 50 and ¢t = 200 is shown and we can note that the
optimum value of a1 and «y for maximum frustration of
GP varies with time. In Fig.[3] a comparison is made of
GP for different coupling constants with respect to 6 and
¢ for time ¢ = 50. For the QFD regime, that is, when
a1 # 0 and ag # 0 we observe that the value of GP is
higher as compared to the case where QFD is not ap-
plicable, that is, for the case of single coupling constant.
These observations bring out the inherent robustness of
GP against decay of quantum fluctuations in the presence
of QFD.

Analogy with Parrondo games.- The effect of frustra-
tion on GP could be thought of as a Parrondo’d game:
each game on its own is “a single qubit interacting with
its bath; one with o, and with another o,”; this would
result in decoherence and dissipation leading to inhibi-




FIG. 2: (Color online) GP for ay = ap = 1/4 with respect to
0 and ¢ for (a) time ¢t = 50 and (b) time ¢ = 200, respectively.
Here w = 2. Among other sets of a1, a2, the figure corre-
sponding to the case (a) is found to be optimum in resisting
the depletion of GP. Therefore, for different time different o
and ag will help to enhance the GP.

FIG. 3: (Color online) GP for different a1, a2 with respect to
0 and ¢ for time ¢t = 50 and w = 2. The red curve corresponds
to a1 = 1, ag = 0; the green curve corresponds to a; = 0,
a2 = 1; the light blue curve to a1 = az = i; while the dark
blue curve corresponds to a1 = a2 = % It is clearly evident

from the plots that the decay of GP gets frustrated due to
the presence of both the couplings a; and ae.

tion of GP. This would be the situation where each player
looses his game. However, when the two games are played
in a synchronized fashion; corresponding, here, to the
case of “the qubit interacting with two independent baths
via non-commuting operators with coupling strengths a;
and as”, then the decoherence and dissipation can get
frustrated leading to improvement in GP over some range
of parameters. Though, we have presented the Parrondo
like effect for GP for our model system, we expect this
to be a generic feature of a quantum system interacting
with two competing environments.

Conclusions.- To conclude, we have, by analyzing a
simple model of QFD, illustrated the enhancement of ge-
ometric phase in the presence of two competing environ-
ments. The model being simple allows for an explicit
evaluation, but is generic in the sense that it captures
the essence of frustration on GP for other models as well.
Here we consider a qubit interacting with two indepen-

dent baths via non-commuting operators, for e.g., o4, oy.
Naively, one would expect that due to interaction with
two baths, the decoherence effect would increase leading
to inhibition of geometric phase. However, in contrast to
this, it is found that decoherence gets suppressed: thus
providing a typical framework for the Parrondo kind of
game. Parrondo’s games take place when a symmetry in
the original problem gets broken. In this case the bro-
ken symmetry would be the interaction of the qubit with
the two independent baths via two non-commuting oper-
ators. Here a purely dephasing scheme would not work as
that would require the system and interaction Hamilto-
nians to commute [2I]. But it is the non-commutativity
of operators in the interaction Hamiltonian that leads to
the Parrondo like effect for the geometric phase. This
suggests that for quantum frustration of decoherence to
be effective, we need both decoherence as well as dissipa-
tion. We hope that the effect found here can be used in
fault tolerant quantum computation. This may also find
wide applications in enhancement of geometric phases in
other systems under competing decoherence.
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