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There is a unique variant of Absolute Parallelism, which is very simple as it has no free parameters:
nothing (nor D=5) can be changed if to keep the theory safe from emerging singularities of solutions.
On the contrary, eternal solutions of this theory, due to the linear instability of the trivial solution,
should be of great complexity which can in some scenarios (with a set of slowly varying parameters of
solutions) provide a few phenomenological models including a modified (better to say, new or another)
gravity and an expanding-shell cosmology (the longitudinal polarization gives the anti-Milne model).
The former looks (mostly) like RµνGµν -gravity on a brane of a huge scale L along the extra-dimension.

The correction to Newton’s law of gravity, which depends in this theory on two parameters (bi-

Laplace equation) and behaves as 1/r on large scales, r >L (kpc>L> pc), can start from zero (the

Rindler term vanishes) if a constraint is imposed on these parameters. On further consideration, one

can conclude that generation of gravitational ‘short’ waves, λ<L, is inhibited in this new gravity.

1. Introduction

The basement of the modern physics is composed of two main theories: the general relativity
theory (GR; the leading and supposedly successful, at the expense of inventing those dark
entities, gravitation theory) and the standard model of elementary particle physics (a variant of
quantum field theory which has a great number of unexplained features and fitting parameters).
These two are based on very different principles and even symmetries, but they have something
in common: both are affected by the problem of singularities or divergencies (despite different
shifts and tricks, like supersymmetry, strings, and so on) of solutions. It is generally agreed that
a more fundamental theory should unite these two branches, two domains of natural phenomena;
and it is deadly evident that a reasonable theory should be free from singularities of solutions.1

There are too many interpretations of quantum mechanics;2 two of them – Copenhagen and
many-worlds – are of pretty similar ‘rating’ (this means that none is convincing enough).

Einstein was not satisfied with GR (and quantum mechanics as well) and he had proposed
absolute parallelism (AP) which unites symmetries of both general and special relativity theories.
Einstein and Mayer had obtained a vast list of compatible second order equations of (4D) AP
[1], most of them are non-Lagrangian; however this list is a bit incomplete.

Theoretical physicists form in fact a quite specific subset of experimentalists: they are doing
experiments on their own brains. The mainstream theorists participate in highly collective
‘experiments’. However, as one should note, string theory, as well as M-theory, still does not
deserve the definite article, the. (That is, nobody can answer, what is string theory?)

The result of my own ‘experiment’ is a single-field theory, really simple (according to Kol-
mogorov’s theory of algorithm complexity) and beautiful (that is, of very large symmetry) – the
unique (no free parameters) 5D variant of Absolute Parallelism, which is free from emerging
singularities in solutions of general position [2]. (The “Little Prince’s Principle” states: true
beauty should be single, should be unique. A theory with free parameters, or even a single
parameter, is actually a huge set of slightly different theories, only one of which is supposedly
true, but that true value(s) will never be measured “exactly”, at least because of funding limita-
tions; and there are no reasons to see “less beauty” in all other, wrong variants of such a theory.
Phenomenological models, with a set of ‘free parameters’, of course, are of some usefulness, but

1Some gauge dials carry the infinity sign ∞, but it’s just an exaggeration – no one can measure infinity.
2The most weird one imputes free will to elementary particles (= different tiny spaceship models); see

arXiv:physics/0004047 by R. Nakhmanson; sure, the degree of arbitrariness and unknownness in this model
is some greater than in string theory, or in the strand model (motionmountain.net/research.html).
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what we really need is a really fundamental theory which would provide us with all necessary
and well-behaved phenomenologies.)

Interestingly, in the absence of singularities, AP obtains topological features a tad similar
to that of nonlinear sigma-models. In order to give a clear presentation and full picture of the
theory, many items should be sketched: linear instability of the trivial solution and expanding
O4-symmetrical solutions; tensor Tµν (positive energy, but only three polarizations of 15 carry
D-momentum and angular momentum; how to quantize ?) and post-Newtonian effects; topolo-
gical classification of symmetrical 5D field configurations (alighting on evident parallels with the
particle combinatorics and chiral patterns of the Standard Model) and a ‘quantum phenomeno-
logy on an expanding classical background’; a ‘phenomenological’ RµνG

µν-gravity on a very thick
brane and a change in the Newton’s Law: 1

r2
goes to 1

r
with distance. (This is different from

the MOND paradigm [3]. MOND is not free of a strangeness: given two bodies of very different
mass, one can choose the distance between them such that the heavier body is in the MOND
regime, while the other still in the Newtonian regime – as a result, the third Newton’s law, if
not the second which is testable [4], should be violated. Moreover, MOND means violation of
linearity exactly for the case of small accelerations.)

The linear instability of the trivial solution, a very interesting feature, makes inevitable the
existence of strong non-linear effects; interestingly, the unstable waves (growing polarizations)
do not contribute to the energy-momentum. On the other hand, a spherically-symmetrical single
wave running along the radius (the longitudinal polarization, by itself, is stable) can serve as a
region of enhanced instability, a kind of wave-guide with a specific (ultrarelativistic) reduction of
the extra-dimension. A Lagrangian phenomenology of topological quanta (a kind of topological
Brownian particles which carry topological charges and/or quasi-charges [2, 6]) emerges, which
can look like a Quantum Field Theory (although the underlying theory is absolutely classical !).

The theory seems able to easily explain the meaning of many features of the Standard Model
– the flavors and colours, quark confinement, ubiquity of the least action principle (and the very
superposition principle as well). Moreover, this theory gives a number of testable predictions:

• spin zero elementary particles do not exist;

• neutrinos are true neutral (a kind of Majorana);

• there is no room for SUSY, Dark Matter, and Dark Energy;

• additional pseudovector bosons (responsible for dynamical mass generation) can exist;

• the gravitational part of the Lagrangian is RµνGµν , and, due to the large extra-dimension,
it gives switching from Newton’s law, 1/r2 (at small distances), to the more slowly de-
creasing force, 1/r, at larger distances;

• the Hubble plot should be described by the anti-Milne model [in FRW-framework it means
a = a0(1 + H0t), k = +1], without any fine tuning and free parameters (excepting the
Hubble constant, of course).

Frankly, at the present time, this theory has seemingly some more reasons, than any other
existing one, for a belief that it is on the right track. Here I am going to add one more qualitative
prediction relating to the subject of gravitational waves:

• generation of gravitational ‘short’ waves (λ<L) is suppressed.

But first let’s dwell a bit on polarization degrees of freedom in GR and modified gravities.



2. AP vs GR and Riemann-squared gravities; polarization degrees

The case of vacuum GR is a simple example of a single-field theory – the components of the
metric field transform as a single irreducible representation; also it is a special, degenerate
case of AP. Symmetries of the vacuum equation of GR, besides the local group of coordinate
diffeomorphisms, Diff(D), include the global symmetry – global conform transformations.

If g(x) is a solution, than κ2g(x) (where κ=const) is also a solution. This simple symme-
try leads to (or explains) the notion of [length] dimension which is really a global feature.3

Accompanying this, gµν → κ2gµν , with the scale change of coordinates, xµ → κxµ, one easily
obtains

gµν → κ0gµν ; gµν → κ0gµν ; gµν,λ → κ−1gµν,λ; et cet. (1)

The power of factor κ corresponds to the power of length indicating the dimension of one
or another value. The moral is that global symmetries could also be very important (and
intention to introduce the local conform symmetry is not so reasonable). In the presence of
the cosmological constant, the GR equation is no longer homogeneous, and the global conform
symmetry disappears.

There is, however, another noteworthy global feature in nature — the signature of spacetime.
In special relativity, it follows from the global symmetry, Lorentz group, but it has no such a
‘symmetry substantiation’ in the case of general relativity. The absolute parallelism theory
(AP) improves the situation. The frame field of AP, ha

µ, is just a square matrix with indexes
of different nature; it admits both local coordinate transformations (act on Greek indices)
and global transformations of ‘extended’ Lorentz group (the point symmetry group of inertial
coordinates; act on Latin indices; AP is sure a single field theory):

h∗a
µ(y) = κsabh

b
ν(x)∂x

ν/∂yµ; κ > 0, sab ∈ O(1, D− 1), sab, κ = const. (2)

The metric here is just the next quadratic form on the basis of the Minkowski metric:

gµν = ηabh
a
µh

b
ν , ηab, η

ab = diag(−1, 1, . . . , 1) .

Field equations of such a great symmetry can be composed using a covariant notation, that is, the
usual covariant differentiation with symmetric Levi-Civita connection, ‘;’, and the fundamental
tensor of this theory (which is a way simpler than the curvature tensor; coma ‘,’ denotes the
usual partial derivative, while square brackets denote anti-symmetrization of indexes):

Λaµν = haµ,ν − haν,µ = 2ha[µ;ν] (gµν;λ ≡ 0); Λa[µν;λ] ≡ 0 . (3)

This tensor has three irreducible parts, including vector and skew-symmetric tensor of rank
three (sometimes, in a covariant context, we omit in contractions matrices ηab, ηab, gµν , g

µν —
there they can be restored unambiguously):

Φa = ηbcΛbµνhc
µha

ν = Λbba, Sabc = 3Λ[abc] = Λabc + Λbca + Λcab . (4)

The simplest derivative covariant in GR is the Riemann tensor which has three irreducible
parts: Ricci scalar R, Ricci tensor Rµν , and Weyl tensor; only the last is responsible for gravi-
tational waves (polarizations) as the others are ‘fixed’ by the field equations of GR.

The situation is different in Riemann-squared gravities with a Lagrangian composed of the
three invariants quadratic in the Riemannian curvature; however, due to different reasons, these
modified gravities are all unappropriate [as well as f(R)-gravities, f(R) 6=R].

For example, (a+ bR+R2/2)-gravity leads to an incompatible system of equations (the trace
part, Eµ

µ =0, can be used that to remove the term with R;λ;λ — excepting the case D=1):

Eµν = R;µ;ν − Rµν(b+R) + gµν(a/2 + bR/2 +R2/4− R;λ;λ) = 0, (5)

3Length is so in Africa as well (i.e., dlina – ona i v Afrike dlina).



E
⋆
µν = Eµν + κ gµνEλ

λ = R;µ;ν − Rµν(b+R) + gµνf
⋆(R) = 0.

The next combination of prolonged equations, E
⋆
µν;λ − E

⋆
µλ;ν = 0, after cancellation of the

principal derivatives (5-th order), gives new 3-d order equations which are irregular in the
second jets: the term R;εR

ε
µνλ can not be cancelled by the other terms which contain only the

Ricci tensor and scalar. The rank of these subsystem depends on the second derivatives, gµν,λρ
(see [5] for the definition of PDE’s regularity).

The most interesting case, RµνG
µν-gravity (the Ricci tensor is contracted with the Einstein

tensor), gives the following compatible system:

−Dµν = Gµν;λ
;λ +Gǫτ(2Rǫµτν − 1

2
gµνRǫτ ) = 0; Dµν;λg

νλ ≡ 0 . (6)

In linear approximation, there are simple evolution equations for the Ricci tensor and scalar:
�R = 0, �Rµν = 0. Using the Bianchi identity, Rµν[λǫ;τ ]≡ 0, its prolongation and contractions,

Rµν[λǫ;τ ];ρg
τρ ≡ 0, Rµν[λǫ;τ ]g

µτ ≡ 0,

we write the evolution equation of Riemann tensor (we’ll need just the linear approximation):

Rµǫντ ;ρ;ρ = Rµν;(ǫ;τ) −Rµτ ;(ν;ǫ) +Rǫτ ;(µ;ν) −Rǫν;(µ;τ) + (Riem.2). (7)

This equation is more complex: it has a linear source term (in its RHS) composed from the
Ricci tensor. As a result, in the general case when the Ricci-polarizations do not vanish, the po-
larizations relating to the Weyl tensor [and responsible for gravitational waves and tidal forces;
their number is usual D(D− 3)/2 plus one extra (‘spin zero’ or ‘trace’) polarization] should
grow linearly with time,

a(t) = (c0 + c1t)e
−iωt,

while the linear approximation is valid. The total number of polarizations is (D− 1)2 – forth
order equations have much more voluminous a Cauchy problem. There are no imaginary fre-
quencies, no exponentially growing ‘eigen vectors’ (exponential growing would contradict the
correctness of the Cauchy problem), or polarizations – all eigen values are just w2 = k2, but
some of them are doubly degenerate, and some amplitudes should linearly grow.

This means that the regime of weak gravity is linearly unstable, as well as the trivial solution
itself (i.e., in this theory, nothing is not so real). Hence, this theory is physically irrelevant,
because we are still living in conditions of very weak gravity. [Note that in General Relativity,
when the Ricci tensor is expressed through the energy-momentum tensor (which does not expand
into plane waves – with the dispersion law of light in a vacuum), equation (7) describes the
process of gravitational wave generation.]

This linear instability does not contradict the correctness of Cauchy problem; the compat-
ibility theory (Kovalevskaya’s theorem and its generalization; see Pommaret’s book [5]) gives
easy answers about the Cauchy problem, number of polarizations, and so on (especially easy
for analytical PDE systems).

The third possible term (see, e.g., [2]), can be written [using 5-minor of the metric, minor
of corank five; the corresponding Lagrangian, Gauss-Bonnet or Lovelock term, can be written
using 4-minor [µν, αβ, γδ, ετ ] ≡ ∂4(−g)/(∂gµν∂gαβ∂gγδ∂gετ )] as

D
µν
(3) = (−g)−1[µν, αβ, γδ, ετ, ρφ]RαγερRβδτφ ; D

µν
(3) ;ν ≡ 0 .

Covariant differentiation of the minor divided by (−g) is identically zero (only metric gµν is
there), while differentiation of either Riemann tensor leads to application of Bianchi identity
(due to contraction with a highly skewsymmetric – separately, in the ‘row indexes’, and in the
‘column indexes’ – tensor). This tensor identically vanishes if D ≤ 4 (some people called this
a ‘tricky identity’, if I am not mistaken): D

µν
(3) ≡ 0, because 5-minor is identically zero in low



dimensions (you should cross out five rows and five columns, but that is impossible when the
metric is just a 4x4 matrix).

In higher dimensions, if this tensor is the main term, the equations are irregular in second
jets (and hence unappropriate). If this term is an addition (to a 4-th order Ricci-squared gravity
or RµνG

µν-gravity), it does not change the conclusion about the linear instability of the Weyl
polarizations (or do not cure the irregularity of the Ricci-scalar-squared gravity).

As regards AP, the simplest compatible second order system (non-Lagrangian, as it does not
contain a term like haµL)

E
∗

aµ = Λaµν;ν = 0 [i.e. (hΛa
µν),ν = 0, h = det ha

µ =
√
−g ; E

∗

aµ;µ ≡ 0 ] (8)

looks, after linearization, like a D-fold Maxwell’s equation, see eq. (3), where infinitesimal dif-
feomorphisms serve as a set of gauge transformations; so, the number of polarisation degrees of
freedom in this case (as well as for other AP equations with similar identities) is D(D− 2).

3. Co- and contra-singularities in AP, and the unique field equation

AP is more appropriate as a modified gravity, or just a good theory with topological charges
and quasi-charges (their phenomenology, at some conditions and to the certain extent, can look
like a quantum field theory) [2, 6].

There is one unique equation of AP (non-Lagrangian, with a unique D) which solutions are
free of arising singularities. The formal integrability (compatibility) test [5] can be extended
to the cases of degeneration of either co-frame matrix, ha

µ (co-singularities), or contra-variant
frame (or frame density of some weight), serving as a local and covariant test for singularities.
This test singles out the next, unique equation (and D=5 [2]; see eq. (3); h= det ha

µ=
√−g):

Eaµ = Laµν;ν − 1
3
(faµ + LaµνΦν) = 0 ; (9)

here Laµν = La[µν] = Λaµν − Saµν − 2
3
ha[µΦν], fµν = 2Φ[µ;ν] = Φµ,ν − Φν,µ.

One should retain the identities (for further details see [2, 6]):

Λa[µν;λ] ≡ 0 , haλΛabc;λ ≡ fcb (= fµνh
µ
c h

ν
b ), f[µν;λ] ≡ 0. (10)

Equation Eaµ;µ = 0 gives a Maxwell-like equation: (faµ + LaµνΦν);µ = 0,

or fµν;ν = (SµνλΦλ);ν [= −1
2
Sµνλfνλ, see eq-n (12) below] . (11)

In reality, eq-n (11) follows from the symmetric part only, because the skewsymmetric one gives
an identity; note also that the trace part becomes irregular if D=4 (forbidden D; the principal
derivatives vanish):

2E[νµ] = Sµνλ;λ = 0, E[νµ];ν ≡ 0; (12)

Eµµ = Eaµh
µ
b η

ab = 4−D
3

Φµ;µ − 1
2
Λ2

abc +
1
3
S2
abc +

D−1
9

Φ2
a = 0. (13)

System (9) remains compatible under adding fµν = 0, see (11); this is not the case for the other
covariants, S,Φ, or the Riemann curvature; the last relates to tensor Λ as usually:

Raµνλ = 2haµ;[ν;λ]; haµhaν;λ = 1
2
Sµνλ − Λλµν .

GR is a special case of AP. Using 3-minors (corank-3), [µν, ετ, αβ] ≡ ∂3(−g)/(∂gµν∂gετ∂gαβ),
and their skew-symmetry features, one can write the vacuum GR equation as follows:

2(−g)Gµν = [µν, ετ ],ετ +(g′2) = [µν, ετ, αβ](gαβ,ετ + gρφΓρ,ετΓφ,αβ) =
1
2
[µν, ετ, αβ]Rαετβ = 0.

(14)



Similarly, all (but one) AP equations can be reshaped in such a way that 2-minors of co-frame,

(

µ ν
a b

)

=
∂2h

∂ha
µ∂h

b
ν

= 2! hh µ
[a h

ν
b], i.e., [µ1ν1, . . . , µkνk] =

1

k!

(

µ1 · · · µk

a1 · · · ak

)(

ν1 · · · νk
a1 · · · ak

)

,

completely define the coefficients at the principal derivatives.
For example, the simple equation (8) gives [2]

h2
E

∗

a
µ = −ggαµgβν(haα,βν − haβ,αν) + · · · = haα,βν [αµ, βν] + (h′2) .

Like the determinant, k-minors (k≤D) are multi-linear expressions in elements of co-frame
matrix, ha

µ, and some minors do not vanish when rankha
µ=D−1.

For any AP equation [including eq-ns (14) and (8)], with the unique exception, eq. (9), (where
only the skew-symmetric part participates in the identity and can be written with 2- and 3-
minors, while the symmetric part needs 1-minors which vanish too simultaneously when the
co-frame matrix degenerates), the principal terms keep regularity (and the symbol G2 remains
involutive [2]) if rankha

µ=D−1. This observation is important and relevant to the problem of
singularities; it means seemingly that the unique equation (9) does not suffer of co-singularities
in solutions of general position.

The other case, contra-singularities [2], relates to degeneration of a contravariant frame
density of some weight:

Ha
µ = h1/D∗ha

µ;H = detHa
µ, ha

µ = H1/(D−D∗)Ha
µ . (15)

Here D∗ depends on the choice of equation: D∗ = 2 for GR, D∗ = ∞ for eq-n (8), and D∗ = 4
for the unique equation (which can be written 3-linearly in Ha

µ and its derivatives [2]).
If integer, D∗ is the forbidden spacetime dimension. For the unique equation, the nearest

possible D, D = 5, is of special interest: in this case minor H−1Ha
µ simply coincides with

ha
µ; that is, a contra-singularity simultaneously implies a co-singularity (of high corank), but

that is impossible! The possible interpretation of this observation is: for the unique equation,
contra-singularities are impossible if D=5 (perhaps due to some specifics of Diff -orbits on the
Ha

µ-space). This leaves no room for any changes in the theory (if nature abhors singularities).

4. Stress-energy tensor and new gravity with a ‘weak Lagrangian’;
dwarf, normal, and giant (unstable) polarization degrees in AP

One can rearrange E(µν)=0 picking out (into LHS) the Einstein tensor, but the rest terms are
not a proper stress-energy tensor: they contain linear terms Φ(µ;ν) [no positive energy (!)]:

E(µν) + 2gµνEλλ = −Gµν − 2
3
Φ(µ;ν) + (Λ2-terms) = 0. (16)

However, the prolonged equation E(µν);λ;λ can be written as RµνG
µν-gravity (6):

Gµν;λ;λ +Gǫτ (2Rǫµτν − 1
2
gµνRǫτ ) = Tµν(Λ

′2, · · ·), Tµν;ν = 0; (17)

up to quadratic terms, Tµν =
2
9
(1
4
gµνf

2− fµλfνλ) +Bµǫντ (Λ
2),ǫτ [2]; tensor B has symmetries of

the Riemann tensor, so term B′′ adds nothing to the D-momentum and angular momentum.
This equation (17) follows also from the least action principle. The ‘weak Lagrangian’ (the

term of N.Kh. Ibragimov for the case when variation is zero due to both field equations and
their prolongations) is quadratic in the field equations, i.e. is trivial4 [one should use the trace
eq-n (13), and the identity R=−2Φµ;µ+ (Λ2); D=5]:

L = E
2
(µν) − 7E2

λλ ≡ RµνG
µν + 1

9
f 2
µν +

4
9
[(3Gµν − Φµ;ν)Φµ + Φλ;λΦν ];ν + (Λ′Λ2, Λ4). (18)

4 This triviality, however, is of another sort than the triviality of surface terms.



The main, quadratic terms, after exclusion of covariant divergences (surface terms), look like a
modified gravity (higher terms can add to Tµν only a trivial quadratic contribution, like B′′.

This Lagrangian is trivial, as well as all its Noether currents; this also means that the
contribution of gravitation to the ‘total energy’ is negative and the ‘total energy’ is strictly
zero. (All this Lagrangian issue follows as a mere bonus, without any ad hoc activity !)

Note that only f -covariant (three transverse polarizations in 5D) carries D-momentum and
angular momentum (ponderable or tangible waves); other 12 polarizations are imponderable, or
intangible. This is a very strange thing (it is scarcely possible in the Lagrangian tradition).

These f -waves feels only the metric and S-field, see (11), but S has effect only on polarization
(‘spin’) of these waves: S[µνλ] does not enter the eikonal equation, and f -waves moves along the
usual Riemannian geodesics.

However, f -component is not the usual (quantum) EM-field, it’s just an important covariant
responsible for energy-momentum (there is no gradient invariance for f [2]).

Another important feature is the linear instability of the trivial solution: some intangible

polarizations grow linearly with time in the presence of tangible f -waves. Really, the linearized
eq-n (9) and identity (10) yield (the following equations should be understood as linearized):

3Λabd,d = Φa,b − 2Φb,a (trace part:Φa,a =0), Λa[bc,d],d ≡ 0, ⇒ Λabc,dd = −2
3
fbc,a . (19)

The last D‘Alembert equation has a source in its RHS. Some components of Λ (most symmetrical
irreducible parts, as well as the Riemann curvature) do not grow because (linearized equations
again)

Sabc,dd = 0, Φa,dd = 0, fab,dd = 0, Rabcd,ee = 0.

However the least symmetrical Λ-components (triangle Young diagram), in fact only three po-
larizations of them which are to be called Λ•-waves (three growing but intangible polarizations),
do go up with time if the ponderable waves (three f -polarizations) do not vanish. This should
be the case for solutions of general position. These giant polarizations, Λ•-waves, should result
in strong nonlinear effects, and it is of special interest if some space regions can witness more
f -waves and hence more instability, more nonlinearities, in comparison with other regions.

The forth polarization of vector Φµ [the fifth one is eliminated by the trace equation, (13)] is
the (only) longitudinal polarization; it relates to the gradient part: Φµ =Ψ,µ. One can formally
write the evolution equation for the longitudinal polarization [see eq-n (13)], �Ψ = Λ•2 + · · · ;
so, the giant polarizations squared do influence the longitudinal polarization.

[Interestingly, the linearized equations (9) loose its trace part if D=4 (forbidden dimension;
still one can add eq-n Φµ,µ =0 ‘by hand’) and in this case there is a new symmetry — with respect
to infinitesimal conform transformations which serve as a kind of gradient transformations of
vector Φµ, and, therefore, eliminate the longitudinal polarization, so to say.]

The skew-symmetric tensor S is responsible for three polarizations. One can introduce
pseudo-tensor (remember D=5)

f̃ab =
1
6
εabcdeScde;

then, from eq-n (12) and the totally skew-symmetric part of identity (10), it follows (again a
Maxwell-like system):

f̃[µν;λ] = 0 , f̃µν
;ν =

1
8
h−1 εµνλετΛaνλΛaετ .

So, we have just three S-polarizations.
Three Λ•-polarizations correspond to Λ-tensor of a specific, gradient (or rotor-gradient) form:

Λεµν =A[µ,ν];ε . At last, there remain five polarizations; this is just the number of ordinary
gravitational (Weyl) polarizations (in 5D); the evolution of these waves, see eq-ns (7) and (16),
again has Λ•2-terms in its RHS (as a source) — this time organized as a tensor relating to the
square Young diagram (symmetry of the Weyl tensor).



The current for the f -waves is just Sf -term, see (11), therefore these waves are most weak,
dwarf, that is, their amplitude, af , should be smaller than the amplitudes of all other polariza-
tions, aΛ• ≫ aW , aS, aL ≫ af (3Λ• + 5W + 3S + 1L + 3f = 15).

If some form of reduction to a 4D picture takes place, there could come forth eight ‘prefer-
able for 4D’ (or not so sensible to the extra dimension) polarizations: 2Λ•+2W+1S+1L+2f = 8.

5. Expanding O4-wave and cosmology; topological (quasi-)charges

The great symmetry of AP equations gives scope for symmetrical solutions. In contrast to
GR, eq-n (9) has non-stationary spherically symmetric solutions (as an example of longitudinal
waves). An O4-symmetric field can be generally written [2] as

ha
µ(t, x

i) =

(

a b ni

c ni e ninj + d∆ij

)

; ni =
xi

r
; (20)

here i, j=(1, 2, 3, 4), a, . . . , e are functions of time, t = x0, and radius r, ∆ij = δij −ninj , r
2=xixi.

As functions of radius, b, c are odd while the others even; the boundary conditions are: e= d
at r=0, and ha

µ→ δ a
µ as r→∞. Placing in (20) b=0, e= d (another interesting choice is

b= c=0) and making integrations, one arrives to the next system (it resembles Chaplygin gas
dynamics; dot and prime denote time and radius derivatives, respectively.)

Ȧ = AB′ − BA′ + 3
r
AB, Ḃ = AA′ − BB′ − 2

r
B2, (21)

where A= a/e= e1/2, B=− c/e . This system has non-stationary solutions, and a single-wave
solution (of proper sign) might serve as a suitable (stable) cosmological expanding background.
The condition fµν =0 is a must for solutions with such a high symmetry (as well as Sµνλ =0);
so, these O4-solutions carry no energy, weight nothing — some lack of gravity !

A more realistic cosmological model might look like a single O4-wave (or a sequence of such
waves) moving along the radius and being filled with a sort of chaos, or an ensemble of chaotic
waves, both tangible (dwarf ; af ≪ 1) and intangible (aΛ• < 1, but intense enough that to give
non-linear fluctuations with δh∼ 1). Development and examination of stability of this model is
an interesting problem. The metric inhomogeneity in such a cosmological O4-wave can serve as
a slowly varying shallow dielectric waveguide for that dwarf f -waves [2]. The ponderable waves
should have wave-vectors almost tangent to the S3-sphere of the wave-front that to be trapped
inside this spherical shell; the giant waves can grow up, and partly escape from the waveguide,
and their wave-vectors can be some less tangent to the S3-sphere. The shell thickness can be
small for an observer in the center of O4-symmetry, but in co-moving coordinates it can be very
large, but still much smaller than the current radius of the spherical shell, L≪R.

This picture leads to the anti-Milne cosmological model, a= a0(1+H0 t), k=+1, with the
next simple equation of distance modulus (it’s good for SNe Ia/GRB data;5 d∗ = 10 pc):

µ(z) = µ0 + 5 log[(1 + z) ln(1 + z)], µ0 = −5 log(H0d∗/c) ≈ 43.3 .

This model does well the job of inflation. Only very small part of the spherical shell cor-
responds to zCMB ∼ 103 (decoupling of CMB): ϕ ≃ 1

Γ
ln(1 + z) (γ-factor Γ ≫ 1), ϕCMB≪ 1.

Moreover, very separated, even opposite points of the shell (at such z) are not causally inde-
pendent – they have the common past along the extra dimension.

The symmetry of this cosmological background is very high, enabling an interesting set of
topological quasi-charges [localised field configurations of some (sub)symmetry, carrying a dis-
crete feature — a topological quasi-charge], and some phenomenology of topological quanta on
expanding, chaotic background should emerge. Because of time/volume limitations I will not
settle in detail this subject (just see [2], [6]a). Still we should correlate somehow the ‘true’ (or

5See some diagrams in zhogin.narod.ru/pirt11.pps, or [6]b.



naturally geometrical) tensor Tµν of eq. (17) (i.e. its quantum part which arises while topological
quanta scatter and disturb the chaotic ensemble of perceptible f -waves) with the ‘phenomeno-
logical energy-momentum’ of GR. In units ~=1, c=1, the ‘phenomenological momentum’ of a
particle is just its wave-vector, but the ‘true’ momentum, sure being proportional to the wave-
vector of quantum’s psi-function,6 should include the small factor a2f , which defines the overall
scale of the perceivable, true-energy carrying waves. So, a rude estimation is possible:

Tµν ≈ a2fT
(phen.)
µν , and (see the next section) λ2

Planck ≈ a2fL
2 . (22)

It seems that, in this theory, the Planck length is not of a fundamental sense (and the spectrum
of chaotic waves should not continue to such a small wavelength).

6. Newton’s gravity changes; suppression of short gravitational waves

A massive body in this theory (assuming that it is right) should be of great length along the
extra dimension, and we would like to estimate the behavior of gravitational potential (the case
of weak static field), and possible deviation from Newton’s law of gravity.

Let us start with a point mass; the ‘new gravity’, eq. (17), gives a 4d (from 5D) bi-Laplace
equation with a δ-source, and its solution (R is 4d distance, radius) is easy to find:

△2
(4)ϕ = − a

R3
δ(R); ϕ(R2) =

a

8
lnR2 − b

R2
(+ c , but c does not matter); (23)

the force between two point masses is Fpoint =
a
4R

+ 2b
R3 (a, b are proportional to both masses).

Now let us suppose that all masses are distributed along the extra dimension with a universal

function, µ(p),
∫

µ(p) dp = 1. Then the attracting (gravitational) force takes the next form [see
(23); r is usual 3d distance; note that V (r) can be restored if F (r) is measured]:

F (r) =
d

dr

∫∫ ∞

−∞

ϕ(r2+(p− q)2)µ(p)µ(q) dp dq =
a r

4
V − b V ′, V (r) =

∫∫

µ(p)µ(q) dp dq

r2 + (p− q)2
. (24)

Taking µ1(p) = π−1/(1 + p2) (typical scale along the extra dimension is taken as unit, L = 1),
one can find rV1(r) = 1/(2 + r) and (note, if a= b, the Rindler term, ∼ r0, vanishes)

F (r) =
a

8 + 4r
+

2b(1 + r)

r2(2 + r)2
=

b

2r2
+

a(2 + r)− 2b

4(2 + r)2
.
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Fig. 1: curve (a) shows δF = F−1/r2, see eq. (24)
and text below [a=b (=2) is chosen to ensure
δF (0)=0; more exactly, this is the dimensionless de-
viation from Newton’s law, (F/FN − 1)L2/r2 as a
function of r/L];
curves (b), (c) correspond to µ2=2π−1/(1+p2)2,
µ3=2π−1p2/(1+p2)2; a/b is chosen also that to en-
sure δF (0)=0.

We see that, in principle, this theory can explain

galaxy rotation curves, v2(r)∼ rF
r→∞−→ const, with-

out need for Dark Matter or MOND.

6 The superposition principle emerges due to (a) the huge size L of quanta along the extra-dimension and
(b) the fact that f -waves are almost tangential in the shell [so, some scattering amplitudes (framing vectors or
something similar) of different parts along the extra dimension, with the same projection (i.e. cophased), should
be summed up].



However, at this stage it is not easy to give an estimate for the length scale L: it depends
on the mass distribution both along the extra dimension and in the ordinary space. Note, for
example, that the usual feature of Newton’s law of gravity, that a spherical massive shell has
no effect on inner massive bodies, is no more true.

Generation of the most representative components of Riemann tensor (i.e., gravitational
waves, GW) is described, a bit schematically, by the next equation [see eq-s (7), (17); α, β –
space indexes; full space derivatives, ()′, do not matter in the RHS]:

�R0α0β ≃ R̈αβ +()′; R̈αβ ∼ Tαβ + B̈0α0β(Λ
• 2)+ ()′, while in GR: ∼ λ2

PlanckT̈
(phen.)
αβ +()′. (25)

So, one can suggest that, while L2T̈αβ ≫Tαβ (that is, for short waves, λ≪L), generation of
gravitational waves, by virtue of Tµν , in the new gravity is much ‘weaker’ than in GR.

However, it seems that the giant polarizations can also contribute to the process (GW gen-
eration). They should form a kind of halo, a disturbance of size L, near a heavy body; the form
of this halo is either cusped or cored – depending on presence or absence of the Rindler term.

The 00-component of the symmetric part (16) gives an equation for the gravitational po-
tential, as follows (neglecting differentiation along the extra dimension, near the middle of the
shell; the static problem):

△(3)ϕ ∼< Λ• 2 >00 .

Near a body, the non-Newtonian part of potential behaves like

either δϕ ∼ r, hence < Λ• 2 >00∼ 1/r (cusped),

or δϕ ∼ r2, hence < Λ• 2 >00∼ const (cored);

in any case, at large scales, r >L, the halo drops: δϕ ∼ ln r, hence < Λ• 2 >00∼ 1/r2.
The absence of divergency (no cusp, but core) seems a natural requirement,7 and in this case

the generation of short GW, by virtue of such a halo, is also suppressed (exponentially).
This difference between these two gravities, with respect to generation of GW, can in principle

be tested: the method based on pulsar timing, that to observe very long (nHz) gravitational
waves, is actively discussing (see e.g. [7]).
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