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Abstract

This paper is a continuation of the earlier studies conducted by
the author and of his latest publication devoted to the inferences con-
cerning the introduction of a minimal length in a quantum theory and
in gravity. It is shown that, when Heisenberg’s Uncertainty Princi-
ple is considered as a low-energy limit of the Generalized Uncertainty
Principle, a minimal length is inevitably brought about even at low
energies. In this case new parameters associated with this length are
defined in the explicit form. Based on the pair of well-known grav-
itational models, it is demonstrated that the indicated parameters
determine low and high-energy dynamics of these models. Various
inferences are considered.

1 Introduction. Main Motivation.

This work is a direct continuation of the recently published paper [1] and is
interlaced with the publication at some points. As shown in [1], provided
the theory involves the minimal length lmin as a minimal measurement unit
for the quantities having the dimensions of length, this theory must not
have infinitesimal spatial-temporal quantities dxµ because the latter lead to
the infinitely small length ds [2]

ds2 = gµνdxµdxν (1)

1E-mail: a.shalyt@mail.ru; alexm@hep.by
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that is inexistent because of lmin.
Of course, in this case only measurable quantities are meant. As a math-
ematical notion, the quantity ds is naturally existent but, due to the in-
volvement of lmin, it is immeasurable.
However it is well known that at high energies (on the order of the quantum
gravity energies) the minimal length lmin to which the indicated energies are
≪sensitive≫, as distinct from the low ones, should inevitably become appar-
ent in the theory. But if lmin is really present, it must be present at all the
≪Energy Levels≫ of the theory, low energies including. And this, in addition
to the above arguments, points to the fact that the mathematical formalism
of the theory should not involve any infinitesimal spatial-temporal quanti-
ties. Besides, some new parameters become involved, which are dependent
on lmin [3]–[11].
What are the parameters of interest in the case under study? It is obvious
that, as the quantum-gravitational effects will be revealed at very small
(possibly Planck’s) scales, these parameters should be dependent on some
limiting values, e.g., lP ∝ lmin and hence Planck’s energy EP .
This means that in a high-energy gravitation theory the energy-
or, what is the same, measuring scales-dependent parameters should
be necessarily introduced.
But, on the other hand, these parameters could hardly disappear totally at
low energies, i.e. for General Relativity (GR) too. However, since the well-
known canonical (and in essence the classical) statement of GR has no such
parameters [2], the inference is as follows: their influence at low energies is
so small that it may be disregarded at the modern stage in evolution of the
theory and of the experiment.
Still this does not imply that they should be ignored in future evo-
lution of the theory, especially on going to its high-energy limit.
But at the present time, the mathematical apparatus of both special and
general relativity theories (and of a quantum theory as well) is based on
the concept of continuity and on analysis of infinitesimal spatial-temporal
quantities. This is a corner stone for the Minkowski space geometry (MS)
and also for the Riemannian geometry (RG) [2].
However, this approach involves a problem when we proceed to a quantum
description of nature. Even at a level of the heuristic understanding, it is
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clear that, as measuring procedures in a quantum theory are fundamental,
the description with the use of infinitesimal quantities is problematic be-
cause in its character the measuring procedure is discrete.
At a level of the mathematical formalism and physical principles, incom-
patibility of both the Minkowski space geometry and Riemannian geometry
with the uncertainty principle is expected in any ≪format≫, in relativistic
and nonrelativistic cases. This problem is considered in greater detail in
the following section of this work.
Thus, if the matter concerns the measurable quantities only, the Quantum
Theory (QT) and Gravity formalism should be changed: at leas, a new for-
malism should not involve the infinitesimal spatial-temporal quantities dxµ.
Naturally, because of the involved lmin (initially assuming that lmin ∝ lP )
new theories should involve new parameters associated with lmin. Presently,
such parameters are inexplicitly involved (for example, E/EP in a quantum
gravity phenomenology [3]).
But there is no need to discard the modern formalism of QT and Gravity,
since it is clear that at low energies it offers an excellent approximation, ex-
perimentally supported to a high accuracy (see [12]). However, proceeding
from the above, a change-over to high energies is impossible as, by author’s
opinion, this formalism is used in an effort to combine uncombinable
things.
This work makes the arguments of [1] more forcible with the added reasons
from the viewpoint of the Uncertainty Principle at all scales energies, on
the one hand, and presents a study of the additional parameters associated
with the involvement of lmin , in terms of which one can develop a new
formalism for a quantum theory and for gravity at all the scales energies
too, on the other hand.

2 Uncertainty Principle at All Scales Ener-

gies and Some of its Consequences

We begin not with Heisenberg’s Uncertainty Principle (HUP) [13]

∆x ≥ ~
∆p

(2)
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but with its widely known high-energy generalization the Generalized Un-
certainty Principle (GUP) [14]– [26]:

∆x ≥ ~
∆p

+ α′l2P
∆p

~
. (3)

Here α′ is the model-dependent dimensionless numerical factor and lP is the
Planckian length. (Note that the normalization ∆x∆p ≥ ~ is used rather
than △x∆p ≥ ~/2.)
Note also that initially GUP (3) was derived within a string theory [14]– [17]
and, subsequently, in a series of works far from this theory [18] – [24] it has
been demonstrated that on going to high (Planck’s) energies in the right-
hand side of HUP (2) an additional ≪high-energy≫ term ∝ l2P

△p
~ appears.

Of particular interest is the work [18], where by means of a simple gedanken
experiment it has been demonstrated that with regard to the gravitational
interaction (3) is the case.
As (3) – quadratic inequality, then it naturally leads to the minimal length
lmin = ξlP = 2

√
α′lP .

This means that the theory for the quantities with a particular dimension
has a minimal measurement unit. At least, all the quantities with such
a dimension should be ≪quantized≫, i. e. be measured by an integer number
of these minimal units of measurement.
Specifically, if lmin – minimal unit of length, then for any length L we
have the ≪Integrality Condition≫ (IC)

L = NLlmin, (4)

where NL ≥ 0 – integer.
What are the consequences for GUP (3) and HUP (2)?
Assuming that HUP is to a high accuracy derived from GUP on going to
low energies or that HUP is a special case of GUP at low values of the
momentum, we have

(GUP,∆p → 0) = (HUP ). (5)

By the language of NL from(4), (5) is nothing else but a change-over to the
following:

(N∆x ≈ 1) → (N∆x ≫ 1). (6)
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The assumed equalities in (2) and (3) may be conveniently rewritten in
terms of lmin with the use of the deformation parameter αa. This param-
eter has been introduced earlier in the papers [27]–[36] as a deformation
parameter on going from the canonical quantum mechanics to the quantum
mechanics at Planck’s scales (early Universe) that is considered to be the
quantum mechanics with the minimal length (QMML):

αa = l2min/a
2, (7)

where a is the measuring scale.
Here deformation is understood as an extension of a particular
theory by inclusion of one or several additional parameters in such
a way that the initial theory appears in the limiting transition [37].
Then with the equality (∆p∆x = ~) (3) is of the form

∆x =
~
∆p

+
α∆x

4
∆x. (8)

In this case due to formulae (4) and (6) the equation (8) takes the following
form:

N∆xlmin =
~
∆p

+
1

4N∆x
lmin (9)

or

(N∆x −
1

4N∆x
)lmin =

~
∆p

. (10)

That is

∆p =
~

(N∆x − 1
4N∆x

)lmin

. (11)

From (9)–(11) it is clear that HUP (2) in the case of the equality appears
to a high accuracy in the limit N∆x ≫ 1 in conformity with (6).
It is easily seen that the parameter αa from (7) is discrete as it is nothing
else but

αa = l2min/a
2 =

l2min

N2
a l

2
min

=
1

N2
a

. (12)

At the same time, from (12) it is evident that αa is irregularly discrete.
It is evident that from formula (11) at low energies (N∆x ≫ 1), up to a
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constant
~2

l2min

=
~c3

4α′G
(13)

we have
α∆x = (∆p)2. (14)

Note that all the foregoing results associated with GUP and with its limiting
transition to HUP for the pair (∆x,∆p), as shown in [29], may be easily
carried to the ”energy - time” pair (∆t,∆E). Indeed (3) gives [29]:

∆x

c
≥ ~

∆pc
+ α′l2P

∆p

c~
, (15)

then

∆t ≥ ~
∆E

+ α′ l
2
p

c2
∆pc

~
=

~
∆E

+ α′t2p
∆E

~
. (16)

where the smallness of lP is taken into account so that the difference be-
tween ∆E and ∆(pc) can be neglected and tP is the Planck time tP =
LP/c =

√
G~/c5 ≃ 0, 54 10−43sec. From whence it follows that we have a

maximum energy of the order of Planck’s:

Emax ∼ EP

Then the foregoing formulae (2)–(10) are rewritten by substitution as fol-
lows:

∆x → ∆t; ∆p → ∆E; lmin → tmin;NL → Nt=L/c (17)

Specifically, (10) takes the form

(N∆t −
1

4N∆t
)tmin =

~
∆E

. (18)

In this way in the above-presented formalism a minimal length is meaningful
at all the energy levels and not only at high energies, from where it actu-
ally originated. In other words, the length is ≪quantized≫ at all the energy
levels without exceptions. But then in all cases the infinitesimal quantities
dxµ should be removed from the theory as in all cases the infinitesimal

6



quantities dxµ bring about an infinitely small length ds (1) inexistent be-
cause of lmin.
Earlier HUP has been considered as a low-energy limit of GUP (5) with the
minimal length attribute lmin ∝ lP . However, it is easily seen that even if we
have no notion about the existence of GUP (3) (i. e. of the high-energy term
∝ l2P∆p/~ in the right-hand side of (3)), still the use of the infinitesimal
quantities dxµ from the viewpoint of their measurability is problematic
as at low energies, where HUP (2)) is valid, we have ≪great≫ ∆xµ, certainly
higher than infinitesimal dxµ. Because of this, to ≪measure≫ dxµ we should
go to high energies or to ≪small≫ ∆xµ.
At the same time, even at the ultimate (Planck’s) energies a minimal ≪de-
tected≫ (i. e. measurable) space-time volume is, within the known con-
stants, restricted to

Vmin ∝ l4P . (19)

Consequently, ≪detectability≫ of the infinitesimal space-time volume

Vdxµ = (dxµ)
4 (20)

is impossible as this necessitates going to infinitely high energies

E → ∞. (21)

In the relativistic case for any probe particle with the mass m, if it is
considered as a ≪point object≫, there is its Compton wavelength [38]

λC =
λC

2π
=

~
mc

(22)

setting the ultimate accuracy for the determination of its coordinates. But,
due to the infinitesimal special-temporal variations in MS, this minimum is
easily gone beyond.

3 Minimum Spatial and Temporal Changes

and Spacetime Quantum Fluctuations

As follows from the previous section, measurable infinitesimal changes in
length (and hence in time) are impossible and such changes are dependent
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on the existing energies.
In particular, a minimal possible measurable change of lmin corresponds to
some maximal value of the energy Emax. If, similar to the previous section,
lmin ∝ lP ,Emax ∝ lP , then denoting with △(L) a minimal measurable
change in length corresponding to the energy E we obtain

△Emax(L) = lmin. (23)

Evidently, for lower energies the corresponding values of △E(L) are higher
and, as the quantities having the dimensions of length are quantized (4),
for E < Emax, △E(L) is transformed to

∆E(L) = NElmin, NE > 1− integer. (24)

At low energies NE ≫ 1 but in any case in the suggested formulation NE

is independent of L.
The length dependence appears in the definition of space-time quantum
fluctuations or, in a different way, of space-time foam.
The notion ≪space-time foam≫, introduced by J. A. Wheeler about 60 years
ago for the description and investigation of physics at Planck’s scales (Early
Universe) [39],[40], is fairly settled. Despite the fact that in the last decade
numerous works have been devoted to physics at Planck’s scales within the
scope of this notion, for example [41]–[60], by this time still their no clear
understanding of the ≪space-time foam≫ as it is.
On the other hand, it is undoubtful that a quantum theory of the Early
Universe should be a deformation of the well-known quantum theory.
In my works with the colleagues [27]–[36] I has put forward one of the pos-
sible approaches to resolution of a quantum theory at Planck’s scales on the
basis of the density matrix deformation.
In accordance with the modern concepts, the space-time foam [40] notion
forms the basis for space-time at Planck’s scales (Big Bang). This object
is associated with the quantum fluctuations generated by uncertainties in
measurements of the fundamental quantities, inducing uncertainties in any
distance measurement. A precise description of the space-time foam is still
lacking along with an adequate quantum gravity theory. But for the de-
scription of quantum fluctuations we have a number of interesting methods
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(for example,[50]–[60], [61],[62]).
In what follows, we use the terms and symbols from [52]. Then for the

fluctuations δ̃l of the distance l we have the following estimate:

(δ̃l)γ ∼> lγP l
1−γ = lP (

l

lP
)1−γ = l(

lP
l
)γ = lλγ

l , (25)

or that same

|(δ̃l)γ|min = βlγP l
1−γ = βlP (

l

lP
)1−γ = βlλγ

l , (26)

where 0 < γ ≤ 1, coefficient β is of order 1 and λl ≡ lP/l.
From (25),(26), we can derive the quantum fluctuations for all the primary

characteristics, specifically for the time (δ̃t)γ, energy (δ̃E)γ, and metrics

(δ̃gµν)γ. In particular, for (δ̃gµν)γ we can use formula (10) in [52]

(δ̃gµν)γ ∼> λγ. (27)

Further in the text is assumed that the theory involves a minimal length on
the order of Planck’s length

lmin ∝ lP

or that is the same
lmin = ξlP , (28)

where the coefficient ξ is on the order of unity too.
In this case it is unimportant which is the origin of this minimal length. In
particular, it can assume that it comes from the Generalized GUP (3).
As stated in the previous section GUP (3) leads to the minimal length
lmin = ξlP = 2

√
α′lP .

Therefore, in this case replacement of Planck’s length by the minimal length
in all the above formulae is absolutely correct and is used without detriment
to the generality

lP → lmin. (29)

Thus, λl ≡ lmin/l and then (25)– (27) upon the replacement (29) are read
unchanged.
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So, (26) may be written as

|(δ̃l)γ|min = βlλγ
l = βNl(N

−γ
l ) = βN1−γ

l lmin. (30)

Here one should take into account the following consideration: due to the
(Integrality Condition) (4) in the right-hand side of (30) for the factor
βN1−γ

l before lmin its integer part is always meant

βN1−γ
l 7→ [βN1−γ

l ] (31)

and this goes without special mentioning for the whole text.
The following points of importance should be noted [63]:
3.1)It is clear that at Planck’s scales, i.e. at the minimal length
scales

l → lmin (32)

models for different values of the parameter γ are coincident.

3.2)Provided some quantity has a minimal measuring unit, val-
ues of this quantity are multiples of this unit.
Naturally, any quantity having a minimal measuring unit is uniformly dis-
crete.
The latter property is not met, in particular, by the energy E.
As E ∼ 1/l, where l – measurable scale, the energy E is a discrete
quantity but the irregularly discrete one. It is clear that the differ-
ence between the adjacent values of E is the less the lower E. In other
words, for

E ≪ EP (33)

E becomes a practically continuous quantity.

3.3) In fact, the parameter λl nothing like

λl =
√
αl, (34)

where αl is the deformation parameter introduced earlier in formula (7) and
in [27]–[36].
The parameter αl has the following clear physical meaning:

α−1
l ∼ SBH , (35)

10



where

SBH =
A

4l2p
(36)

is the well-known Bekenstein-Hawking formula for the black hole entropy
in the semiclassical approximation [64],[65] for the black-hole event horizon
surface A, with the characteristics linear dimension (≪radius≫) R = l. This
is especially obvious in the spherically-symmetric case.
In what follows we use both parameters: λx and αx.

4 Certain Significant Examples

4.1 Heuristic Markov’s Model

This heuristic model was introduced in the work [66] at the early eighties of
the last century. In [66], it is assumed that ≪by the universal decree of nature
a quantity of the material density ϱ is always bounded by its upper value
given by the expression that is composed of fundamental constants≫ ([66],
p.214):

ϱ ≤ ϱp =
c5

G2~
, (37)

with ϱp as ≪Planck’s density≫.
Then the quantity

℘ϱ = ϱ/ϱp ≤ 1 (38)

is the deformation parameter as it is used in [66] to construct the follow-
ing of Einstein’s equations deformation or ℘ϱ-deformation ([66],formula
(2)):

Rν
µ −

1

2
Rδνµ =

8πG

c4
T ν
µ (1− ℘2

ϱ)
n − Λ℘2n

ϱ δνµ, (39)

where n ≥ 1/2, T ν
µ–energy-momentum tensor, Λ– cosmological constant.

The case of the parameter ℘ϱ ≪ 1 or ϱ ≪ ϱp correlates with the classical
Einstein equation, and the case when ℘ϱ = 1 – with the de Sitter Universe.
In this way (39) may be considered as ℘ϱ-deformation of the General Rela-
tivity.
As shown in [67], ℘ϱ-of Einstein’s equations deformation (39) is nothing else
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but α-deformation of GR for the parameter αl at x = l from (7).
If ϱ = ϱl is the average material density for the Universe of the characteristic
linear dimension l, i.e. of the volume V ∝ l3, we have

℘l,ϱ =
ϱl
ϱp

∝ α2
l = ωα2

l , (40)

where ω is some computable factor.
Then it is clear that αl-representation (39) is of the form

Rν
µ −

1

2
Rδνµ =

8πG

c4
T ν
µ (1− ω2α4

l )
n − Λω2nα4n

l δνµ, (41)

or in the general form we have

Rν
µ −

1

2
Rδνµ =

8πG

c4
T ν
µ (αl)− Λ(αl)δ

ν
µ. (42)

But, as r.h.s. of (42) is dependent on αl of any value and particularly in
the case αl ≪ 1, i.e. at l ≫ lmin, l.h.s of (42) is also dependent on αl of any
value and (42) may be written as

Rν
µ(αl)−

1

2
R(αl)δ

ν
µ =

8πG

c4
T ν
µ (αl)− Λ(αl)δ

ν
µ. (43)

Thus, in this specific case we obtain the explicit dependence of GR on
the available energies E ∼ 1/l, that is insignificant at low energies or for
l ≫ lmin and, on the contrary, significant at high energies, l → lmin.

4.1.1) At low energies with the use of formulae (7), (12) for a = l (and
hence for Nl ≫ 1) we get a ≪nearly continuous theory≫ practically sim-
ilar to the General Relativity with the slowly (smoothly) varying parameter
αl(t), where t – time.

4.1.2) Clearly, at high energies the parameter αl(t) is discrete and for the
limiting value αl(t) = 1 we get a discrete series of equations of the form
(42)(or a single equation of this form met by a discrete series of solutions)
corresponding to αl(t) = 1; 1/4; 1/9; ...
As this takes place, T ν

µ (αl) ≈ 0 and in both cases, 4.1.1) and 4.1.2), Λ(αl) is
not longer a cosmological constant, being a dynamical cosmological term.
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4.2 Static Spherically-Symmetric Space-Time
with Horizon

This example thoroughly studied in the above-mentioned publication [1] is
given here to complete the picture.

Gravity and thermodynamics of horizon spaces and their interrelations are
currently most actively studied [68]–[80]. Let us consider a relatively simple
illustration – the case of a static spherically-symmetric horizon in space-
time, the horizon being described by the metric

ds2 = −f(r)c2dt2 + f−1(r)dr2 + r2dΩ2. (44)

The horizon location will be given by a simple zero of the function f(r), at
the radius r = a.
This case is studied in detail by T. Padmanabhan in his works [68, 79] and
by the author of this paper in [67]. We use the notation system of [79]. Let,
for simplicity, the space be denoted as H.
It is known that for horizon spaces one can introduce the temperature that
can be identified with an analytic continuation to imaginary time. In the
case under consideration ([79], eq.(116))

kBT =
~cf ′(a)

4π
. (45)

Therewith, the condition f(a) = 0 and f ′(a) ̸= 0 must be fulfilled.
Then at the horizon r = a Einstein’s field equations

c4

G

[
1

2
f ′(a)a− 1

2

]
= 4πPa2 (46)

where P = T r
r is the trace of the momentum-energy tensor and radial pres-

sure.
Now we proceed to the variables ≪α≫ from the Section 2 (formula (7)) to
consider (46) in a new notation, expressing a in terms of the corresponding
deformation parameter α. In what follows we omit the subscript in formula
(7) of αa, where the context implies which index is the case. In particular,
here we use α instead of αa. Then we have

a = lminα
−1/2. (47)
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Therefore,
f ′(a) = −2l−1

minα
3/2f ′(α). (48)

Substituting this into (46) we obtain in the considered case of Einstein’s
equations in the ≪α–representation≫ the following [67]:

c4

G
(−αf ′(α)− 1

2
) = 4πPα−1l2min. (49)

Multiplying the left- and right-hand sides of the last equation by α, we get

c4

G
(−f ′(α)α2 − 1

2
α) = 4πP l2min. (50)

L.h.s. of (50) is dependent on α. Because of this, r.h.s. of (50) must be
dependent on α as well, i. e. P = P (α), i.e

c4

G
(−f ′(α)α2 − 1

2
α) = 4πP (α)l2min. (51)

Note that in this specific case the parameter α within constant factors is
coincident with the Gaussian curvature Ka [?] corresponding to a:

l2min

a2
= l2minKa. (52)

Substituting r.h.s of (52) into (51), we obtain the Einstein equation on
horizon, in this case in terms of the Gaussian curvature

c4

G
(−f ′(Ka)K

2
a −

1

2
Ka) = 4π.P (Ka). (53)

This means that up to the constants

−f ′(Ka)K
2
a −

1

2
Ka = P (Ka), (54)

i.e. the Gaussian curvature Ka is a solution of Einstein equations in this
case.
Then we examine different cases of the solution (54) with due regard for
considerations of Sections 2,3.
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4.2.1) First, let us assume that a ≫ lmin. As, according to Section 2,
the radius a is quantized, we have a = Nalmin with the natural number
Na ≫ 1. Then it is clear that the Gaussian curvature Ka = 1/a2 ≈ 0 takes
a(nonuniform)discrete series of values close to zero, and, within the factor
1/l2min, this series represents inverse squares of natural numbers

(Ka) = (
1

N2
a

,
1

(Na ± 1)2
,

1

(Na ± 2)2
, ...). (55)

Let us return to formula (26) in Section 3 for l = a

|((δ̃a)γ)min| = βNalminN
−γ
a = βN1−γ

a lmin, (56)

where β in this case contains the proportionality factor that relates lmin and
lP .
Then, according to Section 3, a±1 is a measurable value of the radius r
following after a, and we have

(a±1)γ ≡ a± ((δ̃a)γ)min = a± βN1−γ
a lmin = Na(1± βN−γ

a )lmin. (57)

But, as Na ≫ 1, for sufficiently large Na and fixed γ, the bracketed expres-
sion in r.h.s. (57) is close to 1:

1± βN−γ
a ≈ 1. (58)

Obviously, we get
lim

Na→∞
(1± βN−γ

a ) → 1. (59)

As a result, the Gaussian curvature Ka±1 corresponding to r = a±1

Ka±1 = 1/a2±1 ∝
1

N2
a (1± βN−γ

a )2
(60)

in the case under study is only slightly different from Ka.
And this is the case for sufficiently large values of Na, for any value of the
parameter γ , for γ = 1 as well, corresponding to the absolute minimum
of fluctuations ≈ lmin,or more precisely – to βlmin. However, as all the
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quantities of the length dimension are quantized and the factor β is on the
order of 1, actually we have β = 1.
Because of this, provided the minimal length is involved, lmin (26) is read
as

|(δ̃l)1|min = lmin. (61)

But, according to (28), lmin = ξlP is on the order of Planck’s length, and it

is clear that the fluctuation |(δ̃l)1|min corresponds to Planck’s energies and
Planck’s scales. The Gaussian curvature Ka, due to its smallness (Ka ≪
1 up to the constant factor l−2

min) and smooth variations independent of
γ (formulas (57)–(60)), is insensitive to the differences between various
values of γ.
Consequently, for sufficiently small Gaussian curvature Ka we can take any
parameter from the interval 0 < γ ≤ 1 as γ.
It is obvious that the case γ = 1, i. e. |(δ̃l)1|min = lmin, is associated with
infinitely small variations da of the radius r in the Riemannian geometry.
Since then Ka is varying practically continuously, in terms of Ka up to the
constant factor we can obtain the following:

d[L(Ka)] = d[P (Ka)], (62)

Where have

L(Ka) = −f ′(Ka)K
2
a −

1

2
Ka, (63)

i. e. l.h.s of (53) (or (54)).
But in fact, as in this case the energies are low, it is more correct to consider

L((Ka±1)γ)− L(Ka) = [P (Ka±1)γ]− [P (Ka)] ≡ Fγ[P (Ka)], (64)

where γ < 1,rather than (62).
In view of the foregoing arguments (4.2.1), the difference between (64) and
(62)is insignificant and it is perfectly correct to use (62) instead of (64).
In [79] it is shown that the Einstein Equation for horizon spaces in the
differential form may be written as a thermodynamic identity (the first
principle of thermodynamics) ([79], formula (119)):

~cf ′(a)

4π︸ ︷︷ ︸
kBT

c3

G~
d

(
1

4
4πa2

)
︸ ︷︷ ︸

dS

− 1

2

c4da

G︸ ︷︷ ︸
−dE

= Pd

(
4π

3
a3
)

︸ ︷︷ ︸
P dV

. (65)
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However, this is questionable on account of the existing minimal length
lmin. As the quantity lmin is fixed, it is obvious that ≪dS≫ and ≪dV ≫ in
(65)will be growing as a and a2, respectively. And at low energies, i.e. for
large values of a ≫ lmin, this naturally leads to infinitely large rather than
infinitesimal values.
4.2.2) Now we consider the opposite case or the transition to the ultraviolet
limit

a → κlmin, (66)

i.e.
a ≈ κlmin. (67)

Here κ is on the order of 1.
Taking into consideration point 3.1) of Section 3 stating that in this case
models for different values of the parameter γ are coincident, by formula
(61) for any γ we have

|(δ̃l)γ|min| = (δ̃l)1|min = lmin. (68)

But in this case the Gaussian curvature Ka is not a ≪small value≫ continu-
ously dependent on a , taking, according to (60), a discrete series of values
Ka, Ka±1 , Ka±2 , ...
Yet (46), similar to (53) ((54)), is valid in the semiclassical approximation
only, i.e. at low energies.
Then in accordance with the above arguments, the limiting transition to
high energies(66) gives a discrete chain of equations or a single equation
with a discrete set of solutions as follows:

−f ′(Ka)K
2
a −

1

2
Ka = Θ(Ka);

−f ′(Ka±1)K
2
a±1 −

1

2
Ka±1 = Θ(Ka±1);

and so on. Here Θ(Ka) – some function that in the limiting transition to low
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energies must reproduce the low-energy result to a high degree of accuracy,
i.e. P (Ka) appears for a ≫ lmin from formula (54)

lim
Ka→0

Θ(Ka)) = P (Ka). (69)

In general, Θ(Ka) may lack coincidence with the high-energy limit of the
momentum-energy tensor trace(if any):

lim
a→lmin

P (Ka). (70)

At the same time, when we naturally assume that the Static Spherically-
Symmetric Horizon Space-Time with the radius of several Planck’s units
(67) is nothing else but a micro black hole, then the high-energy limit (70)
is existing and the replacement of Θ(Ka) by P (Ka) in r.h.s. of the foregoing
equations is possible to give a hypothetical gravitational equation for the
event horizon micro black hole. But a question arises, for which values of
the parameter a (67) (or Ka) this is valid and what is a minimal value of
the parameter γ = γ(a) in this case?
In all the cases under study, 3.1.1) and 3.1.2), the deformation parameter
αa (7)(λa(34))is, within the constant factor, coincident with the Gaussian
curvature Ka (respectively

√
Ka) that is in essence continuous in the low-

energy case and discrete in the high-energy case.

What features are ≪common≫ for these two examples?

I. Provided the minimal length lmin is involved, in both examples the grav-
itational equations begin to be dependent on the dimensionless discrete
parameter α that at low energies is close to 0 and is varying very slowly
(smoothly) so that in fact the theory can be considered continuous but for
high energies only, and at α → 1 the theory becomes really discrete.

II. According to the basic formulae of Section 2 and, in particular, to (14),
the α-dependence of the gravitational equations reflects the relationship
between the gravitational equations and the existent energies.
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5 Some Comments and General Considera-

tions

5.1. So, as demonstrated in the previous Section for the particular cases,
provided a theory involves the minimal length lmin ∝ lP , gravity is almost
independent of the parameters associated with this length, specifically αl

and γ (and hence λl and γ), i.e. the dependence is weak, and so the theory
is practically continuous. This stems from the fact that these parameters
are very small due to remoteness of the energies characterizing them from
the Planck energies and almost insensitive to the corresponding change in
measuring scales.
Despite a discrete nature of the theory owing to the existence of lmin, to
a high degree of accuracy we can use infinitesimal variations of dxµ, coin-
cident in the case under study with lmin and tmin. In this way in the cases
considered in Section 4 the Conformity Principle stating that (on going
to low energies the known theory (in particular GR) must be reproduced to
a high degree of accuracy, at least its experimentally verified part) holds to
a high accuracy.
Still it is clear that, as formally GR has no additional parameters associated
with lmin and the low-energy (for now hypothetical variant of the minimal
length theory denoted as Gravlmin has such parameters, there is also the
high accuracy limit indicated above. This limit in every case determines
the ≪gap≫ between GR and Gravlmin . Evaluation of this gap is a real chal-
lenge for those trying to construct a unified theory at all energy levels.
As noted in 4.1.2 and 4.2.2, for high energies, i.e. for l → lmin, (or what
is the same λl → 1,γ → 1) a discrete chain of equations (or a single equa-
tion with a discrete set of solutions) is derived that is numbered by inverse
squares of the integers 1; 1/4; 1/9; .... to represent the parameter λ2

l at high
(Planck’s) energies.

5.2.We have used GR to demonstrate that the above models 4.1,4.2 at
low energies are actually insensitive to variations of the discrete parame-
ters (αl(orλl), γ) associated with the minimal length. Of course, it is more
correct to use Gravlmin and to compare the obtained results with GR. But,
as yet there is no Gravlmin , it is connived that at low energies GR and
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Gravlmin differ insignificantly and the indicated parameters, provided lmin

is involved, are introduced into GR similarly to Gravlmin .

5.3. It is easily seen that the ≪Entropic Approach to Gravity≫ [81] in the
present formalism is invalid within the scope of the minimal length theory.
This was noted in [1]. In fact, the ≪main instrument≫ in [81] is a formula
for the infinitesimal variation dN in the bit numbers N on the holographic
screen S with the radius R and with the surface area A ([81],formula (4.18)):

dN =
c3

G~
dA =

dA

l2P
. (71)

But it is obvious that infinitesimal variations of the screen surface area dA
are possible only in a continuous theory involving no lmin.
When lmin ∝ lP is involved, the minimal variation △A is evidently associ-
ated with a minimal variation in the radius R

R → R± lmin (72)

is dependent on R and growing as R for R ≫ lmin (formula (54) in [1]):

△±A(R) = A(R± lmin))− A(R) ∝ (
±2R

lmin

+ 1) = ±2NR + 1, (73)

where NR = R/lmin, as indicated above.
So, if lmin is involved, formula (4.18) from [81] has no sense similar to other
formulae derived on its basis (4.19),(4.20),(4.22),(5.32)–(5.34), . . . in [81]
and similar to the derivation method for Einstein’s equations proposed in
this work.
Proceeding from the principal parameters of this work αl(orλl), the fact is
obvious and is supported by the formula (35)given in this paper, meaning
that

α−1
R ∼ A, (74)

i.e. small variations of αR (low energies) result in large variations of α−1
R ,

as indicated by formula (73). In fact, we have a no-go theorem.

5.4. As the Planck length lP = (~G/c3)1/2 is expressed in terms of the
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fundamental constants, the proportionality coefficient ξ from formula (28),
relating lmin and lP , in a minimal-length theory lmin should also be a fun-
damental constant because it (along with G, ~, and c) must be involved in
all the basic formulae of this theory. Then the question arises: what is its
value?
In [18] for the coefficient α′ in GUP (3) the substantiated value was equal to
1. Provided this is true, ξ = 2 and hence the Bekenstein-Hawking formula
for the black hole entropy SBH may be written most naturally and elegantly
as follows:

SBH =
A

l2min

. (75)

6 Conclusion

6.1. Thus, it has been shown that some models for GR (cosmology) involve
the discrete parameters associated with the minimal length, while at low
energies, due to their smallness, a theory is insensitive to their variations
and may be considered almost continuous, independent of these parameters.

6.2. As at low energies αl(λl)–small parameter, the gap between GR and a
hypothetical minimal length theory Gravlmin (mentioned in subsection 5.1)
is determined by a series expansion in terms of this parameter close to 0
and by confinement of the leading terms in this series.
As in this case the cosmological term Λ is no longer a constant Λ ̸= const,
(and the Bianchi identity ∇µGµν ≈ 0 [2] will appear to a high degree of
accuracy only in the low-energy limit), this term is dependent on αl(λl) and
we have [82],[67] with the known quantum field theory

Λ(α) ∝ (α2 + η1α
2 + ...)Λp, (76)

and, provided the holographic principle is valid, we get [83]–[86]

ΛHol(α) ∝ (α+ ξ1α
2 + ...)Λp, (77)

where Λp –cosmological term at Planck’s scales.
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