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Abstract 

In the present paper, we use periodic orbit quantization as suggested by Bohr-Sommerfeld 

in order to analyze quantization in astrophysical phenomena, i.e. planetary orbit distances. 

It is known that one can deduce Bohr-Sommerfeld quantization rules from Burger’s 

turbulence [4], and recently such an approach leads to a subfield in physics known as 

quantum turbulence [5]. Further recommendation for generalizing Bohr-Sommerfeld 

quantization rules is also mentioned. 

 

Introduction 

It is known that quantum mechanics exhibits fractality at dF=2, and an extensive report has 

been written on this subject and its related issues [1]. Moreover, a fractal solution of time-

dependent Schrodinger equation has been suggested some time ago by Datta [2]. On the 

other side, if one takes a look at planetesimals in the case of planetary system formation, 

interstellar gas and dust in the case of star formation, the description of the trajectories of 

these bodies is in the shape of non-differentiable curves, and we obtain fractal curves with 

fractal dimension 2 [3]. This coincidence between fractality of quantum mechanics and 

fractal dimension of astrophysical phenomena seems to suggest that we can expect to use 

quantum mechanical methods such as wave mechanics and periodic orbit quantization to 

analyze astrophysical phenomena. Such an analysis has been carried out for example by 

Nottale and Celerier [3] in order to describe these phenomena from the viewpoint of 

macroscopic Schrodinger equation.  

In the present paper, we use periodic orbit quantization as suggested by Bohr-Sommerfeld 

in order to analyze quantization in astrophysical phenomena, i.e. planetary orbit distances. 

It is known that one can deduce Bohr-Sommerfeld quantization rules from Burger’s 

turbulence [4], and recently such an approach leads to a subfield in physics known as 

quantum turbulence [5]. Therefore, turbulence phenomena can also yield quantization, 

which also seems to suggest that turbulence and quantized vortice is a fractal phenomenon.  

We will present Bohr-Sommerfeld quantization rules for planetary orbit distances, which 

will obtain the same result with a formula based on macroscopic Schrodinger equation. 
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Further recommendation for generalizing Bohr-Sommerfeld quantization rules is also 

mentioned. 

 

Bohr-Sommerfeld quantization rules and planetary orbit distances 

It was suggested in [6] and [7] that Bohr-Sommerfeld quantization rules can yield an 

explanation of planetary orbit distances of the solar system and exoplanets. Here, we begin 

with Bohr-Sommerfeld’s conjecture of quantization of angular momentum. As we know, for 

the wavefunction to be well defined and unique, the momenta must satisfy Bohr-

Sommerfeld’s quantization condition: 

  ,.2.∫
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for any closed classical orbit Γ . For the free particle of unit mass on the unit sphere the 

left-hand side is: 
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Where 
ω

π2
=T is the period of the orbit. Hence the quantization rule amounts to 

quantization of the rotation frequency (the angular momentum): .hn=ω Then we can write 

the force balance relation of Newton’s equation of motion: 
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Using Bohr-Sommerfeld’s hypothesis of quantization of angular momentum (2), a new 

constant g was introduced: 
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Just like in the elementary Bohr theory (just before Schrodinger), this pair of equations 

yields a known simple solution for the orbit radius for any quantum number of the form: 
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Where r, n, G, M, vo represents orbit radii (semimajor axes), quantum number (n=1,2,3,…), 

Newton gravitation constant, and mass of the nucleus of orbit, and specific velocity, 

respectively. In equation (6), we denote: 
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The value of m and g in equation (7) are adjustable parameters. 

Interestingly, we can remark here that equation (6) is exactly the same with what is 

obtained by Nottale using his Schrodinger-Newton formula [8]. Therefore here we can 

verify that the result is the same, either one uses Bohr-Sommerfeld quantization rules or 

Schrodinger-Newton equation. The applicability of equation (6) includes that one can 

predict new exoplanets (extrasolar planets) with remarkable result.  

Furthermore, one can find a neat correspondence between Bohr-Sommerfeld quantization 

rules and motion of quantized vortice in condensed-matter systems, especially in 

superfluid helium [9]. In this regards, a fractional Schrodinger equation has been used to 

derive two-fluid hydrodynamical equations for describing the motion of superfluid helium 

in the fractal dimension space [10]. Therefore, it appears that fractional Schrodinger 

equation corresponds to superfluid helium in fractal dimension space. 

 

Discussion and results 

With the help of equation (6) one can describe planetary orbit distances of both the inner 

planets and Jovian planets in the solar system [7]. See Table 1. Moreover, we were able to 

predict three new planets in the outer-side of Pluto. This new prediction of three planets 

beyond the orbit distance of Pluto is made based on our method called CSV (Cantorian 

Superfluid Vortex) [7].  

Table 1: Comparison of prediction and observed orbit distance of planets in Solar system 

(in 0.1AU unit) 

Object No. Titius-

Bode 

Nottale [8]          CSV [7] Observed ∆ (%) 

 1  0.4 0.43   

 2  1.7 1.71   

Mercury 3 4 3.9 3.85 3.87 0.52 

Venus  4 7 6.8 6.84 7.32 6.50 

Earth 5 10 10.7 10.70 10.0 -6.95 
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Object No. Titius-

Bode 

Nottale [8]          CSV [7] Observed ∆ (%) 

Mars 6 16 15.4 15.4 15.24 -1.05 

Hungarias 7  21.0 20.96 20.99 0.14 

Asteroid 8  27.4 27.38 27.0 1.40 

Camilla 9  34.7 34.6 31.5 -10.00 

Jupiter  2 52  45.52 52.03 12.51 

Saturn 3 100  102.4 95.39 -7.38 

Uranus 4 196  182.1 191.9 5.11 

Neptune 5   284.5 301 5.48 

Pluto 6 388  409.7 395 -3.72 

2003EL61 7   557.7 520 -7.24 

(Sedna) 8 722  728.4 (760) (4.16) 

2003UB31 9   921.8 970 4.96 

Unobserv. 10   1138.1   

Unobserv. 11   1377.1   

 

For inner planets, our prediction values are very similar to Nottale’s (1996) values, starting 

from n = 3 for Mercury; for n = 7 Nottale reported minor object called Hungarias. It is worth 

noting here, we don’t have to invoke several ad hoc quantum numbers to predict orbits of 

Venus and Earth as Neto et al. (2002) did [7]. We also note here that the proposed method 

results in prediction of orbit values, which are within a 7% error range compared to 

observed values, except for Jupiter which is within a 12.51% error range. 

The departure of our predicted values compared to Nottale’s predicted values (1996, 1997, 

2001) appear in outer planet orbits starting from n = 7. We proposed some new 

predictions of the possible presence of three outer planets beyond Pluto (for n = 7, n = 8, n 

= 9) [7].  It is very interesting to remark here, that this prediction is in good agreement with 

Brown-Trujillo’s finding (March 2004, July 2005) of planetoids in the Kuiper belt 

[13][14][15]. Although we are not sure yet of the orbit of Sedna, the discovery of 2003EL61 

and 2003UB31 are apparently in quite good agreement with our prediction of planetary 

orbit distances based on CSV model.    

Therefore, we can conclude that while our method as described herein may be interpreted 

as an oversimplification of the real planetary migration process which took place sometime 

in the past, at least it could provide us with useful tool for prediction [6b]. Now we also 

provide new prediction of other planetoids which are likely to be observed in the near 

future (around 113.8AU and 137.7 AU). It is recommended to use this prediction as guide 

to finding new objects (in the inner Oort Cloud).  

What we would like to emphasize here is that the quantization method does not have to be 

the true description of reality with regards to celestial phenomena. As always this method 

could explain some phenomena, while perhaps lacks explanation for other phenomena. But 
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at least it can be used to predict something quantitatively, i.e. measurable (exoplanets, and 

new planetoids in the outer solar system etc.). 

In the mean time, a correspondence between Bohr-Sommerfeld quantization rules and 

Gutzwiller trace formula has been shown in [11], indicating that the Bohr-Sommerfeld 

quantization rules may be used also for complex systems. Moreover, a recent theory 

extends Bohr-Sommerfeld rules to a full quantum theory [12]. 

 

Concluding remarks 

In the present paper, we use periodic orbit quantization as suggested by Bohr-Sommerfeld 

in order to analyze quantization in astrophysical phenomena, i.e. planetary orbit distances. 

It is known that one can deduce Bohr-Sommerfeld quantization rules from Burger’s 

turbulence [4], and recently such an approach leads to a subfield in physics known as 

quantum turbulence [5].  

We presented Bohr-Sommerfeld quantization rules for planetary orbit distances, which 

will obtain the same result with a formula based on macroscopic Schrodinger equation. 

Further recommendation for generalizing Bohr-Sommerfeld quantization rules is also 

mentioned. 

 

References: 

[1] Kroger, H. (2000) Fractal geometry in quantum mechanics, field theory and spin 

systems, Physics Reports 323 (Amsterdam: Elsevier B.V.), pp. 81-181. 

[2] Datta, D.P. (1997) Fractals in linear ordinary differential equations, arXiv:chao-

dyn/9707009. 

[3] Celerier, M.N., & Nottale, L. (2005) Generalized macroscopic Schrodinger equation in 

scale relativity, in F. Combes et al. (eds) SF2A 2004, arXiv: gr-qc/0505012 (2005). 

[4] Boldyrev, S. (1996) A note on Burger’s turbulence, arXiv:hep-th/9610080 

[5] Tsubota, M. (2008) Quantum turbulence, arXiv:0806.2737; [5b] Tsubota, M., & K. 

Kasamatsu (2012) Quantized vortice and quantum turbulence, arXiv:1202.1863. 

[6] Christianto, V. (2006) On the origin of macroquantization in astrophysics and celestial 

motion, Annales de la Fondation Louis de Broglie, Volume 31 no 1; [6b] F. Smarandache & 

Christianto, V. (2006) Schrodinger equation and the quantization of celestial systems. 

Progress in Physics, Vol. 2, April 2006.     



6 

 

[7] Christianto, V., (2004) A Cantorian superfluid vortex and the quantization of planetary 

motion, Apeiron, Vol. 11, No. 1, January 2004, http://redshift.vif.com 

[8] Nottale, L., Astron. Astrophys. 327, 867-889 (1997). 

[9] Fischer, U. (1999) Motion of quantized vortices as elementary objects. arXiv: cond-

mat/9907457. 

[10] Tayurskii, D.A., & Lysogorskiy, Yu. V. (2011) Superfluid hydrodynamics in fractal 

dimension space, arXiv: 1108.4666  

[11] Vattay, G. (1995) Bohr-Sommerfeld quantization of periodic orbits. arXiv: chao-

dyn/9511003. 

[12] Cushman, R., & Sniatycki, J. (2012) Bohr-Sommerfeld-Heisenberg theory in geometric 

quantization, arXiv: 1207.1302. 

[13] Brown, M.E. et al. (2006) Direct measurement of the size of 2003 UB313 from the 

Hubble Space Telescope, arXiv: astro-ph/0604245. 

[14] Brown, M.E., Trujillo, C.A., & Rabinowitz, D.L. (2005) Discovery of a planetary-sized 

object in the scattered Kuiper belt, submitted to ApJ Letters, arXiv: astro-ph/0508633. 

[15] Fraser, W.C., & Brown, M.E. (2009) NICMOS Photometry of the unusual dwarf planet 

Haumea and its satellites, arXiv:0903.0860 


