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A microscopic theory of spin excitations in strongly-correlated electronic systems within the t-J
model is discussed. An exact representation for the dynamic spin susceptibility is derived. In the
normal state, the excitation spectrum reveals a crossover from spin-wave-like excitations at low
doping to overdamped paramagnons above the optimal doping. At low temperatures, the resonance
mode at the antiferromagnetic wave vector Q = π(1, 1) emerges which is explained by a strong
suppression of the spin excitation damping caused by a spin gap at Q rather than by opening of
a superconducting gap. A major role of spin excitations in the d-wave superconducting pairing
in cuprates is stressed in discussing mechanisms of high-Tc superconductivity within the Hubbard
model in the limit of strong correlations, while electron-phonon interaction and a well-screened weak
Coulomb interaction are not essential.

PACS numbers: 71.27.+a; 74.20.Mn; 74.72.-h; 75.40.Gb

I. INTRODUCTION

Recent studies of electron and spin-excitation spectra
using angle-resolved photoemission (ARPES) and inelas-
tic neutron scattering (INS) have revealed an important
role of antiferromagnetic (AF) spin excitations in the
“kink” phenomenon and the d-wave pairing in cuprates.
In particular, in Ref. [1] quantitative analysis of the
AF spin-excitation spectrum measured by INS and of
ARPES data for the spin-fermion coupling of the same
YBa2Cu3O6.6 (YBCO6.6) crystal were used for numeri-
cal solution of the Eliashberg-type equations. The super-
conducting transition temperature was found to exceed
Tc = 150 K.

The main argument against the spin-fluctuation pair-
ing mechanism, a weak intensity of spin fluctuations at
the optimal doping seen in INS experiments [2], was dis-
missed in recent resonant inelastic x-ray scattering [3].
In a large family of cuprates paramagnon AF excitations
with dispersions and spectral weights similar to those of
magnons in undoped cuprates were found. A numer-
ical solution of the Eliashberg equations for the mag-
netic spectrum found in YBCO7 and for the electron-
spin interaction described by the t–J model results in
Tc = 100 − 200 K. These calculations based on experi-
mental data demonstrate that spin fluctuations have suf-
ficient strength to mediate high-temperature supercon-
ductivity in cuprates and, therefore, alternative mech-
anism based on electron-phonon interaction (EPI) (see,
e.g., [4]) seems to play a secondary role in cuprate super-
conductivity. Strong EPI observed in polaronic effects in
cuprates may be irrelevant for the d-wave pairing medi-
ated by l = 2 component of EPI as pointed out in Ref. [5].

In this report we briefly consider a microscopic theory
of spin-excitation spectrum in strongly correlated elec-
tronic systems (SCES) [6, 7]. Using a model for the spin-
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excitation spectrum, we consider spin-fluctuation pairing
within the Hubbard model in the limit of strong corre-
lations, U ≫ t [8, 9]. To compare various mechanisms
of superconducting d-wave pairing, we take into account
also EPI and a well-screened weak Coulomb interaction
considered in Ref. [10]. We show that the latter gives
a small contribution for the d-wave pairing and cannot
suppress the superconductivity.

II. SPIN-EXCITATION SPECTRUM

To describe the low-energy spin excitations in SCES
the one-subband t–J model can be used:

H =
∑

i6=j,σ

tij ĉ
†
iσ ĉjσ +

1

2

∑

i6=j

Jij (SiSj −
ninj

4
), (1)

where tij is the hopping integral and Jij is the exchange

interaction. Here ĉ†iσ = c†iσ (1 − ni,−σ) are the pro-
jected Fermi operators acting in the the singly occu-

pied subband and ni =
∑

σ ni,σ, ni,σ = ĉ†iσ ĉiσ. Sα
i =

(1/2)
∑

σσ′ ĉ
†
iστ

α
σσ′ ĉiσ′ are the spin-1/2 operators where

τασσ′ are the Pauli matrices, σ = ±1.
Using the projection technique for the Kubo-Mori re-

laxation functions, an exact representation for the dy-
namical spin susceptibility (DSS), the retarded Green
function (GF) of the transverse spin-density operators
S±
q = Sx

q ± iSy
q , can be derived [6] (see also [11]):

χ(q, ω) = −〈〈S+
q |S−

−q〉〉ω =
m(q)

ω2
q + ωΣ(q, ω)− ω2

, (2)

where m(q) = 〈[iṠ+
q , S

−
−q]〉 = 〈[ [S+

q , H ], S−
−q]〉. The

static spin-excitation spectrum ωq is calculated from
the equality for Kubo-Mori correlation function m(q) =

(−S̈+
q , S−

−q) = ω2
q (S

+
q , S−

−q), where (−S̈+
q , S−

−q) is evalu-
ated in a generalized mean-field approximation [6]. The
self-energy is given by the retarded GF,

Σ(q, ω) = [1/m(q)ω] 〈〈−S̈+
q | − S̈−

−q〉〉
(pp)
ω . (3)
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FIG. 1: Spectral function at δ = 0.2 compared with experi-
mental data [2] at T = 5K (squares) and T = 100K (circles).

The “proper part” (pp) of the GF(3) describes the pro-
jected time evolution as in the original Mori projection
technique. The self-energy (3) is defined in terms of the

force operators −S̈±
i = [[S±

i , (Ht + HJ)], (Ht + HJ)] ≡∑
α Fα

i (α = tt, tJ, Jt, JJ), where Ht and HJ are the
hopping and the exchange parts of the Hamiltonian (1).

In the Heisenberg limit at zero doping, δ = 0, the
self-energy is determined by the force F JJ

i . At a fi-
nite hole doping, δ > 0.05, the largest contribution
to the self-energy (3) is given by the hopping term

F tt
i =

∑
j,n tij

{
tjn

[
H−

ijn +H+
nji

]
− (i ⇐⇒ j)

}
, where

H−
ijn = ĉ†iσS

−
j ĉnσ + ĉ†i↓(1 − nj,−σ)ĉn↑ . We calculate the

self-energy in the mode-coupling approximation (MCA),

〈ĉ†iσS
−
j ĉnσ|ĉ

†
n′σ(t)S

+
j′ (t)ĉi′σ(t)〉 = 〈ĉ†iσ ĉi′σ(t)〉 〈S−

j S+
j′ (t)〉

〈ĉnσ ĉ
†
n′σ(t)〉 . In the superconducting state, the anoma-

lous correlation functions 〈ĉ†i,−σ ĉ
†
n′σ(t)〉 〈S−

j S+
j′ (t)〉

〈ĉnσ ĉi′,−σ(t)〉 are also taken into account. Using the
spectral representation for these two-time correlation
functions both the real, Σ′(q, ω), and the imaginary,
Σ′′(q, ω), parts of the self-energy (3) are calculated [7].

The spectrum of spin excitations ωq and the damp-
ing Γq = −(1/2)Σ′′(q, ωq) are calculated in a broad
region of temperature and doping. In the Heisenberg
limit at δ = 0 the spectrum of spin excitations reveals
well-defined quasiparticles with Γq ≪ ωq characteristic
to the Heisenberg model. However, for non-zero dop-
ing the spin-electron scattering contribution Σ′′

t (q, ω) in-
creases rapidly with doping and temperature and already
at moderate hole concentration far exceeds the spin-spin
scattering contribution Σ′′

J(q, ω) . We conclude, that at
low enough doping and low temperatures well-defined
spin-wave-like excitations propagating on the AF short-
range order background are observed, while for higher
doping and temperatures a crossover to AF paramagnon-
like spin excitations occurs as found in INS experiments.

In the superconducting state the spectral function
χ′′(Q, ω) = Imχ(Q, ω) were calculated assuming the
d-wave gap function ∆q = (∆/2)(cos qx − cos qy) [7].
The DSS (2) reveals a pronounced resonance mode (RM)
at low temperatures due to a strong suppression of the
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FIG. 2: Spectral function at δ = 0.09 compared with experi-
mental data [12] at T = 8K (squares) and T = 85K (circles).

damping of spin excitations. This is explained by an
involvement of a spin excitation in the decay process de-
scribed by creation of three excitations: particle-hole pair
with energies ω1 + ω2 and a spin excitation with energy
ω3 which is controlled by the energy and momentum con-
servation laws, ω = ω1 + ω2 + ω3 and q = q1 + q2 + q3.
Due to the spin gap in the spin-excitation spectrum at
Q the spin excitation with the energy ω3 ≃ ωQ in this
process plays a dominant role in limiting the decay of
the RM in comparison with the superconducting gap in
the particle-hole excitation. Since ωQ shows a weak tem-
perature dependence at T . Tc the RM does not re-
veal an appreciable temperature dependence and can be
observed even above Tc in the underdoped region (see,
e.g., [12, 13]).
Figure 1 shows the temperature dependence of the

spectral functions in the overdoped case at δ = 0.2 and
experimental data (symbols) for YBCO6.92 [2]. The RM
having a high intensity at low temperatures strongly de-
creases with temperature and becomes very broad at
T ∼ Tc. The spectral function for the underdoped
case δ = 0.09 is plotted Fig. 2. The RM shows a
weak temperature dependence and is still visible even
at T = 85 K= 1.4Tc as found in YBCO6.5 crystal [12].
Thus, as compared with the spin-exciton scenario for

the RM based on the random-phase approximation where
only electron-hole bubble diagrams are taken into ac-
count (see, e.g., [11]), we propose an alternative expla-
nation of the RM which is driven by the spin gap at Q

rather than by opening of the superconducting gap.

III. SPIN-FLUCTUATION d-WAVE PAIRING

Despite of intensive search for the mechanism of high-
temperature superconductivity in cuprates, there is still
no commonly accepted theory (for a review see [14]).
A microscopic theory of superconducting d-wave pair-
ing mediated by AF exchange interaction and spin-
fluctuations induced by kinematic interaction has been
developed within the t–J model in Ref. [15] and the Hub-
bard model in Ref. [8].
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Recently, the problem of superconductivity in the re-
pulsive Hubbard model in the weak correlation limit was
discussed. In Ref. [16] an asymptotically exact solution
for the d-wave pairing was found, while consideration of
a well-screened weak Coulomb interaction (CI) has not
shown a possibility for superconducting pairing [10]. To
resolve this controversy, we have considered superconduc-
tivity in the Hubbard model in the limit of strong corre-
lations, U ≫ t, taking into account also a well-screened
weak CI and EPI:

H = ε1
∑

i,σ

Xσσ
i + ε2

∑

i

X22
i +

∑

i6=j,σ

tij
{
Xσ0

i X0σ
j

+X2σ
i Xσ2

j + 2σ(X2σ̄
i X0σ

j +H.c.)
}
+Hc,ep. (4)

We introduced here the Hubbard operators (HOs)Xαβ
i =

|iα〉〈iβ| for the four states on the lattice site i: an empty
state α = |0〉, a one-hole state α = |σ〉 with the spin
σ = ±1/2 = (↑, ↓), σ̄ = −σ, and a two-hole state |2〉 =
| ↑↓〉. To apply the model for cuprate superconductors,
we introduce the single-particle energy ε1 = εd − µ as
an energy of the one-hole d-state. The two-hole energy
ε2 = 2ε1 + U is an energy of the p-d singlet state where
U = ǫp − ǫd is the charge-transfer energy between the
oxygen p and copper d states.
The last term in (4) denotes a weak screened CI V (ij)

between charge carriers in the plane and EPI g(ij) for
charge carriers

Hc,ep =
1

2

∑

i6=j

V (ij)NiNj +
∑

i,j

g(i, j)Ni uj , (5)

where uj is a displacement for a particular phonon mode.
Ni =

∑
σ X

σσ
i +2X22

i is the number operator. The chem-
ical potential µ depends on the average hole occupation
number n = 1 + δ = 〈Ni〉.
Using the projection technique in the equation of mo-

tion method for the GF in terms of the HOs as described
in [8, 9] we can derive an exact Dyson equations for the
two-subband matrix GFs. The normal GF can be written
as,

Ĝ(k, ω) = 〈〈

(
Xσ2

k

X0σ̄
k

)
| (X2σ

k X σ̄0
k 〉〉ω

=
(
Ĝ−1

N (k, ω) + ϕ̂σ(k, ω) ĜN (k,−ω) ϕ̂∗
σ(k, ω)

)−1

Q̂,

ĜN (k, ω) =
(
ωτ̂0 − ε̂(k) − Σ̂(k, ω)

)−1

, (6)

where ε̂(k) is the hole energy in the mean-field approxi-

mation (MFA) and Σ̂(k, ω) is the normal self-energy. The
anomalous (pair) GF reads,

F̂σ(k, ω) = 〈〈

(
Xσ2

k

X0σ̄
k

)
| (X σ̄2

−k X0σ
−k)〉〉ω

= −ĜN(k,−ω) ϕ̂σ(k, ω) Ĝσ(k, ω). (7)

The superconducting gap function ϕ̂σ(k, ω) = ∆̂σ(k) +

Φ̂σ(k, ω) has a nonretarded contribution ∆̂σ(k) deter-

mined by the AF exchange interaction and CI in MFA
and the anomalous self-energy Φ̂σ(k, ω).

The self-energies Σ̂(k, ω), Φ̂σ(k, ω) are calculated in
the MCA by assuming an independent propagation of
Fermi-like and Bose-like excitations in multiparticle GFs.
Below we consider the hole-doped case, n = 1 + δ > 1.
The diagonal components of the self-energies for the two-
hole subband can be written as

Σ22(k, ω) =
1

N

∑

q

+∞∫

−∞

dz K(+)(ω, z|q,k− q)

× [−(1/πQ2) ImG22(q, z)], (8)

Φ22
σ (k, ω) =

1

N

∑

q

+∞∫

−∞

dz K(−)(ω, z|q,k− q)

×[−(1/πQ2) ImF 22
σ (q, z)]. (9)

where Q2 = n/2 is the weight of the second subband.
The kernel of these integral equations has a form, similar
to the strong-coupling Eliashberg theory [17]:

K(±)(ω, z|q,k− q) =

+∞∫

−∞

dω′

2π

tanh z
2T + coth ω′

2T

ω − z − ω′

{
|t(q)|2Imχsf (k− q, ω′)± |gk−q|

2Imχph(k− q, ω′)

±
[
|Vk−q|

2 + |t(q)|2/4
]
Imχcf (k− q, ω′)

}
, (10)

where the spectral density of bosonic excitations are de-
termined by the dynamic susceptibility for spin fluctu-
ations, χsf (q, ω) = −〈〈Sq|S−q〉〉ω , charge fluctuations
χcf (q, ω) = −〈〈Nq|N−q〉〉ω , and phonon GF χph(q, ω) =
−〈〈uq|u−q〉〉ω . The gap equation takes the form:

ϕ2,σ(k, ω) =
1

N

∑

q

+∞∫

−∞

dz
{
[Jk−q − Vk−q]

1

2
tanh

z

2T

+ K(−)(ω, z|q,k− q)
}
[−(1/πQ2) ImF 22

σ (q, z)]. (11)

Here the exchange interaction Jq = 2J (cos qx + cos qy)
induces pairing in MFA, while the Coulomb repulsion
Vk−q suppresses the pairing. The pairing induced by
retarded interactions is described by the kernel (10).
To estimate contributions from various interactions

in the gap equation (11) we consider a weak coupling
approximation for the kernel (10), K(−)(ω, z|q,q′) ≃
K(−)(ω = 0, z = 0|q,q′). In this approximation the
gap equation reduces to the BCS-type form where the
interactions are determined by the static susceptibility,

χq = (1/π)
∫ +∞

−∞
(dω/ω)Imχ(q, ω):

ϕ(k) =
1

N

∑

q

{
Jk−q − Vk−q − |t(q)|2 χsf (k− q)

+|gk−q|
2χph(k− q)

} ϕ(q)

2Eq

tanh
Eq

2T
, (12)



4

where Eq = [ε2q + |ϕ(q)|2]1/2 and ϕ(k) = ϕ2,σ(k, 0).
The unimportant contribution from charge fluctuations
χcf (k− q) is omitted here (see later). To obtain an equa-
tion for superconducting Tc it is sufficient to consider a
linearized gap equation (12). Using a model d-wave gap
function, ϕ(k) = ∆ ηk, ηk = (cos kx−cos ky), a linearized
gap equation (12) for Tc can be written as:

1 =
1

N

∑

q

[J− V̂c−|t(q)|2 χ̂sf + V̂ep]
η2q
2εq

tanh
εq
2Tc

. (13)

The coupling constants are given by the expressions:

V̂c =
1

N

∑

k

V (k) cos kx, χ̂sf =
1

N

∑

k

χsf (k) cos kx,

V̂ep =
1

N

∑

k

|g(k)|2χph(k) cos kx. (14)

To estimate the contribution V̂c from the CI we consider
a model for the 2D screened CI suggested in Ref. [10]:

V (k) = uc
1

|k|+ κ
, uc =

2πe2

a ε0
, (15)

where κ is the inverse screening length (|k| and κ are
measured in units of 1/a), a is the lattice constant, and ε0
is the static dielectric constant of the lattice (in cuprates
ε0 ∼ 30). For the static spin-fluctuation susceptibility
we adopt the model as in [8, 9]:

χsf (ξ,k) =
χ0

1 + ξ2[1 + (1/2)(coskx + cos ky)]
. (16)

Here χ0 = (3/4ωs)(1−δ)[(1/N)
∑

q χsf (q)/χ0]
−1 is fixed

by the condition: 〈S2
i 〉 = (3/4)(1− δ) where ωs ∼ J is a

characteristic spin-excitation energy. The EPI coupling

constant V̂ep strongly depends on the k-variation of the
EPI matrix element |g(k)|2 and a phonon dispersion in
χph(k) = 1/Mω2

k. In particular, for a local interaction
g(k) = g and a dispersionless optic phonon, ωk = ω0

the coupling constant for the d-wave pairing vanishes,

V̂ep = 0. A large electron-phonon coupling for the d-
wave pairing can occur for a strong forward scattering,
k → 0 in EPI (see, e.g., [4, 18]).
Numerical integration in (14) for the model (15) gives

for the CI coupling constant:

V̂c = uc 0.05 (0.11), V̂c/V̂c0 = 0.26 (0.38), (17)

for κ = 1 (0.2) , respectively. A small ratio V̂c/V̂c0, where

V̂c0 = (1/N)
∑

k V (k) shows that for the d-wave pairing
the repulsion induced by CI is remarkably suppressed. In
particular, for uc ≃ 1 eV we have still a positive, though
a small contribution from the AF exchange interaction,

J − V̂c = 0.08 (0.02) for J = 0.13 eV. Therefore, in MFA
we obtain only a weak coupling and a low Tc (cf. with
[8, 15]).

0.0 0.1 0.2 0.3
0.000

0.012

0.024

0.036  

 

Tc

FIG. 3: (Color online) Tc(δ) (red solid line) compared with
pairing induced by spin fluctuations (blue dashed line) and
AF interaction (dotted black line) (in units of t).

The spin-fluctuation coupling constant in (14) for the
model susceptibility (16) is given by,

χ̂sf (ξ) = −0.66, (−0.26), χ0(ξ) = 14.8 (3.4) , (18)

in units of 1/t = 0.4/ωs for ξ = 3.4 (ξ = 1.4) at hole dop-
ing δ = 0.05 (0.30), respectively [6]. While the spin sus-
ceptibility χ0 = χsf (Q) at the AF wave vector Q is posi-
tive and quite large, the contribution of the static suscep-
tibility to the coupling constant χ̂sf (ξ) (18) is negative
that results in attraction mediated by spin-fluctuations
in the equation (13) for Tc. In the underdoped region
with large AF correlation length ξ the spin-fluctuation
coupling constant is quite large, while for the overdoped
region with small ξ the coupling reduces resulting in low-
ering of Tc. Using a conventional dispersion for elec-
trons: t(q) = 2t (cos qx + cos qy) + 4t′ cos qx cos qy with
t = 0.4 eV and |t′/t| ∼ 0.2, we can estimate the spin-
fluctuation coupling constant averaged over the Fermi
surface, 〈...〉F as: (1/t) 〈|t(q)|2〉F ≃ 4 t ≃ 1.6 eV. Numer-
ical estimation for the charge fluctuation susceptibility
appears negligibly small, χ̂cf ∼ (1/t) × 10−3 which re-
sults in a small contribution from the CI in the kernel
(10).
The gap equation (12) in strong-coupling approxima-

tion in the imaginary Matsubara frequency ωn represen-
tation can be written as,

ϕ(k) =
T

N

∑

q

∑

n

ϕ(q)

[Zk ωn]2 + ε2q

×
[
Jk−q − Vk−q − |t(q)|2χsf (k− q)

]
, (19)

where Zk = 1 + λk = 1 − (d/dω)Re(Σ(k, ω)|ω=0 is the
quasiparticle weight. The latter is determined by the
normal self-energy (8) which depends on contributions
from all l-channels of interactions expanded in a series
of the Legendre polynomials Pl(cosΘ), contrary to the
anomalous self-energy (9) where only the l = 2 channel
contributes to the d-wave pairing. Therefore, a strong
EPI in the l = 0 channel resulting in a large effective mass
renormalization, large Zk, is unimportant for the d-wave
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FIG. 4: (Color online) 2D projection of the superconducting
gap function ϕ(k) for 0 ≤ kx, ky ≤ 2π.

pairing and can only suppress the superconducting Tc

(see also [18]). Figure 3 shows doping dependence Tc(δ)
in units of t ∼ 0.4 eV for Zk = 3 where Tc(δ) induced
by partial contributions, AF and Coulomb interactions
in MFA ∝ (Jk−q−Vk−q) and spin fluctuations, ∝ |t(q)|2

are also shown. The maximal Tc is of the order of 150 K,

while for Zk = 1 its value appears about five times higher.
The gap function found for the hole concentration δ =
0.12 is shown in Fig. 4 which clearly demonstrates the
d-wave symmetry.
In summary, we can conclude that the superconducting

pairing mediated by the AF exchange interaction in MFA
is suppressed by the screened Coulomb interaction and
only charge fluctuations cannot produce superconducting
pairing as found in Ref. [10]. However, spin-fluctuations
induced by the kinematic interaction give a substantial
contribution to the d-wave pairing and high-Tc can be
achieved. EPI can be important for the d-wave pairing
only for particular phonon modes having a large l = 2
component, while polaronic effects induced by a large
l = 0 component of the EPI may be detrimental for su-
perconductivity in cuprates.
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