# Principle of Least Angular Action 

Alejandro A. Torassa<br>Creative Commons Attribution 3.0 License (2014) Buenos Aires, Argentina atorassa@gmail.com


#### Abstract

This paper presents the principle of least angular action.


## Principle of Least Angular Action

If we consider a single particle A of mass $m_{a}$ then the principle of least angular action, is given by:

$$
\delta \int_{t_{1}}^{t_{2}} \frac{1 / 2}{} m_{a}\left(\mathbf{r} \times \mathbf{v}_{a}\right)^{2} d t+\int_{t_{1}}^{t_{2}}\left(\mathbf{r} \times \mathbf{F}_{a}\right) \cdot \delta\left(\mathbf{r} \times \mathbf{r}_{a}\right) d t=0
$$

where $\mathbf{r}$ is a position vector which is constant in magnitude and direction, $\mathbf{v}_{a}$ is the velocity of particle A, $\mathbf{F}_{a}$ is the net force acting on particle A, and $\mathbf{r}_{a}$ is the position of particle A.

$$
\text { If }-\delta V_{a}=\left(\mathbf{r} \times \mathbf{F}_{a}\right) \cdot \delta\left(\mathbf{r} \times \mathbf{r}_{a}\right) \text { and since } T_{a}=1 / 2 m_{a}\left(\mathbf{r} \times \mathbf{v}_{a}\right)^{2} \text {, then: }
$$

$$
\delta \int_{t_{1}}^{t_{2}}\left(T_{a}-V_{a}\right) d t=0
$$

And since $L_{a}=T_{a}-V_{a}$, then we obtain:

$$
\delta \int_{t_{1}}^{t_{2}} L_{a} d t=0
$$

