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Abstract

The fractal cosmological model which accounts for the observable
fractal properties of the Universe large-scale structure is constructed.
In this framework these properties are consequences of the rotary sym-
metry of charged scalar meson matter field (complex field). The Ein-
stein’s equations and the Lagrange’s field equations are found to be
scale invariant. The space-time volumes with field values relating by
the scaling are geometrically similar and evolve similarly. Due to this
the fractal properties of the initial density perturbations which lead
to the large-scale structure of the Universe formation remain.

KEY WORDS: complex field, rotary symmetry, fractal properties of the
large-scale structure, fractal cosmological model.

1. Introduction

The analysis of available at present galaxy catalogues shows that the
galaxy distribution possesses a range of fractal properties [1], [2], [3], [4], [5],
[6], [7].

- The observable angular correlation function of the galaxy distribution
on the celestial sphere is a power law

ω(ϑ) ∼ ϑ−γ, (1)

where 0,6 ≤ γ ≤ 1,2 depending on a catalogue, ϑ is angular distance between
galaxies.

- In clumps the dependence of number of galaxies within distance less
than r on the distance r is a power law as well

N (≤ r) ∼ rdc , (2)

where the correlation dimension dc takes values dc ≈ 1,15 ÷ 2,25 at scales
r ≈ (1÷ 10)h−1Mpc.
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In the previous paper [8] the analysis of the quasar distribution according
to the seventh version of the largest at present survey SDSS has been carried
out. This distribution possesses fractal properties as well.

- Within the redshift range 0,35 ≤ z ≤ 2,30 the dependence of number of
quasars in a volume with radius r centered at the observer on r is found to
be a power law (2) with dc = 2,71 for the flat Universe filled with cold dust.

- For each quasar located approximately at the center of a concentration
region on the celestial sphere number of neighbour quasars located within
angular distances less than ϑ is possessed of a power-law dependence on
sin ϑ/2:

N (≤ ϑ) ∼
(

sin
ϑ

2

)dc

, (3)

where dc ≈ 1,49÷1,58 for different redshift layers in the same redshift range.
The aim of this work is construction of the cosmological model permitting

physical explanation of fractal properties (1) - (3) of the large-scale structure
of the Universe.

What these properties of the large-scale structure are indicative of? The
obvious answer is that the properties are consequences of the fractal prop-
erties of the initial matter density perturbations which further led to star,
galaxy and cluster formation due to gravitational instability. Now we observe
traces of these fractal properties through quasars.

This interpretation follows from the hypothesis of Gaussian (thermal)
spectrum of the initial density perturbations. Let’s consider a spherical vol-
ume V containing mass M in continuous medium. Probability of appearance
of thermal density fluctuation near this mass is defined by the formula [9],
[10]

W ∼ exp

[

−cv
2

(

δT

T

)2

− M

2kT

(

∂P

∂ρ

)

T

(

δV

V

)2

− Rmin

kT

]

,

where ρ is medium density, P is pressure, cv is medium heat capacity at
constant volume, δT and δV are independent fluctuations of temperature and
volume respectively, Rmin is minimal work necessary for reversible removal
of mass δM for distance δr in the gravity field of mass M . In case of radial
displacement the work equals

Rmin ≈ G
M · δM
r2

δr =
4π

3
Gρr · δM · δr

in Newtonian approximation, where δM = 4πρr2δr is a mass of a spherical
layer. In this case, probability of a thermal fluctuation equals

W =
1

2π∆T∆r

exp

[

− 1

2∆T
2

(

δT

T

)2

− 1

2∆r
2

(

δr

r

)2
]

,
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where the variances equal

∆T
2 = cv

−1, ∆r
2 =

{

12πρ

kT

[(

∂P

∂ρ

)

T

r3 +
8πGρ

9
r5
]}−1

.

Fluctuation of density. in a volume V equals

δρ = δ

(

M
4π
3
r3

)

= −3ρ

(

δr

r

)

.

The root-sum-square relative density fluctuation (fluctuation spectrum) equals
√

√

√

√

〈

(

δρ

ρ

)2
〉

= 3

√

√

√

√

〈

(

δr

r

)2
〉

= 3

{

12πρ

kT

[(

∂P

∂ρ

)

T

r3 +
8πGρ

9
r5
]}−1/2

.

(4)
At spatial scales for which pressure gradients are important, i.e. when the
first term in the brackets dominates, one have the ”white noise” spectrum
(Zel’dovich-Harrison spectrum):

√

√

√

√

〈

(

δρ

ρ

)2
〉

∼ r−1,5.

At large scales for which gravity effects are important, i.e. when the second
term dominates, one has the following spectrum

√

√

√

√

〈

(

δρ

ρ

)2
〉

∼ r−2,5.

The spectrum (4) is scale invariant because the fraction δρ
ρ
doesn’t change un-

der scale transformations. This thermal fluctuations spectrum is an example
of fractal spectrum.

The root-sum-square relative density fluctuation is an estimate of the
correlation function according to the correlation function definition [2]:

ξ =

〈

(

δρ

ρ

)2
〉1/2

.

For a random fluctuation average number of neighbour fluctuations within
distance less then r may be estimated as

〈N〉 ≈ 4π 〈n〉
r
∫

0

(1 + ξ) r̃2dr̃,
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where n is mean fluctuations number density. In case of fluctuations clumping
and ξ ≥ 1 there are fractal laws like (2): 〈N〉 ∼ r1,5 for the white noise and
〈N〉 ∼ r0,5 at large scales.

The observable correlation dimension value dc ≈ 1,15 ÷ 2,71 may follow
from the spectrum

√

√

√

√

〈

(

δρ

ρ

)2
〉

∼ r−1,85 ÷ r−0,29,

therefore, it permits of not only the white noise spectrum.
Thereby, the fractal laws (1) - (3) are expected to exist in Newtonian

approximation. However, it is not quite so in the general theory of relativity
because Einstein’s tensor is not invariant under scale transformation of the
Riemannian space-time [11], [12]. If the large-scale structure evolution is de-
scribed by Einstein’s gravity theory the fractal properties may not conserve,
even if the initial fluctuations had the thermal spectrum.

The gravity theory in Riemannian spaces can become scale invariant if an
additional non-Newtonian interaction described by a scalar field (dilaton) is
introduced. In this case field equations are invariant under transformations
of the Weyl group (conformal transformations), i. e. the local interval trans-
formation ds2 → σ(x)ds2 and the local field transformation Φ → σ1/2Φ. The
non-Newtonian interaction is different in gravitational systems with differ-
ent scales and one can attain presence of the fractal properties through this
interaction. But no evidences of existing dilaton field have been revealed.

In gauge gravity theories the scale invariance may be achieved through
conversion to post-Riemannian spaces and introduction of additional matter
interactions in fact (see the review of such type theories in book [13]). The
question of existence of these interactions is open.

In this paper the hypothesis that the observational fractal properties of
the large-scale structure may be a consequence of existence of the matter
fields rotary symmetry is advanced. The charged scalar meson field (complex
field) with rotary symmetry

ψψ∗ = Ψ2 = const, (5)

(where the asterisk denotes complex conjugation and Ψ is field amplitude
relating to the field charge Q ∼ Ψ2) is an opportune example. In this case
Einstein’s and Lagrange’s equations turn out to be satisfied for the class of
fields ψ and ψ̃ which possess constant energy densities and related by the
scale transformation (scaling):

αψ ↔ ψ̃, (6)
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where α is a numerical transformation parameter.
In this case field energy densities and space-time metric tensors differ in

a constant factor only:

E ↔ 1

α2

U0

Ũ0

Ẽ,

gmn (ψ) ↔ α2 Ũ0

U0

g̃mn

(

ψ̃
)

,

where U0 and Ũ0 are the constant field potential parameters, U = U0ψψ
∗,

Ũ = Ũ0ψ̃ψ̃
∗. Therefore, space-time volumes with field values related by the

scaling (6) are geometrically similar and evolve similarly. The symmetry (5)
is conserved under the scaling (6).

The power law (2) arises for fields if their energy densities are related by
a power transformation:

E ↔
(

Ẽ
)β

, (7)

where β is a numerical transformation parameter. Indeed, a measure of field
condition is proportional to field energy E, on the one hand. On the another
hand, this measure is proportional to a ratio of space volume V occupied
by the field to whole observable volume r3. Therefore E ∼ V

r3
. Let there

are N volumes Ṽ occupied by the field with energy density Ẽ and Ṽ
r3

≈ 1

N
,

Ṽ ∼ V 1/β . Let interaction between volumes may be neglected, then:

Ẽ ∼ E1/β ∼
(

V

r3

)1/β

∼
(

Ṽ

r3

)

r3−3/β ∼ 1

N
r3−3/β .

Hence, a power law like (2) for volumes with field amplitudes Ψ̃ is obtained:

N (≤ r) ∼ 1

Ẽ
r3−3/β .

2. The solution of Einstein’s and Lagrange’s equations for complex field

Let’s consider a dynamic system of gravity and complex ψ fields described
by Einstein-Gilbert action within general relativity framework:

S = − c3

16πG

∫
(

R − 8πG

c4
L

)√
−g d4x,
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where R is scalar curvature, g < 0 is determinant of metric tensor gmn,
space-time interval is ds2 = gmndx

mdxn, indices take values 0, 1, 2, 3, metric
signature is (+−−−). We use the following form of complex field Lagrangian:

L =
1

hc

(

gmn
∂ψ

∂xm
∂ψ∗

∂xn
− U (ψψ∗)

)

, (8)

where U (ψ) is field potential, h is Planck’s constant, c is light velocity.
Hereafter, the field dimension is [ψ] = erg, the contravariant metric tensor
dimension is [gmn] = cm−2. This field possess the symmetry (5). Its Lagrange
equation is

1√−g
∂

∂xn

(√−ggmn ∂ψ
∂xm

)

= − ∂U

∂ψ∗
. (9)

In Einstein’s equation

Rm
n − 1

2
Rδmn = κTmn (10)

energy-momentum tensor of the complex field equals

Tmn =
∂ψ

∂xn
∂L

∂
(

∂ψ
∂xm

)+
∂ψ∗

∂xn
∂L

∂
(

∂ψ∗

∂xm

)−δmn L =
1

hc
gmp

(

∂ψ

∂xp
∂ψ∗

∂xn
+
∂ψ

∂xn
∂ψ∗

∂xp

)

−δmn L,

where Rm
n is Ricci tensor, κ = 8πG

c4
is Einstein’s gravity constant, G is Newton

gravity constant, δmn is delta symbol.
Following form of potential is used further:

U = U0ψψ
∗. (11)

One can ascertain that Lagrange’s equation (9) with potential (11) is satisfied
for the solution:

ψ = Ψeiϕ, ψ∗ = Ψe−iϕ,

Γlmn =
1

U0

∂2ϕ

∂xm∂xn

(

glp
∂ϕ

∂xp
+ al

)

, (12)

gmn =
1

U0

(

4
∂ϕ

∂xm
∂ϕ

∂xn
+

∂ϕ

∂xm
an +

∂ϕ

∂xn
am

)

,

where field phase ϕ (xm) is a differentiable function. Hereafter, indices are
raised and lowered with the metric tensor, indices appearing twice in a single
term imply summing over its values, semicolon denotes covariant differenti-
ation, Γlmn are Christoffel symbols.
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Derivative ∂ϕ
∂xm

and covariant vector am satisfy equations:

gmn
∂ϕ

∂xm
∂ϕ

∂xn
= U0,

gmn
(

∂ϕ

∂xm

)

;n

= 0,

am;l = 0, ama
m = −3U0, (13)

∂ϕ

∂xm
am = 0.

Covariant am and contravariant ak vectors satisfy equations:

∂am
∂xl

= −3
∂2ϕ

∂xm∂xl
,

∂an

∂xm
an = 3an

∂2ϕ

∂xn∂xm
. (14)

One can ascertain through a substitution that the following equalities are
satisfied for the solution (12 - 14):

∂gmn
∂xl

= gkmΓ
k
nl + gknΓ

k
ml,

Γmkl =
1

2
gmn

(

∂gnk
∂xl

+
∂gnl
∂xk

− ∂gkl
∂xn

)

,

δnm = gnlglm.

The Ricci tensor and the energy-momentum tensor for this solution equals:

Rkm = gjlRjklm =
∂Γlkm
xl

− ∂Γlkl
xm

+ ΓlkmΓ
n
ln − ΓnklΓ

l
mn =

=
1

U0

(

∂2ϕ

∂xk∂xm
∂al

∂xl
− ∂2ϕ

∂xk∂xl
∂al

∂xm

)

+

+
1

U0
2

(

∂2ϕ

∂xk∂xm
∂2ϕ

∂xn∂xl
− ∂2ϕ

∂xk∂xl
∂2ϕ

∂xn∂xm

)(

glp
∂ϕ

∂xp
+ al

)

an,

Tkm =
2

hc
Ψ2 ∂ϕ

∂xk
∂ϕ

∂xm
.

Functions ∂ϕ
∂xm

, am, a
m are determined by equations (10) and (14).

The expression for Ricci tensor implies the second derivative ∂2ϕ
∂xm∂xn

is a
tensor. For example, it may be so if the function ϕ depends on an argument
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y = kmx
m, where km is a wave vector which is parallel transferred along a

geodesic line: km;n = 0. In this case one can derive:

∂2ϕ

∂xm∂xn
=

d2ϕ
dy2

1− 1

U0

(

dϕ
dy

)2

(kpkp)
kmkn.

This expression shows that ∂2ϕ
∂xm∂xn

is proportional to a product of two vectors,
therefore it’s a tensor.

For example, consider the solution

∂2ϕ

∂xk∂xm
= bk

∂ϕ

∂xm
+ bm

∂ϕ

∂xk
, (15)

where the vector bm satisfies the condition

bm
∂ϕ

∂xm
= 0.

Then the following expressions for Ricci tensor and scalar curvature are ob-
tained:

Rkm =
1

U0

∂2ϕ

∂xk∂xm

(

∂al

∂xl
+ anbn

)

− 1

U0

∂ϕ

∂xk
∂al

∂xm
bl −

(

anbn
U0

)2
∂ϕ

∂xk
∂ϕ

∂xm
,

R = − 1

U0

gkm
∂ϕ

∂xk
∂al

∂xm
bl −

(anbn)
2

U0

.

Einstein’s equation (10) results in the following equations:

1

U0
2
gkm

∂ϕ

∂xk
∂al

∂xm
bl +

(

anbn
U0

)2

=
2κ

hc
Ψ2, (16)

∂2ϕ

∂xk∂xm

(

∂al

∂xl
+ anbn

)

− ∂ϕ

∂xk
∂al

∂xm
bl +

κ

hc
Ψ2U0

(

ak
∂ϕ

∂xm
+ am

∂ϕ

∂xk

)

+

+

(

2κ

hc
Ψ2U0 −

(anbn)
2

U0

)

∂ϕ

∂xk
∂ϕ

∂xm
= 0.

The equations (14) and (16) determine the class of Einstein’s and Lagrange’s
equations solutions for a complex field possessing the symmetry (5) when
two parameters Ψ and U0 and boundary conditions are specified.

Field amplitude and phase are redefined under the scaling (6): Ψ ↔ 1

α
Ψ̃,

ϕ↔ αϕ̃. Christoffel symbols and Ricci tensor Rkm does not change. Vector
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an, metric tensor, mixed components of energy-momentum and Ricci tensors
are multiplied by constant factors:

an ↔ αãn,

gmn (ψ) ↔ α2 Ũ0

U0

g̃mn

(

ψ̃
)

, (17)

Rm
n ↔ 1

α2

U0

Ũ0

R̃m
n , Tmn ↔ 1

α2

U0

Ũ0

T̃mn .

Therefore, Einstein’s and Lagrange’s equations does not change.
The Lagrangian (8) equals zero for the solution (12), whereas energy

density is positive:

E =
1

hc

(

gmn
∂ψ

∂xm
∂ψ∗

∂xn
+ U (ψψ∗)

)

=
2

hc
U0Ψ

2 > 0. (18)

The energy density (18) is constant, therefore the solution (12) corresponds
to a stationary field condition.

Space-time volumes with the solution (12) type structure are similar to
each other. Moreover, constant energy densities of these volumes may be
related by the transformation (7). Therefore, they form a fractal set, the
power law (2) is satisfied for them.

Mentioned above properties of the solution (12) including its stationarity
and fractality are a consequence of the symmetry (5). Stationarity permits to
refer this solution to the class of particle-like solution of the general relativity.
Fractality implies that the solution corresponds to a set of noninteracting
self-similar particles.

The phase path of the fields ψ and ψ∗ is a circle (5):

ψψ∗ = ψ1
2 + ψ2

2 = Ψ2,

ψ = ψ1 + iψ2, ψ∗ = ψ1 − iψ2.

The function ϕ is degree of rotation round the circle. Length of a circle arc
i.e. interval of set {ψ1, ψ2} equals

dF 2 = (dψ1)
2 + (dψ2)

2 = dψdψ∗ = Ψ2 ∂ϕ

∂xm
∂ϕ

∂xn
dxmdxn.

One can obtain a relation between the phase space interval dF and the space-
time interval ds:

dF 2 =
1

4
Ψ2

[

U0ds
2 −

(

am
∂ϕ

∂xn
+ an

∂ϕ

∂xm

)

dxmdxn
]

. (19)

9



The first equation (14) has the following solution:

am = −3
∂ϕ

∂xm
+ dm,

where dm is a constant vector
(

∂dm
∂xn

= 0
)

. The expression (19) shows that
the vector dm may be chosen so that the phase space interval is proportional
to the time interval: dF ∼ dt. Therefore, the solution (12) may describe a
time-pulsating cosmological model. As energy density of the system is finite
this model must be nonsingular. The example of such model is presented in
the next section.

3. The cosmological model with meson field

Let the fractal model is a model permitting existing of dependences of
type (1 - 3). The model based on the solution (12) is an example of such
model.

The solution (12) contains only the field derivatives ∂ϕ
∂xm

, therefore it cor-
responds to both isotropic and anisotropic metrics. Below the homogeneous
isotropic and conformally flat metric is used:

ds2 = c2dt2 − a2
[

(

dx1
)2

+
(

dx2
)2

+
(

dx3
)2
]

.

Mixed Ricci tensor components and scalar curvature equal:

R0
0 = − 1

c2

[

3
(at
a

)

t
+ 3

(at
a

)2
]

,

R1
1 = R2

2 = R3
3 = − 1

c2

[

(at
a

)

t
+ 3

(at
a

)2
]

,

R = − 1

c2

[

6
(at
a

)

t
+ 12

(at
a

)2
]

,

where a is scale factor of the model, index t denotes partial derivative with
cosmological time.

If we choose field Lagrangian in the form of

L =
1

hc

(

gmn
∂ψ

∂xm
∂ψ∗

∂xn
− U (ψψ∗)

)

+
dF

dt
,

where dF
dt

is total derivative of some differentiable function, Einstein’s equa-
tion (10) with the energy-momentum tensor

Tkm =
2

hc
Ψ2 ∂ϕ

∂xk
∂ϕ

∂xm
− gkm

dF

dt
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comes to the following two equations:

3
(at
a

)2

=
2κ

hc
Ψ2

(

∂ϕ

∂t

)2

− κc2
dF

dt
,

1

c2

[

2
(at
a

)

t
+ 3

(at
a

)2
]

= −2κ

hc
Ψ2 1

a2

(

∂ϕ

∂x

)2

− κ
dF

dt
. (20)

Lagrange’s equation (9) comes to two equations:

(

1

c

∂ϕ

∂t

)2

− 3

a2

(

∂ϕ

∂x

)2

= U0,

1

c2
∂2ϕ

∂t2
− 3

a2
∂2ϕ

∂x2
+

3

c2
at
a

∂ϕ

∂t
= 0. (21)

We have took into account here that ∂ϕ
∂x1

= ∂ϕ
∂x2

= ∂ϕ
∂x3

= ∂ϕ
∂x

in isotropic case.

Four equations (20 - 21) determine four functions: a, ∂ϕ
∂t
, ∂ϕ
∂x
, ∂2ϕ
∂x∂t

. Equations
(20) and the first equation (21) lead to the equation determining scale factor
a:

(at
a

)

t
+ 2

(at
a

)2

− κc

3h
U0Ψ

2 = −2κc2

3

dF

dt
. (22)

The hyperbolic solution of this equation corresponds to the case of zero field
Lagrangian and dF

dt
= 0:

a = a0

√

cosh

(

t

τ

)

,

where τ = 1
/
√

2κc
3h
U0Ψ2 .

If we choose dF
dt

= 1

hc
U0Ψ

2 the equation has the periodic solution

a = a0

√

cos

(

t

τ
+ φ

)

. (23)

The period of function (23) equals 2πτ . The scale factor (23) turns into zero
at the moment t∗ when t∗

τ
+ φ = π

2
± πn. The solution (23) is not singular

within the interval 0 ≤ t
τ
≤ 2π if t∗

τ
≥ 2π. This condition permits to choose

the phase: π
2
± πn− φ > 2π. Therefore the model is not singular if

φ < −3π

2
± πn. (24)
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The equation (22) has the integral for the periodic solution (23):

(a0
a

)4

− 4τ 2
(at
a

)2

= 1,

which may be obtained through the expression

at
a

= − 1

2τ
tan

(

t

τ
+ φ

)

and the solution (23). The integral is a map of phase path (5) in the space-
time.

Derivatives of the phase coordinate ϕ equal:

1

c2

(

∂ϕ

∂t

)2

=
1

4
U0

[

(a0
a

)4

+ 1

]

,
1

a2

(

∂ϕ

∂x

)2

=
1

12
U0

[

(a0
a

)4

− 3

]

.

One can define the metric tensor in the form analogous to the general defini-
tion (12) through these expressions. Further, the expressions imply that the
parameter a0 is a maximal scale factor value for the solution (23): a ≥ 1

3
√
3
a0.

The comoving radial coordinate of the horizon equals:

r (t) =

t
∫

0

cdt

a
=

2cτ

a0
F

( t
τ
+ φ

2
, 2

)

,

where F
(

t

τ
+φ

2
, 2
)

is the elliptic integral of the first kind possessing recurring

values with period 2πτ .
As the horizon comoving radial coordinate values are repeated, a model

with pulsating space-time corresponds to the solution (23). This model is
compacted, i. e. the total space volume is finite and the evolution in time is
a periodic process of the space expansion and contraction. In the presence
of the phase restriction (24) the space contracts to minimal nonzero volume.
The two-dimensional analogy of such space-time is a torus with variable
thickness where parallels are lines of time (lines of constant space coordinates)
and meridians are space coordinate lines. Analogous compacted model has
been constructed in the paper [14] and possible astrophysical consequences
of space volume finiteness are discussed there. It has been showed there that
dynamical entropy of complex field is increasing during the space pulsating.
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4. Conclusion

The main results of this work are following. The cosmological model
permitting physical explanation of the observational fractal properties of the
galaxy and quasar distribution is constructed. Within the model frame-
work these properties are consequences of the fractal properties of the initial
density fluctuations spectrum and of the charged scalar meson matter field
(complex field) rotary symmetry. This model is nonsingular; the Universe
turns out to be compacted, pulsating and doubly-connected.
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