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Abstract

It has been demonstrated that space-time quantum fluctuations
may impose fairly severe restrictions on minimal variations in the
fundamental physical quantities of gravity. Also, it has been found
that they are naturally described in terms of the deformation param-
eter introduced on going from the well-known quantum mechanics to
that at Planck’s scales and put forward in the previous works of the
author. As shown, with the use of quite natural assumptions, these
fluctuations must be allowed for in Einstein Equations to lead to the
dependence of the latter on the above-mentioned parameter, that is
insignificant and may be ignored at low energies but is of particu-
lar importance at high energies. Besides, some inferences form the
obtained results have been drawn. The derived results offer a bet-
ter insight into the common nature of gravity both at high and low
energies.

1 Introduction. The gravity paradigm

extant and its main problem

At the present time a theory of gravity is subdivided into two absolutely
different parts: low-energy theory represented by the General Relativity
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(GR) that has been brilliantly verified by experiment and hypothetical high-
energy theory – Quantum Gravity (QG) – that is still unresolved.
According to the majority of researchers, the latter is introduced at Planck’s
scales and energies, being associated with a minimal length on the order of
the Planck length lmin ∝ lP .
Just with this point there is a discrepancy between the two above-mentioned
parts of gravity or, more precisely, between the mathematical apparatus
(instruments) of GR and of hypothetical QG. Starting from the highest
(Planck) energies and from a minimal length in QG and ≪coming down the
energy steps≫, in GR we, in accordance with the Heisenberg Uncertainty
Principle (HUP), should have arrived at the length scales considerably ex-
ceeding lmin but, quite the contrary, all the mathematical apparatus of GR
is based on the notion of infinitesimal variations in the space-time quantities
dxµ.
It is clear what is the reason for such a discrepancy: the General Relativ-
ity has been resolved as a pure classical theory and its compatibility with
quantum mechanics was never assigned primary importance.
Nevertheless, the above problem is quite obvious; implicit efforts to its res-
olution were undertaken as early as the middle of the XX century, for ex-
ample, by J. A. Wheeler who has introduced the notion ”space-time foam”
for the description and investigation of physics at Planck’s scales (Early
Universe) [1],[2].

This notion is fairly settled. Despite the fact that in the last decade nu-
merous works have been devoted to physics at Planck’s scales within the
scope of this notion, for example [3]–[22], by this time still there is no clear
understanding of the ”space-time foam” as it is.
On the other hand, it is undoubtful that a quantum theory of the Early
Universe should be a deformation of the well-known quantum theory.
The deformation is understood as an extension of a particular the-
ory by inclusion of one or several additional parameters in such a
way that the initial theory appears in the limiting transition [23].
In his works with the colleagues [24]–[32] the author has put forward one of
the possible approaches to resolution of a quantum theory at Planck’s scales
on the basis of the density matrix deformation. This work demonstrates
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that space-time quantum fluctuations, in essence generating the space-time
foam, may be naturally described in terms of the deformation parameter
αl introduced in [24]–[32], where l – measuring scale. Further it is shown
that, with the use of quite natural assumptions, these fluctuations must be
allowed for in Einstein Equations [33] to result in their dependence on the
parameter αl, insignificant and negligible at low energies (i.e. in the limit
l → ∞) but important at Planck’s scales l →∝ lP .
Actually it is revealed that, if the metrics gµν is measured at some fixed
energy scale E ∼ 1/l (as is always the case in real physics), Einstein Equa-
tions are αl–deformed, and the known Einstein Equations [33] appear in
the low-energy limit. However, this aspect may be ignored in all the known
cases and the corresponding energy ranges because the scale l is very dis-
tant from lP . Two clear illustrations of the high-energy αl–deformation of
Einstein Equations are given.
Some inferences from the results obtained are considered, in particular for
the cosmological term Λ.
This work is a natural continuation of the paper [50]. In [50] it has been
shown that in particular cases the General Relativity Einstein Equations
may be written in the αl–representation, i.e. they are dependent on the pa-
rameter αl. Also, it has been demonstrated that for the indicated cases one
can derive the high-energy (Planck) αl - deformation of Einstein Equations.
Then the question arises whether Einstein Equations are dependent on αl

in the most general case.
Proceeding from the present work, this question may be answered positively.

2 Space-Time Fluctuations and High-Energy

Deformation of Quantum Field Theory

In accordance with the modern concepts, the space-time foam [2] notion
forms the basis for space-time at Planck’s scales (Big Bang). This object
is associated with the quantum fluctuations generated by uncertainties in
measurements of the fundamental quantities, inducing uncertainties in any
distance measurement. A precise description of the space-time foam is still
lacking along with an adequate quantum gravity theory. But for the de-
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scription of quantum fluctuations we have a number of interesting methods
(for example, [34],[12]-[22]).
In what follows, we use the terms and symbols from [14]. Then for the

fluctuations δ̃l of the distance l we have the following estimate:

δ̃l ∼> lγP l
1−γ, (1)

where 0 ≤ γ ≤ 1 and lP = (~G/c3)1/2 is the Planck length.
At the present time three principal models associated with different values
of the parameter γ are considered:

A) γ = 1 that conforms to the initial (canonical) model from [2]

δ̃l ∼> lP ; (2)

B) γ = 2/3 that conforms to the model [34],[14] compatible with the holo-
graphic principle [35]–[39]

δ̃l ∼> (ll2P )
1/3 = lP

(
l

lP

)1/3

; (3)

C) γ = 1/2 - random-walk model [21] [22]

δ̃l ∼> (llP )
1/2 = lP

(
l

lP

)1/2

. (4)

But, because of the experimental data obtained with the help of the Hub-
ble Space Telescope [40], a random-walk model C) may be excluded from
consideration (for example, see [19]) and is omitted in this work.

Moreover, in fact it is clear that at Planck’s scales, i.e. for

l → lmin ∝ lP , (5)
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models A) are B) are coincident.
Using(2)–(4), we can derive the quantum fluctuations for all the primary

space-time characteristics, specifically for the time δ̃t, energy δ̃E, and met-
rics

δ̃gµν (formula (10) of [14]):

δ̃gµν ∼> (lP/l)
γ. (6)

It is obvious that all of them are dependent on one and the same dimension-
less parameter lP/l and on the Planck length lP , i.e. on the fundamental
constants.
Note also that in fact this parameter is introduced as a deformation param-
eter on going from the well-known quantum mechanics (QM) to a quantum
mechanics with the fundamental length (QMFL), provided this length lmin

is on the order of Planck’s length lmin ∝ lP , as revealed by the author in
the works written with his colleagues [24] –[32]. Let us recollect in short
the central idea of the above-mentioned works (pp. 1267,1268 in [25]).
The main object under consideration in this case is the density matrix ρ.
We assume that in QMFL the measuring procedure adopted in QM is valid
being defined by ρ. Then

Sp[(ρX̂2)− Sp2(ρX̂)] ≥ l2min > 0, (7)

where X̂ is the coordinate operator. Expression (7) gives the measuring
rule used in QM. However, in the case considered here, in comparison with
QM, the right part of (7) cannot be done arbitrarily near to zero since it
is limited by l2min > 0. A natural way for studying QMFL is to consider
this theory as a deformation of QM, turning to QM at the low energy limit
(during the expansion of the Universe after the Big Bang).
We will consider precisely this option. Here the following question may be
formulated: how should be deformed density matrix conserving quantum-
mechanical measuring rules in order to obtain self-consistent measuring pro-
cedure in QMFL? For answering to the question we will use the R-procedure.
For starting let us to consider R-procedure both at the Planck’s energy scale
and at the low-energy one. At the minimal length scale l ≈ ilmin where i
is a small quantity. Further l tends to infinity and we obtain for density
matrix [24]-[32]:
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Sp[ρl2]− Sp[ρl]Sp[ρl] ≃ l2min or Sp[ρ]− Sp2[ρ] ≃ l2min/l
2. (8)

Therefore:

1. When l < ∞, Sp[ρ] = Sp[ρ(l)] and Sp[ρ]− Sp2[ρ] > 0. Then,
Sp[ρ] < 1 that corresponds to the QMFL case.

2. When l = ∞, Sp[ρ] does not depend on l and Sp[ρ] − Sp2[ρ] → 0.
Then, Sp[ρ] = 1 that corresponds to the QM case.

The above deformation parameter is as follows:

αl = l2min/l
2. (9)

This parameter is variable within the interval

0 < αl ≤ 1/4, (10)

whereas the density matrix in QMFL becomes deformed and dependent on
αl: ρ = ρ(αl), and we get

lim
αl→0

ρ(αl) → ρ, (11)

where ρ – known density matrix from QM.
When lmin ∝ lP , it is cleat that αl ∝ l2P/l

2 and all the fluctuations above

δ̃l, δ̃gµν , δ̃t, δ̃E may be expressed in terms of the deformation parameter αl.
For example, this is the case when the Generalized Uncertainty Principle
(GUP) [41]–[48] is valid

△x ≥ ~
△p

+ ℓ2
△p

~
, ℓ2 = λl2P , (12)

and λ is the model-depended dimensionless numerical factor.
Then, as seen in (12), we have a minimal length on the order of the Planck
length

lmin = 2
√
λlP . (13)

Therefore, we obtain

(
lP
l
)2 =

1

4λ
αl (14)
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and the factor 1
4λ

is introduced into all of the formula (2)–(8) as soon as the
fundamental quantities involved are expressed in terms of αl. Specifically,
the most important formula (6) in this case is of the form

δ̃gµν ∼> (4λ)−γ/2α
γ/2
l . (15)

In what follows we assume that a minimal length in a theory – lmin is exis-
tent no matter how it is introduced, from GUP (12) or in some other way.
Then the parameter αl (9) is quite naturally brought about from (7), (8).
With the use of this ”coordinate system” the above-mentioned models A)
and B) of the space-time quantum fluctuations may be ”unified” as follows:

I. The minimal length lmin , similar to cases A) and B), is in-
troduced at Planck’s level

lmin ∝ lP

.

II. In both cases fluctuations of the fundamental quantities may
be expressed in terms of the parameter αl.

III. The principal difference between A) and B) resides in the
fact that in the second case a minimal fluctuation of the length is
dependent on the measuring scale l, (δ̃minl) = (δ̃minl)[l], whereas in
the first case it is completely determined by the minimal length
δ̃min ≈ lmin, being absolute in its character.

IV. As noted above, in the high-energy limit, i.e. for

l → lmin, (16)

both models are coincident.
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3 Space-Time Quantum Fluctuations and Ein-

stein Equations

In this way, in principle, the space-time quantum fluctuations may be use-
ful in resolving the problem in the existing gravity paradigm mentioned in
Section 1 as they impose restrictions on variation of all the fundamental
quantities of the theory depending on the available energies. Specifically, it
is obvious that the lower limit for changes in the spatial coordinates xµ is
increased with the lowered energies(formulas (1)–(4)).
The infinitesimal quantities dxµ , in particular, should be replaced by the
finite quantities τxµ(E) dependent on the existing energies E:

dxµ 7→ τxµ(E) ≥ δ̃minl, E ∼ 1/l

.

Besides, from the preceding Section it follows that in any case we have
minimal fluctuations δ̃min (dependent on the measuring energies E) for all
the fundamental physical quantities l, t, E, gµν , ..., expressed in terms of the
parameter αl. Specifically, we have

(δ̃mingµν)[l] = (δ̃mingµν)[αl] ∝ α
γ/2
l . (17)

Next we make the only natural assumption
if the metric gµν in General Relativity (GR) is measured at the
scale l or, that is the same, on the scale of the energies E ∼ 1/l,

variation of the metric δgµν is governed by its fluctuation (δ̃gµν)[l]
and hence it is dependent on l or, actually, on αl

δgµν = (δgµν)[l] = (δgµν)[αl].

In particular, it can’t be arbitrary small as its lower limit is the fixed value
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(δ̃mingµν)[αl] > 0.

That means
(δmingµν)[αl] = κα

γ/2
l , (18)

where κ > 0 – some model-dependent factor.
Obviously, we have

lim
l→∞

(δgµν)[l] = lim
αl→0

(δgµν)[αl] → 0. (19)

From this it follows immediately that in this case variation of the action of
δSG in General Relativity [33] is also dependent on αl

δSG = (δSG)[αl] (20)

and hence Gµν ≡ Rµν − 1
2
Rgµν is dependent on αl too:

G[αl]
µν ≡ Gµν [αl]. (21)

Then the knowns Einstein tensor

lim
l→∞

G[αl]
µν = lim

αl→0
G[αl]

µν ≡ Gµν (22)

and Einstein Equations in the vacuum

lim
l→∞

G[αl]
µν = lim

αl→0
G[αl]

µν ≡ Gµν = 0 (23)

are brought about in the low-energy limit.
Naturally, the right side of Einstein Equations [33] should be dependent on
αl as

(8πTµν − Λgµν)
[αl] ≡ (8πTµν − Λgµν)[αl]. (24)

Therefore, Einstein Equations with a nonzero right side are of the following
form:

lim
αl→0

G[αl]
µν = lim

αl→0
(8πTµν − Λgµν)

[αl]. (25)

9



Of course, at low energies, i.e. for

l ≫ lP (26)

or,that is the same with a very high accuracy, for

αl ≈ 0, (27)

the function of αl may be disregarded and in this case, with a very high
accuracy, we can obtain the well-known Einstein Equations

G[αl]
µν ≈ Gµν = (8πTµν − Λgµν) ≈ (8πTµν − Λgµν)

[αl].

All the scales (energy), at which Einstein Equations have been studied until
the present time, satisfied (26),(27), being far away from the Planck scale
lP ∝ 10−33cm, and in fact had no αl–dependence.
But on going to the high-energy limit

l → 2lmin ∝ lP ;αl → 1/4 (28)

there appears a nontrivial αl–deformation of Einstein Equations, later re-
ferred to as α– deformation

G[αl]
µν = (8πTµν − Λgµν)

[αl]. (29)

Note that from [25] (practically from formula (7),(8)) we have found: with
the canonical measuring procedure (7), the minimal length lmin is unattain-
able and a minimal measurable length, denoted as lmeasur

min , is the quan-
tity

lmeasur
min = 2lmin (30)

in accordance with (28).
Consider two examples of the α– deformation of Einstein Equations.
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E1.Phenomenological Markov’s Model [49].
This example is taken from Section 3 of [50].
Let us dwell on the work [49], where it is assumed that ”by the universal
decree of nature a quantity of the material density ϱ is always bounded by
its upper value given by the expression that is composed of fundamental
constants” ([49], p.214):

ϱ ≤ ϱP =
c5

G2~
, (31)

with ϱP as ”Planck’s density”.
It is clearly seen that, proceeding from the involvement of the fundamental
length on the order of the Planck’s lmin ∼ lP , one can obtain ϱP (31) up
to a constant. Indeed, within the scope of GUP (12) (but not necessarily)
we have lmin ∝ lP and then, as it has been shown in [26], (12) may be
generalized to the corresponding relation of the pair ”energy - time” as
follows:

∆t ≥ ~
△E

+ λt2p
△E

~
. (32)

This directly suggests the existence of the ”minimal time” tmin ∝ tP and of
the ”maximal energy” corresponding to this minimal time Emax ∼ EP .
Clearly, this maximal energy is associated with some ”maximal mass”Mmax:

Emax = Mmaxc
2,Mmax ∼ MP . (33)

Whence, considering that the existence of a minimal three-dimensional vol-
ume Vmin = l3min ∼ VP = l3P naturally follows from the existence of lmin ∼ lP ,
we immediately arrive at the ”maximal density” ϱP (31) but only within
the factor determined by λ

Mmax

Vmin

= ϱmax ∼ ϱP . (34)

Actually, the quantity
℘ϱ = ϱ/ϱP ≤ 1 (35)

in [49] is the deformation parameter as it is used to construct the deforma-
tion of Einstein’s equation ([49],formula (2)):

Rν
µ −

1

2
Rδνµ =

8πG

c4
T ν
µ (1− ℘2

ϱ)
n − Λ℘2n

ϱ δνµ, (36)
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where n ≥ 1/2, T ν
µ–energy-momentum tensor, Λ– cosmological constant.

The case of the parameter ℘ϱ ≪ 1 or ϱ ≪ ϱP correlates with the classical
Einstein equation, and the case when ℘ϱ = 1 – with the de Sitter Universe.
In this way (36) may be considered as ℘ϱ-deformation of the General Rela-
tivity.
As it has been noted before, the existence of a maximal density directly, up
to a constant, follows from the existence of a fundamental length (31). It
is clear that the corresponding deformation parameter ℘ϱ (35 may be ob-
tained from the deformation parameter αx (9). In fact, since αx = l2min/x

2,
we have

α3/2
x =

l3min

x3
∼ Vmin

V
, (37)

where V is the three-dimensional volume associated with the linear dimen-
sion x.
As αx may be represented in the form [24]–[32]:

αx = E2/E2
max, (38)

Emax ∼ EP , and Vmin ∼ VP = l3P , then from (33)–(35),(37),(38) we get

℘ϱ ∼
E/V

Emax/Vmin

=
ϱ

ϱmax

= α2
x. (39)

Of course, the proportionality factor in (39) is model dependent. Specifi-
cally, if QMFL is related to GUP, this factor is depending on λ (12). But
the deformation parameters ℘ϱ and α are differing considerably: the limit-
ing value ℘ϱ = 1 is obviously associated with singularity, whereas originally
(by the approach involving the density matrix deformation [25]–[27],[32])
no consideration has been given to the deformation parameter α = 1 asso-
ciated with singularity,(formula (30))).
So, ℘ϱ-deformation of the General Relativity [49] may be interpreted as α-
deformation.

E2.Spherically-symmetric horizon spaces [51].
As shown in [51], the Einstein Equation for horizon in this case may be writ-
ten as a thermodynamic identity (the first principle of thermodynamics):
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([51], formula (119))

~cf ′(a)

4π︸ ︷︷ ︸
kBT

c3

G~
d

(
1

4
4πa2

)
︸ ︷︷ ︸

dS

− 1

2

c4da

G︸ ︷︷ ︸
−dE

= Pd

(
4π

3
a3
)

︸ ︷︷ ︸
P dV

, (40)

where a static, spherically symmetric horizon in space-time is described by
the metric

ds2 = −f(r)c2dt2 + f−1(r)dr2 + r2dΩ2, (41)

and the horizon location will be given by simple zero of the function f(r)
(f(a) = 0, f ′(a) ̸= 0) at r = a.( Here r = a is the radius of a sphere.) And
P = T r

r is the trace of the momentum-energy tensor and radial pressure.
In Sections 5 and 6 of [50] first the Einstein Equations on horizon (40) have
been written in terms of the parameter αa, next the high-energy (αa → 1/4),
αa – deformation of these equations has been derived in two different cases:
equilibrium and nonequilibrium thermodynamics.
The latter case is distinguished from the first one by the dynamic cosmo-
logical term dependent on αa, appearing with the corresponding factor in
the right side of high-energy deformed (40) as follows:

Λ ≡ Λ[αa]. (42)

4 Comments and Conclusion

In this way we can conclude that

C1) with inclusion of the space-time quantum fluctuations (e.g., in the form
of (2) or (3), we can naturally assume that in the most general case of Ein-
stein Equations there is a dependence on the small dimensionless parameter
αl, infinitesimal at normal energies to be neglected but important at high
energies which are on the order of the Planck energy.

C2) The parameter αl is a deformation parameter on going from the well-
known quantum theory to a quantum theory of the Early Universe (Planck’s
scales)and hence the above-mentioned dependence of Einstein Equations on
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this parameter may be considered as αl – deformation of the General Rel-
ativity whose well-known, i.e. canonical, Einstein Equations are brought
about in the low-energy limiting transition.

The foregoing results are rather important for better understanding and
investigation of the cosmological term Λ, especially in view of the Dark En-
ergy Problem [52]–[56].
In principle, they may be used to answer the question whether Λ = const
or Λ = Λ(t) is a time-variable quantity.
Despite the fact that the works taking Λ as Λ(t), i.e. as a dynamic quan-
tity, are numerous(for example, [57]– [60]) quite forceful arguments are given
against this point of view (for example, [61]).
Indeed, according to the General Relativity, the cosmological term Λ has
been considered constant Λ = const as, due to the Bianchi identities [33],

∇µGµν = 0. (43)

But in this work it has been demonstrated that, actually, Bianchi identities
(43) are introduced at the low-energy limit only

lim
αl→0

∇µG[αl]
µν = ∇µGµν = 0. (44)

Because of this, the really measured cosmological term Λ in fact is dynamic
Λ = Λ[αl(t)], practically invariable in the modern epoch, i.e. at low energies,
due to slow variations of the deformation parameter αl(t) at low energies
and due to its very small value.
In the works [62]–[64] a behavior of the term Λ has been studied reasoning
from αl(t) on the assumption that it is dynamic, similar to the case proven
in [62] GUP for the pair of conjugate variables (Λ, V ), where V is the
space-time volume, as with the holographic principle applied to the whole
Universe [65]. The main difference of these two cases is in the leading order
of expansion Λ[α] in terms of α. In the first case it is the second

ΛGUP (α) ∝ (α2 + η1α
3 + ...)Λp, (45)

whereas in the second case it is the first

ΛHol(α) ∝ (α+ ξ1α
2 + ...)Λp, (46)
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where Λp = Λα→1/4 – cosmological term at Planck’s scales.
As ΛHol is practically coincident with the experimental value of the cosmo-
logical term Λexper, a holographic model is preferable – model B) of Section
2 developed for quantum fluctuations is supported experimentally.
In conclusion, let us state some important problems of the particular con-
cern:

A) What is the way to derive, in the most general case and in the ex-
plicit form, the high-energy (αl → 1/4) αl - representation or, that is the
same, the high-energy αl - deformation of Einstein Equations?

B) Provided the foregoing representation is derived, is it possible to have
its logical series expansion in terms of αl? Note that we must allow for
the following: αl may be considered continuous with a high accuracy only
at low energies. Obviously, at high energies it is discrete as the length l
is comparable to the minimal length l ∝ lmin, i.e. in fact to the Planck’s
length l ∝ lP .
As noted in point IV of Section 2, on approximation of the Planck energies,
models (A) and (B) for the space-time fluctuations are practically coinci-
dent. Because of this, we can raise the following questions:

C1) Is there some ”critical measure” or ”critical index” γcrit:γ = 2/3 <
γcrit < γ = 1 – minimal bound, beginning from which models (A) and (B)
are practically identical at high energies, between the coefficients γ = 2/3
and γ = 1 in formulae (3) and (3)? If such a ”critical index” exists, what
is it like? This may be of great importance for answering the question that
concerns the ”phase transition”, i.e. the minimal energies, beginning
from which one should take into account the quantum-gravitational effects.

Another but similar problem:

C2) concerns a minimal bound for αl (denoted by αcrit
l = l2min/l

2
crit), above

which models (A) and (B) actually result in the same physics. It is clear
that the problem at hand is associated with derivation of the corresponding
energy: Ecrit ∼ 1/lcrit.
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And, finally,
(D) it is interesting how the high-energy αl - deformation of Einstein Equa-
tions is related to the adequate selection of a model for the space-time foam.
Is it representing a set of micro worm holes(for example, [3]–[6]), micro black
holes [7]– [9] or something else?
The author is planning to answer these questions, at least some of them, in
his future works.
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