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The Kowalevski top in two constant fields is known as the unique profound example of an integrable Hamiltonian
system with three degrees of freedom not reducible to a family of systems in fewer dimensions. As the first approach to
topological analysis of this system we find the critical set of the integral map; this set consists of the trajectories with
number of frequencies less than three. We obtain the equations of the bifurcation diagram in R3. A correspondence
to the Appelrot classes in the classical Kowalevski problem is established. The admissible regions for the values of the
first integrals are found in the form of some inequalities of general character and boundary conditions for the induced
diagrams on energy levels.
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1. Introduction

During the last 20 years the integrable case of S. Kowalevski [1] has received several generalizations.
Among them a special place is given to the case [2] of rotation about a fixed point of a heavy electrically
charged gyrostat in gravitational and electric fields of force. For a rigid body without gyrostatic effects
the corresponding equations were first considered in [3] and interpreted as the equations of motion of
a massive magnet subject to the gravity force and constant magnetic force fields. The mathematical
model of superposition of such fields is referred to as two constant fields [4].

The case [2] does not have any explicit groups of symmetry and therefore provides an illustration
of a physically realizable system with three degrees of freedom not admitting any obvious reduction
to a family of systems with two degrees of freedom. The phase topology of irreducible systems has
not been studied yet. The theory of n-dimensional integrable systems originated in [5] has not been
further developed due to the absence, at that moment, of non-trivial natural examples.

The result [2] succeeded some previous publications dealing with rigid bodies and gyrostats sat-
isfying the conditions of Kowalevski type: I. V. Komarov [6] has proved the complete integrability of
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the Kowalevski gyrostat in gravity force field by finding the first generalization of the Kowalevski
integral K; the corresponding integral for the rigid body in two constant fields was pointed out
by O. I. Bogoyavlensky [3]; this integral was upgraded to the case of gyrostat by H. Yehia [7]. Yet
the analog of the Kowalevski case for two constant fields had not been considered integrable until
A.G. Reyman and M. A. Semenov–Tian–Shansky [2] found the Lax representation with spectral pa-
rameter; this immediately led to the new integral generalizing the square of momentum integral for
axially symmetric force fields.

Later, in a joint publication with A. I. Bobenko [4], the authors of [2] presented algebraic foun-
dations for the integrability of multidimensional Kowalevski gyrostats and described a viable way of
explicit integration using finite-band technique. For two constant fields this integration was never
fulfilled.

This paper starts the investigation of three-dimensional phase topology of a rigid body of
Kowalevski type in two constant fields.

2. Preliminaries

Consider a rigid body with fixed point O. Choose a trihedral at O rotating along with the body and
refer to it all vector and tensor objects. Denote by e1e2e3 the canonical unit basis in R3; then the
moving trihedral itself is represented as Oe1e2e3.

Constant field is a force field inducing the rotating moment about O of the form

r×α (2.1)

with constant vector r and with α corresponding to some physical vector fixed in inertial space; r
points from O to the center of application of the field, α is the field’s intensity.

For two constant fields the rotating moment is r1 ×α + r2 × β. It can be represented as (2.1) if
either r1 × r2 = 0 or α× β = 0. In the sequel we suppose that

r1 × r2 6= 0, α× β 6= 0. (2.2)

Two constant fields satisfying (2.2) are said to be independent.
Introduce some notation.
Let L(n, k) be the space of n× k-matrices. Put L(k) = L(k, k).
Identify R6 = R3 ×R3 with L(3, 2) by the isomorphism j that joins two columns

A = j(a1,a2) = ‖a1 a2‖ ∈ L(3, 2), a1,a2 ∈ R3.

For the inverse map, we write

j−1(A) = (c1(A), c2(A)) ∈ R3 ×R3, A ∈ L(3, 2).

If A, B ∈ L(3, 2), a ∈ R3, by definition, put

A×B =
2∑

i=1

ci(A)× ci(B) ∈ R3; a×A = j(a× c1(A),a× c2(A)) ∈ L(3, 2). (2.3)

Lemma 1. Let Λ ∈ SO(3), D ∈ GL(2,R), a ∈ R3, A, B ∈ L(3, 2). Then

Λ(A×B) = (ΛA)× (ΛB); (AD−1)× (BDT ) = A×B;
Λ(a×A) = (Λa)× (ΛA); a× (AD) = (a×A)D.

The proof is by direct calculation.
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Denote by I the inertia tensor of the body at O and by ω the angular velocity. Using the
notation (2.3) we write the Euler – Poisson equations of motion in the form

Iω· = Iω × ω + A× U, U · = −ω × U. (2.4)

Here A = j(r1, r2) is a constant matrix, U = j(α, β). The phase space of (2.4) is {(ω, U)} =
= R3 × L(3, 2).

In fact, U in (2.4) is restricted by geometric integrals; that is, for some constant symmetric
C ∈ L(2)

UT U = C. (2.5)

Let O represent the set (2.5) in L(3, 2). In order to emphasize the C-dependence, we write
O = O(C).

Let S = (I, A,C). Denote by XS the vector field on R3×O(C) corresponding to the system (2.4).
Associate to Λ ∈ SO(3), D ∈ GL(2,R) the linear automorphisms Ψ(Λ, D) and ψ(Λ, D) of

R3 × L(3, 2) and L(3)× L(3, 2)× L(2)

Ψ(Λ, D)(ω, U) = (Λω, ΛUDT ),
ψ(Λ, D)(I, A, C) = (ΛIΛT ,ΛAD−1, DCDT ).

(2.6)

It is easy to see that (2.5) and (2.6) imply Ψ(Λ, D)(R3 × O(C)) = R3 × O(DCDT ). Using
Lemma 1 we obtain the following statement.

Lemma 2. For each (Λ, D) ∈ SO(3)×GL(2,R), we have

Ψ(Λ, D)∗(XS(v)) = Xψ(Λ,D)(S)(Ψ(Λ, D)(v)), v ∈ R3 ×O(C).

Thus, any two problems of rigid body dynamics in two constant fields (for short, RBD-problems)
determined by the sets of parameters S and ψ(Λ, D)(S) are completely equivalent.

Let us call an RBD-problem canonical if the centers of application of forces lie on the first two
axes of the moving trihedral at unit distance from O and the intensities of the forces are orthogonal
to each other.

Proposition 1. For each RBD-problem with independent forces there exists an equivalent canon-
ical problem. Moreover, in both equivalent problems the centers of application of forces belong to the
same plane in the body containing the fixed point.

Proof. Let the RBD-problem determined by the set of parameters S = (I, A,C) satisfy (2.2).
This means that the symmetric matrices A∗ = (AT A)−1 and C are positively definite.

According to the well-known fact from linear algebra, A∗ and C can be reduced, respectively, to
the identity matrix and to a diagonal matrix via the same conjugation operator

DA∗DT = E, DCDT = diag{a2, b2}, D ∈ GL(2,R), a, b ∈ R+.

Then c1(AD−1) and c2(AD−1) form an orthonormal pair in R3. There exists Λ ∈ SO(3) such
that Λci(AD−1) = ei (i = 1, 2). The first statement is obtained by applying Lemma 2 with the
previously chosen Λ, D to the initial vector field XS .

To finish the proof, notice that the transformation A 7→ AD−1 preserves the plane spanning c1(A),
c2(A). The matrix Λ in (2.6) represents the change of the moving trihedral. Therefore, if a ∈ R3

represents some physical vector in the initial problem, then Λa is the same vector with respect to the
body in the equivalent problem.
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Remark 1. The fact that any RBD-problem can be reduced to the problem with one of the pairs r1, r2

or α, β orthonormal is known from [8]. Simultaneous orthogonalization of both pairs crucially simplifies calcu-
lations below.

It follows from Proposition 1 that, without loss of generality, for independent forces we may
suppose

r1 = e1, r2 = e2, (2.7)

α ·α = a2, β · β = b2, α · β = 0. (2.8)

Change, if necessary, the order of e1, e2 (with simultaneous change of the direction of e3) to obtain
a > b > 0.

Consider a dynamically symmetric top in two constant fields with the centers of application of
forces in the equatorial plane of its inertia ellipsoid. Choose a moving trihedral such that Oe3 is the
symmetry axis. Then the inertia tensor I becomes diagonal. Let a = b. For any Θ ∈ SO(2) denote
by Θ̂ ∈ SO(3) the corresponding rotation of R3 about Oe3. Take in (2.6) Λ = Θ̂, D = Θ. Under the
conditions (2.7), (2.8) ψ = Id and Ψ becomes the symmetry group. The system (2.4) has the cyclic
integral Iω · (a2e3 − α × β) pointed out in [7] for the analog of the Kowalevski case. Therefore it is
possible to reduce such an RBD-problem to a family of systems with two degrees of freedom.

Let us call an RBD-problem irreducible if for its canonical representation (2.7), (2.8) the following
inequality holds

a > b > 0. (2.9)

The following statements are needed in the future; they also reveal some features of a wide class
of RBD-problems.

Lemma 3. In an irreducible RBD-problem, the body has exactly four equilibria.

Proof. The set of singular points of (2.4) is defined by ω = 0, A × U = 0. For the equivalent
canonical problem with (2.7)

e1 ×α + e2 × β = 0. (2.10)

Then the four vectors in (2.10) are parallel to the same plane and |e1 ×α| = |e2 × β|. With (2.8),
(2.9) this equality yields

α = ±ae1, β = ±be2. (2.11)

From mechanical point of view, the result is absolutely clear: none of the orthogonal forces with
unequal intensities and ‘orthonormal’ centers of application can produce a non-zero moment at an
equilibrium.

Lemma 4. Let an irreducible RBD-problem in its canonical form have the diagonal inertia
tensor I. Then the body has the following families of periodic motions of pendulum type

α ≡ ±ae1, ω = ϕ·e1, β = b(e2 cosϕ− e3 sinϕ),
2ϕ·· = −b sinϕ;

(2.12)

β ≡ ±be2, ω = ϕ·e2, α = a(e1 cosϕ + e3 sinϕ),
2ϕ·· = −a sinϕ;

(2.13)

α× β ≡ ±abe3, ω = ϕ·e3,
α = a(e1 cosϕ− e2 sinϕ), β = ±b(e1 sinϕ + e2 cosϕ),

ϕ·· = −(a± b) sinϕ.
(2.14)

The proof is obvious. Note that in the case considered the pointed out families are the only
motions with constant direction of the angular velocity. In particular, the body in two independent
constant fields does not have any uniform rotations.
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3. Critical set of the Kowalevski top in two constant fields

Suppose that the irreducible RBD-problem has a diagonal inertia tensor with principal moments of
inertia satisfying the ratio 2:2:1; then we obtain the integrable case [2] of the Kowalevski top in two
constant fields. By an appropriate choice of measurement units, we present equations (2.4) in scalar
form

2ω·
1 = ω2ω3 + β3, 2ω·

2 = −ω1ω3 − α3, ω·
3 = α2 − β1,

α·
1 = α2ω3 − α3ω2, β·

1 = β2ω3 − β3ω2,
α·

2 = α3ω1 − α1ω3, β·
2 = β3ω1 − β1ω3,

α·
3 = α1ω2 − α2ω1, β·

3 = β1ω2 − β2ω1.

(3.1)

The phase space is P 6 = R3 × O, where O ⊂ R3 × R3 is defined by (2.8); O is diffeomorphic
to SO(3).

The complete set of first integrals in involution on P 6 consists of the energy integral H, the
generalized Kowalevski integral K [3], and the integral G found in [2]:

H = ω2
1 + ω2

2 + 1
2ω2

3 − (α1 + β2),

K = (ω2
1 − ω2

2 + α1 − β2)2 + (2ω1ω2 + α2 + β1)2,

G = 1
4(2α1ω1 + 2α2ω2 + α3ω3)2 + 1

4(2β1ω1 + 2β2ω2 + β3ω3)2+

+ 1
2ω3(2γ1ω1 + 2γ2ω2 + γ3ω3)− b2α1 − a2β2.

(3.2)

Here we denote by γi the components of γ = α× β relative to the moving basis.
Introduce the integral map

J = G×K ×H : P 6 → R3. (3.3)

Let σ ⊂ P 6 be the set of critical points of J . By definition, the bifurcation diagram of J is the
subset Σ ⊂ R3 over which J fails to be locally trivial; Σ determines the cases when the topological
type of the integral manifolds

Jc = J−1(c), c = (g, k, h) ∈ R3 (3.4)

changes. Finding the critical set σ and the bifurcation diagram is the necessary step in the topological
analysis of the problem as a whole.

It follows from the Liouville – Arnold theorem that for c /∈ Σ the manifold (3.4), if not empty,
is a union of three-dimensional tori. The considered Hamiltonian system is non-degenerate (at least
for sufficiently small values of b); then the trajectories on such a torus are quasi-periodic with three
almost everywhere independent frequencies. The critical set σ is invariant under the phase flow and
consists of trajectories with number of frequencies less than three. These trajectories are called critical
motions. For a generic value c ∈ Σ the set Jc ∩ σ consists of two-dimensional tori. The dynamical
system induced on the union of such tori for c in some open subset in Σ is a Hamiltonian system with
two degrees of freedom. Vice versa, let M be a submanifold of P 6, dimM = 4, and suppose that the
induced system on M is Hamiltonian. Then, obviously, M ⊂ σ. This speculation gives a useful tool
to find out whether a common level of functions consists of critical points of J .

Lemma 5. Consider a system of equations

f1 = 0, f2 = 0 (3.5)

on a domain W open in P 6. Let X be the vector field on P 6 corresponding to (3.1) and M ⊂ W
defined by (3.5). Suppose

(i) f1 and f2 are smooth functions independent on M ;
(ii) Xf1 = 0, Xf2 = 0 on M ;
(iii) the Poisson bracket {f1, f2} is non-zero almost everywhere on M .
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Then M consists of critical points of the map J .

Proof. Conditions (i), (ii) imply that M is a smooth four-dimensional manifold invariant under
the restriction of the phase flow to the open set W . Condition (iii) means that the closed 2-form
induced on M by the symplectic structure on P 6 is almost everywhere non-degenerate. Thus the
flow on M is almost everywhere Hamiltonian with two degrees of freedom. It inherits the property
of complete integrability. Then almost all its integral manifolds consist of two-dimensional tori and
necessarily lie in σ. Since M is closed in W and σ is closed in P 6, we conclude that M ⊂ σ.

Two systems of the type (3.5) are known. The first one was pointed out in [3]. It is the zero
level of the integral K. The condition K = 0 leads to two independent equations defining the smooth
four-dimensional manifold M ⊂ σ. It is shown in [9] that the 2-form induced on M by the symplectic
structure on P 6 is degenerate on the surface of codimension 1.

The second critical subset N ⊂ σ was found in [10] in the form of a system of two equations
satisfying the conditions of Lemma 5. The functions in these equations have essential singularities at
the points

α1 = β2, α2 = −β1. (3.6)

The set N was investigated in [11]. It was shown that N is the set of critical points of some smooth
function F on P 6. Then N is stratified by the rank of Hesse’s matrix of F and fails to be a smooth
four-dimensional manifold at some points of the set (3.6). In particular, it cannot be defined by any
global system of two independent equations. In this case the induced 2-form also has degenerate points
even in the smooth part of N.

The following result completes the description of the critical set σ by adding a new invariant
subset O ⊂ P 6; O is almost everywhere a smooth four-dimensional manifold. Note that the sets M, N

and O have pairwise nonempty intersections corresponding to bifurcations of critical integral manifolds
of the induced ‘almost Hamiltonian’ systems with two degrees of freedom.

Let us introduce the following notation

p2 = a2 + b2, r2 = a2 − b2;
ξ1 = α1 − β2, ξ2 = α2 + β1, η1 = α1 + β2, η2 = α2 − β1.

Theorem 1. The set of critical points of the integral map (3.3) consists of the following subsets
in P 6:

1) the set M defined by the system

Z1 = 0, Z2 = 0 (3.7)

with
Z1 = ω2

1 − ω2
2 + ξ1, Z2 = 2ω1ω2 + ξ2; (3.8)

2) the set N defined by the system

F1 = 0, F2 = 0, ξ2
1 + ξ2

2 6= 0 (3.9)

with
F1 = (ξ2

1 + ξ2
2)ω3 − 2[(ξ1ω1 + ξ2ω2)α3 + (ξ2ω1 − ξ1ω2)β3],

F2 = (ξ2
1 − ξ2

2)(2ω1ω2 + ξ2)− 2ξ1ξ2(ω2
1 − ω2

2 + ξ1),
(3.10)

and by the system
ξ1 = ξ2 = 0, α3 = ±r, β3 = 0, η2

1 + η2
2 = 2(p2 − r2),

(ω2
1 + ω2

2)(α3ω3 + η1ω1 + η2ω2) + r2ω1 = 0;
(3.11)

3) the set O defined by the system

R1 = 0, R2 = 0 (3.12)
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with
R1 = (α3ω2 − β3ω1)ω3 + 2ξ1ω1ω2 − ξ2(ω2

1 − ω2
2) + η2(ω2

1 + ω2
2),

R2 = (α3ω1 + β3ω2)ω2
3 + [α2

3 + β2
3 + ξ1(ω2

1 − ω2
2) + 2ξ2ω1ω2+

+ η1(ω2
1 + ω2

2)]ω3 + 2[ξ1(α3ω1 − β3ω2) + ξ2(α3ω2 + β3ω1)].
(3.13)

Proof. Introduce the change of variables [10] (i2 = −1)

x1 = ξ1 + iξ2, x2 = ξ1 − iξ2,
y1 = η1 + iη2, y2 = η1 − iη2,
z1 = α3 + iβ3, z2 = α3 − iβ3,

w1 = ω1 + iω2, w2 = ω1 − iω2, w3 = ω3.

(3.14)

The system (3.1) takes the form

x′1 = −x1w3 + z1w1, x′2 = x2w3 − z2w2,
y′1 = −y1w3 + z2w1, y′2 = y2w3 − z1w2,
2z′1 = x1w2 − y2w1, 2z′2 = −x2w1 + y1w2,

2w′1 = −(w1w3 + z1), 2w′2 = w2w3 + z2, 2w′3 = y2 − y1.

(3.15)

Here the prime stands for d/d(it).
Denote by V 9 the subspace of C9 defined by (3.14). On V 9, equations (2.8) of the phase space P 6

become
z2
1 + x1y2 = r2, z2

2 + x2y1 = r2,
x1x2 + y1y2 + 2z1z2 = 2p2.

(3.16)

By virtue of (3.14) and (3.16) the integrals (3.2) take the form

H = 1
2w2

3 + w1w2 − 1
2(y1 + y2),

K = (w2
1 + x1)(w2

2 + x2),

G = 1
4(p2 − x1x2)w2

3 + 1
2(x2z1w1 + x1z2w2)w3+

+ 1
4(x2w1 + y1w2)(y2w1 + x1w2)− 1

4p2(y1 + y2) + 1
4r2(x1 + x2).

(3.17)

Let f be an arbitrary function on V 9. For brevity, the term ‘critical point of f ’ will always mean
a critical point of the restriction of f to P 6. Similarly, df means the restriction of the differential of f
to the set of vectors tangent to P 6.

While calculating critical points of various functions (in the above sense), it is convenient to avoid
introducing Lagrange multipliers for the restrictions (3.16). Notice that the following vector fields

X1 = ∂
∂w1

, X2 = ∂
∂w2

, X3 = ∂
∂w3

,

Y1 = z2
∂

∂x2
+ z1

∂
∂y2

− 1
2x1

∂
∂z1

− 1
2y1

∂
∂z2

,

Y2 = z1
∂

∂x1
+ z2

∂
∂y1

− 1
2y2

∂
∂z1

− 1
2x2

∂
∂z2

,

Y3 = x1
∂

∂x1
− x2

∂
∂x2

+ y1
∂

∂y1
− y2

∂
∂y2

are tangent to P 6 ⊂ V 9 and linearly independent at any point of P 6. Then the set of critical points
of f is defined by the system of equations

X1f = 0, X2f = 0, X3f = 0, (3.18)
Y1f = 0, Y2f = 0, Y3f = 0. (3.19)
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1. Apply (3.18) and (3.19) to f = K. Then a critical point of K satisfies either

w2
1 + x1 = 0, w2

2 + x2 = 0 (3.20)

or
w1 = w2 = 0, z1 = z2 = 0. (3.21)

The system (3.20) coincides with (3.7) and the only invariant set generated by (3.21) consists of
all points of the trajectories (2.14). Such points satisfy (3.12).

2. Consider the regular points of K at which H and K are dependent. Applying (3.18) to f =
= H + sK with Lagrange multiplier s we immediately obtain w3 = 0. Then from (3.15) we come to
solutions (2.12), (2.13). Along the corresponding trajectories both conditions (3.9), (3.12) are valid.

3. We now assume that H and K are independent. Introduce the function with Lagrange
multipliers τ, s

L = 2G + (τ − p2)H + sK.

The multiplier of G is non-zero by assumption. The term with p2 is added for convenience.
The set σ0 ⊂ σ of the points satisfying for some τ, s the condition

2dG + (τ − p2)dH + sdK = 0 (3.22)

is preserved by the phase flow of (3.15). Applying the corresponding Lie derivative to (3.22) gives

τ ′dH + s′dK = 0.

Since dH and dK are supposed to be linearly independent, on σ0 we obtain

τ ′ = 0, s′ = 0. (3.23)

Hence τ, s are partial integrals of motion on the invariant surface σ0.
Equations (3.18) with f = L give

x2z1w3 + x2y2w1 + (τ − z1z2)w2 + 2sw1(w2
2 + x2) = 0,

x1z2w3 + (τ − z1z2)w1 + x1y1w2 + 2sw2(w2
1 + x1) = 0;

(3.24)

(τ − x1x2)w3 + x2z1w1 + x1z2w2 = 0. (3.25)

First consider the case (3.6). From (3.16) we come to the following values

x1 = x2 = 0, z2
1 = z2

2 = r2, y1y2 = 2(p2 − r2). (3.26)

Equations (3.24) and (3.25) hold if w1w2 = 0 or w3 = 0. If either of these equalities takes place
on some interval of time (and hence identically), then we obtain one of the solutions (2.12)–(2.14).

Let w1w2 6= 0, w3 6= 0 at some point satisfying (3.26). Then (3.24) and (3.25) yield

τ = 0, s = r2/(2w1w2). (3.27)

Since z1 and z2 are complex conjugates of each other, it follows from (3.26) that they are real
and equal. Denote their value by z = ±r.

With (3.26) and (3.27) the system (3.19) reduces to a single equation

w1w2[2zw3 + (w2y1 + w1y2)] + r2(w1 + w2) = 0, (3.28)

which corresponds to (3.11).
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Note that (3.28) is obtained from (3.9) as ρ =
√

ξ2
1 + ξ2

2 tends to zero only after dividing by the
maximal available power of ρ. Thus, at the points (3.6) the system (3.9), without the assumption
that ρ 6= 0, has extra solutions not belonging to σ.

Suppose x1x2 6= 0. The determinant of (3.24) with respect to τ, s equals δ = 2(x1w
2
2 − x2w

2
1).

Let δ ≡ 0 on some interval of time; calculating the derivatives of this identity in virtue of (3.15), we
obtain one of the cases (3.20), (3.21). Therefore we may assume that δ 6= 0. Then (3.24) implies

s = 1
2(x1w

2
2 − x2w

2
1)

[(x2z1w1 − x1z2w2)w3 + x2y2w
2
1 − x1y1w

2
2], (3.29)

τ = z1z2 + 1
x1w

2
2 − x2w

2
1

{[x1x2(z2w1 − z1w2)− w1w2(x2z1w1 − x1z2w2)]w3− (3.30)

− w1w2(x2y2w
2
1 − x1y1w

2
2) + x1x2w1w2(y1 − y2)}.

Eliminating τ from (3.25) and (3.30) we obtain S1 = 0, where

S1 = [x1x2(z2w1 − z1w2)− w1w2(x2z1w1 − x1z2w2)]w2
3+

+ [(x1x2 − z1z2)(x2w
2
1 − x1w

2
2)− w1w2(x2y2w

2
1 − x1y1w

2
2)+

+ x1x2w1w2(y1 − y2)]w3 − (x2w
2
1 − x1w

2
2)(x2z1w1 + x1z2w2).

Next we solve (3.25) for τ and calculate the derivative τ ′ in virtue of (3.15). According to (3.23)
we must have S2 = 0, where

S2 = (x2z1w1 − x1z2w2)w2
3 + (x2y2w

2
1 − x1y1w

2
2 + x2z

2
1 − x1z

2
2)w3−

− (y1 − y2)(x2z1w1 + x1z2w2).

Notice that
S1 + w1w2S2 = F1R.

Here
F1 = x1x2w3 − (x2z1w1 + x1z2w2) (3.31)

is the first function from (3.10). The function

R = (z2w1 − z1w2)w3 + x2w
2
1 − x1w

2
2 + w1w2(y1 − y2) (3.32)

is a multiple of the first function from (3.13), precisely, R = 2iR1. Thus on the trajectories consisting
of critical points, we have either F1 ≡ 0 or R1 ≡ 0. Calculating the derivatives of these identities in
virtue of (3.15) we obtain (3.9) and (3.12), respectively. Hence (3.9) and (3.12) provide necessary
conditions for a point to belong to σ0.

To prove sufficiency, it is enough to check (3.19). We avoid this technically complicated procedure
and only notice that the systems (3.9) and (3.12) satisfy the assumptions of Lemma 5.

The phase topology of the induced system on M was studied in [9]. The system of invariant
relations (3.9) corresponds to that found in [10]. In the paper [11] the equations of motion on N are
separated and the initial phase variables are expressed via two auxiliary variables, the latter being
elliptic functions of time. The motions on M generalize those of the 1st Appelrot class (Delone class)
of the Kowalevski problem [12]. As b tends to zero the motions on N, as shown in [10], convert to the
so-called especially marvellous motions of the 2nd and 3rd classes of Appelrot [12]. The set defined
by the system (3.12) was not pointed out earlier.

To find the classical analog of the set O, put β = 0 in (3.13). Then ξ1 = η1 = α1, ξ2 = η2 = α2

and we obtain
R1 = 2`ω2, R2 = 2`(ω1ω3 + α3),
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where 2` = 2α1ω1 + 2α2ω2 + α3ω3 is a constant of the momentum integral existing in the case of one
force field. Therefore equations (3.12) yield either ` = 0 or

ω2 = 0, ω1ω3 + α3 = 0. (3.33)

The condition ` = 0 follows from the fact that when β = 0 the integral G takes the value `2.
Equations (3.33) define especially marvellous motions of the 4th class of Appelrot [12].

4. Bifurcation diagram

Since all common levels of the first integrals (3.2) are compact, the bifurcation diagram Σ coincides
with the set of critical values of the map (3.3), that is, Σ = J(σ).

Let γ = |α× β|. According to (2.8), γ = ab.
Denote by ∆ the region of existence of motions, that is, the set of c = (g, k, h) ∈ R3 for which

the integral manifolds (3.4) are not empty.

Theorem 2. The bifurcation diagram of the map G ×K ×H is the intersection of ∆ with the
union of the surfaces

Γ1 : k = 0; (4.1)
Γ2 : p2h− 2g + r2

√
k = 0; (4.2)

Γ3 : p2h− 2g − r2
√

k = 0; (4.3)

Γ4 :





k = 3s2 − 4hs + p2 + h2 − γ2

s2

g = −s3 + hs2 +
γ2

s

, s ∈ R\{0} (4.4)

and the line segment
Γ5 : g = γh, k = p2 − 2γ, h2 6 4γ. (4.5)

In the parametric representation of the surface Γ4 the parameter s stands for a multiple root of
the polynomial

Φ(s) = s4 − 2hs3 + (h2 + p2 − k)s2 − 2gs + γ2. (4.6)

Proof. 1. The equation of the surface (4.1) follows immediately from (3.7), (3.8), and the
expression of K in (3.2).

2. Relations (4.2), (4.3) are equivalent to

(p2h− 2g)2 − r4k = 0. (4.7)

Introduce the function
F = (p2H − 2G)2 − r4K.

For x1x2 6= 0 denote

U1 =
√

x2
x1

(w2
1 + x1), U2 =

√
x1
x2

(w2
2 + x2) (U2 = U1). (4.8)

From representations (3.17) and (3.31) we obtain

p2H − 2G + r2
√

K = 1
2x1x2

F 2
1 + 2r2(ImU1)2,

p2H − 2G− r2
√

K = 1
2x1x2

F 2
1 − 2r2(ReU1)2.

(4.9)
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Here
√

K is the principal square root of K.
The equation of the zero level of F splits into two distinct equations

F 2
1 + 4r2x1x2(ImU1)2 = 0, (4.10)

F 2
1 − 4r2x1x2(ReU1)2 = 0. (4.11)

From (3.10) and (4.8) we have

F2 =
x1x2

2i
(U2

1 − U2
2 ) = 2x1x2 Im U1 ReU1.

Thus the solutions of (3.9) satisfy either (4.10) or (4.11) and therefore lie on the zero level of the
function F . The corresponding values of the first integrals satisfy (4.7).

From (3.17) it follows that (4.7) holds for all points of the phase space such that x1x2 = 0
(regardless of their critical or regular nature). Hence (4.7) holds for the points (3.11).

3. Consider the system (3.12). In terms of the variables (3.14) it is equivalent to the following
equations:

R = 0, R∗ = 0. (4.12)

Here R is defined by (3.32) and

R∗ = (z2w1 + z1w2)w2
3 + [x2w

2
1 + x1w

2
2 + w1w2(y1 + y2) + 2z1z2]w3+

+ 2(x2z1w1 + x1z2w2).
(4.13)

Notice that, after several differentiations in virtue of the system (3.15), the possibility z2
2w

2
1 −

− z2
1w

2
2 ≡ 0 leads to the conditions (3.21), that is, to the critical motions (2.14). Assuming (3.21) we

obtain from (3.16)

x1x2 = p2 − 2q, y1y2 = p2 + 2q, (x1 + x2)y1y2 = r2(y1 + y2)
(q = ±γ).

The corresponding values of the integrals (3.17) are

h = 1
2w2

3 − 1
2(y1 + y2) > −

√
p2 + 2q, k = p2 − 2q, g = qh. (4.14)

If q = −γ, then all of these values satisfy (4.4) with

s = 1
2[h±

√
h2 + 4γ]. (4.15)

Let q = γ. Then the values (4.14) satisfy (4.4) with

s = 1
2[h±

√
h2 − 4γ], (4.16)

that is, only for the energy range h2 > 4γ. For q = γ and h2 6 4γ the values (4.14) fill the
segment (4.5).

Consider the trajectories for which the equalities (3.21) do not hold identically. Express w3 from
the first equation (4.12):

w3 = − 1
z2w1 − z1w2

[x2w
2
1 − x1w

2
2 + w1w2(y1 − y2)]. (4.17)

Replacing w3 in (z2w1 − z1w2)2R∗ by (4.17), we obtain the expression 2w1w2Q (the resultant
of (3.32), (4.13) as polynomials in w3), where Q is a non-homogeneous polynomial of third degree
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in w1 and w2 whose coefficients are polynomials in xi, yi and zi of degree not greater than four.
Since (3.21) is already excluded, the system (3.12) is replaced by (4.17) and the equation

Q = 0. (4.18)

We claim that in virtue of (4.17) and (4.18), the values (3.29) and (3.30) satisfy the identities

τ − p2 − 2s(s−H) = 0,
(τ − p2)2 + 4(p2 −K)s2 − 8Gs + (p4 − r4) = 0,
(τ − p2)(2s−H) + 2(p2 −K)s− 2G = 0.

(4.19)

Here the calculation sequence is as follows.
We substitute (3.17), (3.29), (3.30), (4.17) in the left-hand side of each equation (4.19) and multi-

ply the result by the denominator, which is already supposed to be non-zero. The expression thereby
obtained appears to be the product of some polynomial in variables (3.14) and the polynomial Q,
which equals zero due to (4.18).

Replace in (4.19) the functions G,K, H by their constant values g, k, h and exclude τ with the
help of the first relation. The remaining two reduce to the form

Φ(s) = 0, dΦ(s)/ds = 0, (4.20)

where Φ is the polynomial (4.6). Equations (4.4) are equivalent to (4.20).

Remark 2. It is easy to see now that the relations (4.1)–(4.3) turn into corresponding relations of the 1st,
2nd, and 3rd classes of Appelrot as β tends to zero. Simultaneously, the polynomial (4.6) turns to sϕ(s),
where ϕ(s) is the Euler resolvent of the second polynomial of Kowalevski. This provides an alternative insight
into the connection of the set Γ4 with the 4th Appelrot class of motions. The part of the segment Γ5 defined
by the inequality h2 < 4γ for the classical case (γ = 0) disappears.

5. The region of existence of motions

The results of the previous section are not complete until we find some conditions that give a criterion
to establish whether a point of Σ̃ = Γ1∪Γ2∪Γ3∪Γ4∪Γ5 belongs to the region of existence of motions
∆ = J(P 6) ⊂ R3.

Three inequalities of general character can be obtained immediately from (3.2) and (4.9):

k > 0; (5.1)
h > −(a + b); (5.2)

p2h > 2g − r2
√

k. (5.3)

In case of the Kowalevski top in the gravity field (p2 = r2) the inequality obtained from (5.3) was
established by Appelrot [12].

To get more precise estimations for (g, k, h) ∈ ∆, restrict the problem to iso-energetic surfaces
Eh = {v ∈ P 6 : H(v) = h}. Denote

Jh = G×K
∣∣
Eh

: Eh → R2

and let Σ̃h,Σh,∆h be the cross-sections of Σ̃,Σ, ∆ by the plane parallel to and height h above the
(g, k)-plane. For any h the set Σh is a bifurcation diagram of the map Jh.

Notice that all sets Eh are compact. As proved in [13], they are connected as well. Therefore the
values of any continuous function on Eh fill a bounded and connected segment.
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Let
k∗(h) = minK |Eh , k∗(h) = maxK |Eh ;
g∗(h) = minG |Eh , g∗(h) = maxG |Eh .

(5.4)

Then the rectangle

Π(h) = {(k, g) : k∗(h) 6 k 6 k∗(h), g∗(h) 6 g 6 g∗(h)}

cuts Σh out of Σ̃h and we hope that this operation is not ambiguous.
The following statements allow us to find explicitly the values (5.4) and give some more informa-

tion about the sets Γi ∩∆.
We are going to investigate various maps constructed of combinations of the first integrals G,K, H

and, possibly, restricted to invariant submanifolds in P 6. For each map I : C → Rk of this type we
call a point c ∈ Rk an admissible value if I−1(c) 6= ∅.

In Sections 3, 4 we often referred to the motions (2.12)–(2.14). They will be also important in
the sequel. Calculating the related values of G,K, H we obtain the sets λi in (h, g)-plane and µi in
(h, k)-plane (i = 1, ..., 6):

λ1 : g = a2h + a(a2 − b2), µ1 : k = (h + 2a)2, h > −(a + b);
λ2 : g = a2h− a(a2 − b2), µ2 : k = (h− 2a)2, h > a− b;
λ3 : g = b2h− b(a2 − b2), µ3 : k = (h + 2b)2, h > −(a + b);
λ4 : g = b2h + b(a2 − b2), µ4 : k = (h− 2b)2, h > −a + b;
λ5 : g = abh, µ5 : k = (a− b)2, h > −(a + b);
λ6 : g = −abh, µ6 : k = (a + b)2, h > −a + b.

The existing pairwise intersections of the first four sets in either group correspond to the equilib-
ria (2.11).

Recall that M = {K = 0} ⊂ P 6 and J(M) = Γ1 ∩∆. Denote

M = p2H − 2G : P 6 → R

and let H(1) = H|M, M (1) = M |M. The following result belongs to D.B. Zotev [9].

Proposition 2. (i) The function H(1) has three critical values h1 = −2b, h2 = 2b and h3 = 2a.
In particular,

min
M

H = −2b.

(ii) The bifurcation diagram of J (1) = H(1) ×M (1) : M → R2 consists of the half-line

m = 0, h > −2b (5.5)

and the set of solutions of the equation

27m4 + 4h(h2 − 18p2)m3 − 2[4p2h4 − (16p4 + 15r4)h2 + 2p2(8p4 − 9r4)]m2+
+4r4h[h4 − 4p2h2 + 2(2p4 − 3r4)]m− r8[(h2 − 2p2)2 − 4r4] = 0

(5.6)

in the quadrant {m > 0, h > −2b}.
(iii) The set of admissible values of J (1) is

0 6 m 6 m0(h), h > −2b,

where m0(h) stands for the greatest positive root of (5.6), which is considered as an equation in m.

The bifurcation diagram of J (1) is shown in Fig. 1. The admissible values fill the shaded region.
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Fig. 1. The bifurcation diagram of H(1) ×M (1)

The proof given in [9] is based on an ingenious change of variables on M. Let us point out the
relation between this result and Theorem 2.

Let
m = p2h− 2g. (5.7)

It follows from (5.3) that m > 0 on M. This inequality explains (5.5). Moreover, the line m = 0
in the plane k = 0 is the intersection Γ1 ∩ (Γ2 ∪Γ3) (in fact, along this line Γ1 and Γ2 ∪Γ3 are tangent
to each other).

The intersection Γ1 ∩ Γ4 is defined by the system obtained from (4.1), (4.4)

3s4 − 4hs3 + (p2 + h2)s2 − γ2 = 0,
s4 − hs3 + gs− γ2 = 0.

(5.8)

By virtue of the notation (5.7) the left-hand side of (5.6) becomes the resultant of the polynomials
in (5.8) with respect to s. Thus the set (5.6) corresponds to Γ1 ∩ Γ4.

Recall that N ⊂ P 6 is defined by (3.9), (3.11) and J(N) = (Γ2 ∪ Γ3) ∩ ∆. Let H(2) = H|N,
G(2) = G|N. Introduce the map

J (2) = H(2) ×G(2) : N → R2.

The following statement is proved in [14].

Proposition 3. (i) The bifurcation diagram of J (2) consists of the half-lines λ1, λ2, λ3, λ4, the
half-line

g = 1
2p2h, h > −2b,

and the curve
2p2(p2h− 2g)2 − 2r4h(p2h− 2g) + r8 = 0, p2h > 2g.

(ii) The admissible values of J (2) fill the region defined by the system of inequalities
{

b2h− b(a2 − b2) 6 g 6 a2h + a(a2 − b2), h > −(a + b),
2p2(p2h− 2g)2 − 2r4h(p2h− 2g) + r8 > 0.

The bifurcation diagram of J (2) is shown in Fig. 2. The admissible values fill the shaded region.
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Fig. 2. The bifurcation diagram of H(2) ×G(2)

Propositions 2, 3 completely define those parts of Γ1, Γ2 and Γ3 which correspond to real critical
motions, that is, the sets Γ1 ∩∆ and (Γ2 ∪ Γ3) ∩∆.

Consider the map
J (3) = H ×K : P 6 → R2.

The critical set of J (3) is already found (see steps 1, 2 in the proof of Theorem 1). In addition to
the manifold M it contains all pendulum motions (2.12) – (2.14).

Proposition 4. (i) The bifurcation diagram of the map J (3) consists of the parabolic curves µ1,
µ3, µ2, µ4, the half-lines µ5, µ6, and the half-line

k = 0, h > −2b. (5.9)

(ii) Let

k∗(h) =
{

(h + 2b)2, −(a + b) 6 h 6 −2b
0, h > −2b

,

k∗(h) = (h + 2a)2.
(5.10)

The admissible values of J (3) fill the region

k∗(h) 6 k 6 k∗(h), h > −(a + b). (5.11)

The inequality in (5.9) follows from Proposition 2. The relationship k∗(h) in (5.10) is built in
accordance with (5.1). The range of h in (5.11) is defined by (5.2). The region of admissible values
(shaded in Fig. 3) is found using the mentioned above fact that for each h > −(a+ b) the image of Eh

under K is a bounded connected segment.
Finally, consider the map

J (4) = H ×G : P 6 → R2.

For 0 < |s| 6 b and |s| > a, let

φ(s) =

√
(s2 − a2)(s2 − b2)

s2
> 0.
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Fig. 3. The bifurcation diagram of H ×K

Proposition 5. (i) The bifurcation diagram of the map J (4) consists of the half-lines λ1, λ2, λ3,
λ4, λ5, λ6 and the curves

C1 :





h = 2s + φ(s)

g =
γ2

s + s3 + s2φ(s)
, s ∈ [−b, 0), (5.12)

C2 :





h = 2s + φ(s)

g =
γ2

s + s3 + s2φ(s)
, s ∈ (0, b ], (5.13)

C3 :





h = 2s− φ(s)

g =
γ2

s + s3 − s2φ(s)
, s ∈ [a,+∞). (5.14)

(ii) Denote by g0(h) the one-valued function defined by (5.12) when h > −2b. Let

g∗(h) =
{

b2h− b(a2 − b2), −(a + b) 6 h 6 −2b
g0(h), h > −2b

,

g∗(h) = a2h + a(a2 − b2).
(5.15)

Then the region of admissible values of J (4) is defined by the inequalities

g∗(h) 6 g 6 g∗(h), h > −(a + b).

The bifurcation diagram of J (4) with the shaded region of admissible values is shown in Fig. 4.
A straightforward proof of Proposition 5 can be obtained using the same technique as in the proof

of Theorem 1. Here we just point out some general ideas that explain this result from the point of
view of the geometry of Σ.

Let v ∈ P 6 be the critical point of J (4). If dH(v) = 0, then v is an equilibrium, that is, a singular
point of the system (3.1). Such a point is a critical point for each first integral of (3.1). In particular,
dG(v) = 0. The values (h, g) of J (4) at equilibria (2.11) are the points of pairwise intersection of the
lines λ1 − λ4.

Let
rank{dG(v), dH(v)} = 1, (5.16)

and c = (g, k, h) = J(v). Then c ∈ Σ. It follows from (4.1)–(4.5) that (5.16) necessarily implies

rank{dG(v), dH(v), dK(v)} = 1. (5.17)
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Fig. 4. The bifurcation diagram of H ×G

If the tangent plane to Σ at the point c is well defined, then the set of zero linear combinations
of dG(v), dH(v) and dK(v) is one-dimensional. This fact contradicts to (5.17). Therefore, c belongs
either to the segment Γ5 or to the set of transversal intersections of two smooth leaves of Σ.

The intersection of Γ1 and Γ2 ∪ Γ3 is nowhere transversal.
Transversal intersections of Γ1 and Γ4 are given by the system (5.8). Solving it with respect to g

and h and taking into account the admissible region established in Proposition 2, we arrive at the
curves (5.12)–(5.14).

Consider intersections of Γ2 ∪ Γ3 and Γ4. Substitute (4.4) for k, g in (4.7):
(s2 − a2)(s2 − b2)[2s2 − 2hs + p2]2 = 0. (5.18)

Transversal intersections correspond to the values s = ±a, s = ±b (the last multiplier in (5.18)
is responsible for the tangency points of Γ2 ∪ Γ3 and Γ4). This implies the equations of λ1 – λ4. As
shown in [11] the corresponding motions on N are the pendulums (2.12), (2.13). From this fact the
inequalities for h are obtained.

Suppose that Γ4 has a point of self-intersection. Then for some h the curve defined by (4.4) in
(g, k)-plane has a double point. Let s1, s2 be the corresponding values of s. It follows from (4.4) that

s1 + s2 = h, s2
1s

2
2 = γ2.

Hence s1, s2 form one of the pairs (4.15), (4.16). Substituting these pairs in (4.4) gives (4.14). The
obtained set of points in (h, g)-plane united with the projection of the segment Γ5 forms the half-
lines λ5 and λ6.

The admissible region for (h, g) is established in the same way as in the previous case. Propo-
sitions 4 and 5 give the explicit formulae (5.10), (5.15) for the values (5.4). Then for each h we can
compute the limits for the parameter s in (4.4) corresponding to Γ4∩∆. Thus the set Σh is completely
determined. Finally, ∆h is obtained as the span of the curves Γi ∩∆h.

6. Conclusion

At this point we can draw all bifurcation diagrams of the induced momentum maps on iso-energetic
surfaces, which are typically five-dimensional. A lot of information on the stability of the critical
integral manifolds may be immediately obtained for the tori in M and N. The investigation of the
new critical set O waits to be fulfilled.

Since each Eh is a foliation into three-dimensional tori with some degenerations, we can construct
the base Bh for such a foliation just by factorizing Eh, more exactly, by identifying points of the same
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connected component of Jg,k,h. Then Bh is a two-dimensional analog of Fomenko’s graph [5] for an
iso-energetic manifold of integrable system with two degrees of freedom. In its turn Bh is a bundle
over ∆h whose fibres are finite sets; the number of elements in any fibre is equal to the number of
connected components of the corresponding integral manifold. The problem of finding this number
for all possible situations seems solvable. Then we obtain a complete description of the ‘coverings’
Bh → ∆h and, consequently, establish the topology of Bh.

Naturally, the next step requires new mathematical ideas on how the tori in Eh glue together
along the paths in the admissible regions.

If we consider Bh as a two-dimensional cell complex, then, for regular levels of energy, 0-cells
correspond to closed orbits, a point of each 1-cell represents a two-dimensional torus, and a point of
each 2-cell represents a three-dimensional torus. The union of the cells of dimensions 0 and 1 forms a
graph, to which the method of marked molecules [15] can be applied without any modification. The
question is what kind of a numeric mark should be attached to each two-dimensional cell to obtain
from Bh the complete invariant of Liouville’s foliation of the iso-energetic surface?

Another approach is to consider the set Σ0
h of singular points of Σh (self-intersections, tangency

points, and cusps), which is easy to obtain from the above results, and associate to each c ∈ Σ0
h the

marked loop molecule [16]. In this case, of course, the notion of a mark should be changed to suit
increased dimensions of the tori.

We see that the Kowalevski top in two constant fields provides a highly non-trivial example of
integrable Hamiltonian system and a complete description of its phase topology is really a challenging
problem.
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