Principle of Least Angular Action

Alejandro A. Torassa

Creative Commons Attribution 3.0 License (2014) Buenos Aires, Argentina atorassa@gmail.com

Abstract

This paper presents the principle of least angular action.

Principle of Least Angular Action

If we consider a single particle A of mass m_a then the principle of least angular action, is given by:

$$\delta \int_{t_1}^{t_2} \frac{1}{2} m_a (\mathbf{r} \times \mathbf{v}_a)^2 dt + \int_{t_1}^{t_2} (\mathbf{r} \times \mathbf{F}_a) \cdot \delta(\mathbf{r} \times \mathbf{r}_a) dt = 0$$

where **r** is a position vector which is constant in magnitude and direction, \mathbf{v}_a is the velocity of particle A, \mathbf{F}_a is the net force acting on particle A, and \mathbf{r}_a is the position of particle A.

If
$$-\delta V_a = (\mathbf{r} \times \mathbf{F}_a) \cdot \delta(\mathbf{r} \times \mathbf{r}_a)$$
 and since $T_a = \frac{1}{2} m_a (\mathbf{r} \times \mathbf{v}_a)^2$, then:
 $\delta \int_{t_1}^{t_2} (T_a - V_a) dt = 0$

And since $L_a = T_a - V_a$, then we obtain:

$$\delta \int_{t_1}^{t_2} L_a \, dt = 0$$