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Abstract

In this paper the Holographic Principle is used with the involve-
ment of a minimal length. It is shown that two alternative approaches
to the minimal length involving theory are possible. By the first
approach, the minimal length is actualized only at high energies,
whereas at low energies it is zero, the theory being continuous. In
this approach there is generalization of the entropic approach to grav-
ity for the ultraviolet region. By the second approach, the minimal
length is nonzero at all energies scales. Then the entropic approach
to gravity in its present form is impossible in this case because the
theory must be free from such infinitesimal quantities as infinitely
small variations in the surface of the holographic screen, its volume,
and entropy.

1 Introduction

This paper presents a study of the Holographic principle in a theory with
the minimal length lmin.
It is known that a minimal length on the order of the Planck length lmin ∼ lp
becomes important only at very high (Planck’s) energies E ∝ EP . At low
energies E � EP it is practically not apparent. What results from this
fact?
1.1 Approach I: provided the minimal length lmin is involved, then on going
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from high to low energies the corresponding low-energy theory, to a high
accuracy, may be considered to be continuous in agreement with the limiting
transition

lmin → 0 (1)

1.2 Approach II: according to this approach that is an alternative to the
first one, the minimal length lmin 6= 0 is involved both at high and low
energies. In this work the proposed approaches are considered in view of
the Holographic Principle.
The first approach is demonstrated using as an example the generalization
of the well-known results by E.Verlinde [1] to high (Planck’s) energies. The
starting point for such generalization is the holographic screen S and its
information content. This material is given in Section 2.
For the second approach based on lmin 6= 0, (i.e. on the absence of the
formula (1)) at all the energy scales, both high and low, we first introduce
the definition of a measurable quantity. Then it is shown that, if a
theory operates only with the measurable quantities, the method in [1]
in its present formalism is invalid within the scope of the minimal length
theory,because the theory must be free from such infinitesimal quantities
as infinitely small variations in the surface of the holographic screen, its
volume, and entropy. This material is given in Section 3.
This paper is based on the previous works [2], [3] and partially – on [4].

2 Holographic Principle, Entropic Aprroach

to Gravity and Minimal Length

2.1 High-Energy Deformation of Main Quantities

This Section is based on the generalization to high energies [2] of the results
by E.Verlinde [1] associated with his entropic approach to gravity.
In what follows in this Section we use the results from [2]. The starting
point is the spherically-symmetric holographic screen S from [1] and its
information content.
As known, a formula for the �bit density� dN on S is given as ((5.32) in
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[1]):

N =
A

G~
, dN =

dA

G~
, (2)

where N – �bit� number on S.
However, when the holographic principle [5]–[9] is valid, N is actually the
entropy S up to the factor S ∼ N and hence from (2) it follows directly
that dS ∝ dA/G~.
What are the changes in S on going to high (Planck) energies? The answer
to this question is already known owing to the fact that at these energies
the Heisenberg Uncertainty Principle (HUP) is replaced by GUP [10]–[18]:

4x ≥ ~
4p + `24p

~
, (3)

where `2 = α′l2p and α′ – dimensionless numerical factor. (3) leads to the
minimal length lmin = ξlP = 2

√
α′lP .

The well-known Bekenstein-Hawking formula for the black hole entropy in
the semiclassical approximation [19],[20]

SBH =
A

4l2p
(4)

is modified by the corresponding quantum corrections on going from HUP
to GUP [21]–[24].
In particular, [22]:

SBHGUP =
A

4l2p
− πα′2

4
ln

(
A

4l2p

)
+
∞∑
n=1

cn

(
A

4l2p

)−n
+ const , (5)

where the expansion coefficients cn ∝ α′2(n+1) can always be computed to
any desired order of accuracy.
The general form of quantum corrections for the black hole entropy derived
in (5) remains valid for any horizon spaces and, in particular, for the holo-
graphic screen S from [1].
Higher-order corrections may be derived using the Taylor-series expansion
in terms of the small parameter l2p/A

SGUP =
A

4l2p
+
α̃

4
ln

(
A

l2p

)
+
∞∑
n=1

c̃n

(
A

l2p

)−n
+ const (6)
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in a similar way to the Taylor-series expansion of the right-hand side in
(6) in terms of the small parameter 4l2p/A. This is valid as GUP gives the
ultraviolet cutoff at the level of lmin ∼ lp.
Assuming that at high energy S → SG and hence N → NG and in consid-
eration of that S = N/4, we obtain

NGUP =
A

l2p
+ α̃ ln

(
A

l2p

)
+ 4

∞∑
n=1

c̃n

(
A

l2p

)−n
+ const, . (7)

In terms of NGUP we can define the holographic screen area, as measured
at high energies, by AGUP ≡ G~NGUP , where G and ~ – gravitational and
Planck constants, respectively, and NGUP is given (7). Considering that
we, similar to [1], assume that the speed of light c = 1, then, according to
l2p = G~, from (7) we have

AGUP = A+G~α̃ ln

(
A

G~

)
+ 4G~

∞∑
n=1

c̃n

(
A

G~

)−n
+ const . (8)

So, (2) has a fairly definite analog at high energies

dNGUP =
dAGUP
G~

(9)

that on going to the known low energies gives (2). There is a single con-
siderable difference, in [1] the quantity N was defined in terms of A and
dN was defined in terms of dA but in the case under study the situation is
opposite: AGUP is defined in terms of NGUP and dAGUP in terms of dNGUP .
The logic series is here as follows: A⇒ N ⇒ NGUP ⇒ AGUP

The high-energy (for GUP) redefinition problem of the temperature T →
TGUP for the holographic screen S has been studied in [25]. In [25] TGUP
was derived as a series

TGUP = T + ΘTT
3 + ... = T + T̃GUP , (10)

where the factors in the right-hand side(10) may be computed in the explicit

form and at low energies T̃GUP → 0.
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Then, under (7)–(10), we can have a GUP - analog of Komar’s mass in
((5.33) from [1])

MGUP ≡ 1

2

∫

S
TGUPdNGUP =

1

2

∫

S
(T+T̃GUP )dNGUP =

1

2G~

∫

S
TGUPdAGUP ,

(11)
that in the low-energy limit gives the well-known Komar formula [26],([27],
p.289).
It is clear that the �GUP-deformed Komar’s mass� MGUP in the first term
(11) as a summand has the known Komar’s mass [26],((11.2.9 - 11.2.10),[27])
((5.34), [1])

M =
1

4πG

∫

S
TdA. (12)

If feasible, it is desirable to express all the above-derived fundamental quan-
tities in terms of a unified parameter. As shown by the author in [28], [29],
this is possible for black holes within the scope of GUP and a role of the
unified small parameter is played by the parameter introduced previously
in [30]–[41] as follows:

αx = l2min/x
2, (13)

where x is the measuring scale, lmin ∼ lp by virtue of GUP (3), and 0 <
α ≤ 1/4.
Obviously, the principal results obtained in [28], [29] remain in force for
an arbitrary screen S and may be applied to the quantities NGUP ,AGUP ,
MGUP .
In particular, we have

NGUP = N + α̃ ln(σα−1
R ) + 4

∞∑
n=1

c̃nσ
−nαnR + const,

AGUP = A+ α̃G~ ln(σα−1
R ) + 4G~

∞∑
n=1

c̃nσ
−nαnR + const, (14)

where R – characteristic linear size (radius) of the screen S; αR – value of
α parameter at the point R, σ is a dimensionless computational factor.
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It is convenient to refer to the form NGUP and AGUP derived in (14) as to
the α-representation. Also, it is clear that MGUP (11) may be derived in
terms of αR.
It should be noted that αx is considered as a deformation parameter for
the Heisenberg algebra on going from HUP to GUP.

Definition 1.
Deformation is understood as an extension of a particular theory by inclu-
sion of one or several additional parameters in such a way that the initial
theory appears in the limiting transition [42].

Generally speaking, initially the construction of such a Deformation was
realized with other parameters (e.g. [16],[17],([43])). But it is easily shown
that QFT parameter of the deformations associated with GUP may be
expressed in terms of the parameter α that has been introduced in the ap-
proach to the density matrix deformation [28], [29]. Here the notation of
[43] is used. Then from [43] we have

[~x, ~p] = i~(1 + β2~p2 + ...) (15)

and
∆xmin ≈ ~

√
β ∼ lp. (16)

As shown in [28], [29], the right-hand side of (15) may be completed with
an expansion in terms of the small parameter αx:

[~x, ~p] = i~(1 + β2~p2 + ...) = i~(1 + a1αx + a2α
2
x + ...). (17)

In the case under study convenience of using αx stems from its smallness,
its dimensionless character, and ability to test changes in the radius R of
the holographic screen S.
Based on the aforesaid, we can proceed to generalization of the results from
Section 5.2 of [1] and to derivation of equations for a gravitational field
within the scope of GUP. We must consider two absolutely different cases.
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2.2 Transition to Higher Energies

We must consider two absolutely different cases.

2.2.1 Quantum Corrections to the Principal Result

It is assumed that the screen radius R is given by R� lmin ∝ lp and then

αR � 1/4, (18)

where αR is the deformation parameter introduced in the previous subsec-
tion and corresponding R.
Then the principal result from the final part of Section 5.2 in [1] remains
valid owing to the replacement of M (formula (5.34) from [1]) by MGUP =

MGUP [αR] (11). The �αR – complement� (i.e. the difference M̃ [αR] =
MGUP [αR]−M) to M will be simply a (small) quantum correction for the
principal result.
Because of (18), it is supposed that αR is continuously varying from R and
all the quantities in Section 5.2 of [1] are also continuously dependent on
αR (18). Then we can write down the (�αR – analog� of formula (5.37) in
[1]) as

2

∫

Σ

(
Tab[α]− 1

2
T [α]gab[α]

)
naξbdV =

1

4πG

∫

Σ

Rab[α]naξbdV, (19)

where the dependence of Tab[α] and Rab[α] on α = αR is completely deter-
mined, in accordance with [27],[1], by the integral MGUP [α] (11).
Besides, it is assumed that na and ξb are dependent on α, though the de-
pendence is dropped.
Next, similar to [1], from (19) we can derive the α-deformed Einstein
Equations using the method from [45]. Note that both this method and its
minor modification given in ([1], end of Section 5.2) in this case are valid
because αR is small and continuous, the whole system being continuously
dependent on it.
Solutions of the α-deformed Einstein Equations represent a series in αR,
and for αR → 0 or for α′ = 0 become the corresponding solutions of (Section
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5.2 in [1]).
Using the result obtained in [44], we can easily extend the above result to
the case with a nonzero cosmological term Λ 6= 0. In [44] Komar’s formula
was generalized to the case of a nonzero Λ. All the arguments from (Section
5.2 of [1]) in this case remain valid and formula (5.37) takes the following
form:

2

∫

Σ

(
Tab − 1

2
Tgab

)
naξbdV =

1

4πG

∫

Σ

(Rab + Λgab)n
aξbdV. (20)

We can easily obtain the α - analog of the last formula with the dynamic
cosmological term Λ(α) as a corresponding complement to the right-hand
side (19).

2.2.2 Transition to Ultraviolet Limit

This case has been considered in detail in [29] and [2].
Then the screen S has a radius on the order of several Planck’s lengths
R ≈ ξlmin = 2α′ξlp, where ξ – number on the order of 1 or

αR ≈ 1/4. (21)

The problem is which object puts the limit for such a screen S. It may
be assumed that if Tab 6= 0 then the object may be represented only by
Planck’s black hole or by a micro-black hole with a radius on the order of
several Planck’s lengths.
Clearly, the methods of [1] and [45] are not in force for such screen S because
it is impossible to use the result of [45] as �a very small region the space-
time� is no longer �an approximate Minkowski space-time� [1].
Also, such micro-black hole is a horizon space, jet at high energies (Planck
scales). As is known, for horizon spaces, black holes in particular, at low
energies (semiclassical approximation) the results of [46] are valid.
At the horizon (and we are interested in this case only) Einstein’s
field Equations in differential form may be written as ([46] formula
(119)):

(
~cf ′(a)

4π
)
c3

G~
d

(
1

4
4πa2

)
−1

2

c4da

G
= Pd

(
4π

3
a3

)
(22)
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where R = a – radius of a black hole (i.e. of the screen S), P = TRR is the
trace of the momentum-energy tensor and radial pressure, and the horizon
location will be given by simple zero of the function f(R), at R = a.
As shown in [29] the equations (22) may be written in terms of the deforma-
tion parameter α with the coefficients containing only the numerical factors
and fundamental constants.
Also, the work [29] presents two possible variants of high-energy (Planck)
α -deformation α→ 1/4 (22).
Hereinafter, we assume that the energy – momentum tensor of matter fields
is not traceless

T aa 6= 0, (23)

similar, in particular, to the case under study (22) P = TRR 6= 0

2.2.2.A Case of equilibrium thermodynamics ([29], section (6.1))

In this case it is assumed that in the high-energy (ultraviolet (UV))limit
the thermodynamic identity (22) is retained but now all the quantities in-
volved in this identity become α-deformed (α → 1/4). All the quantities
Ξ in (22) are replaced by the corresponding quantities ΞGUP with the sub-
script GUP. Then the high-energy α-deformation of equation (22) takes the
form

kBTGUP (α)dSGUP (α)− dEGUP (α) = P (α)dVGUP (α). (24)

Substituting into (24) the corresponding quantities
TGUP (α), SGUP (α), EGUP (α), VGUP (α), P (α) and expanding them into a Lau-
rent series in terms of α, close to high values of α, specifically close to
α = 1/4, we can derive a solution for the high energy α-deformation of
the general relativity (24) as a function of P (α). Provided at high energies
the generalization of (22) to (24) is possible, we can have the high-energy
α-deformation of the metric.
It is noteworthy that in (24) TGUP this time is calculated from ([21], formula
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(10))

TBHGUP =
1

4π

~R
2α′2l2p

[1−
√

1− α′2l2p
R2

] =

~α−1
R

4πα′lp
[1− (1− αR)1/2] (25)

with subsequent replacement of lp by
√
G~ for c = 1.

It is especially interesting to consider the following case.

2.2.2.B Case of nonequilibrium thermodynamics ([29], section (6.2))

In this case the α - dependent dynamic cosmological term Λ(α) 6= 0 ap-
pears in the right-hand side of (24). Then, with the addition of Λ(α) 6= 0,
the α – representation (24) (for ~ = 1) is given as follows (([29], formula
(53)):

−α2f ′(α)− 1

2
α = 16πα′2P (α)G2 −GΛ(α),

f ′(α) = 4πkBTGUP (α) (26)

where α = αR ≈ 1/4 and the derivative f ′(α) of the f(α) is taken with
respect to α.
Λ(α) in the right-hand side of (26) may be subjected to a series expansion
in terms of α, in compliance with the holographic principle [5]–[9] as applied
to the Universe [47]. In [48],[41], [28],[29] in the leading order this expansion
results in the first power, i.e. we have

Λ(αR) ∼ αRΛp, (27)

where Λp – initial value of Λ ≈ Λ1/4 derived using the well-known pro-
cedure of �summation over all zero modes� and the Planck momentum
cutoff [49],[50]. Actually, (27) is in a good agreement with the observable
Λ = Λobserv. Because a radius of the visible part of the Universe is given as
R = RUniv ≈ 1028cm, it is clear that αR ≈ 10−122 and (27) is completely
consistent with the experiment [50].
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Note that, proceeding directly from a quantum field theory but without the
use of the holographic principle, we can have only a rough estimate of Λ
that, on the whole, is at variance with Λobserv. Such an estimate may be
obtained in different ways: by simulation [51]; using the cutoff [49] but now
in the infrared limit; with the use of the Generalized Uncertainty Principle
for the pair (Λ, V ), where V – four-dimensional volume [41], [28]. In the α–
representation in this case the expansion in terms of α results in the second
leading order

Λ(αR) ∼ α2
RΛp, (28)

that, obviously, is at variance with the accepted facts.
In the following Section the static spherically-symmetric horizon space con-
sidered in [46] is treated from a new point of view.

Afterword to Section 2

A.1. In this Section it has been implied that at low energies E � EP
the theory is continuous and the minimal length lmin 6= 0 is involved only
at the energies E ≈ EP . And in the following Section it is demonstrated
that an alternative viewpoint is also possible: the minimal length lmin 6= 0
is involved at all the �energy levels�.

A.2. According to A.1, at low energies, for x � lmin, as follows from
(13), αx is varying practically continuously and hence, for αx close to zero,
the formulas (24),(26) are absolutely reasonable.
At the same time, it has been supposed that the above-mentioned formulas
(24) and (26) give an adequate description for the situation in the high-
energy case αx → 1/4 too.
Then, due to the fact that at high energies E ≈ EP , lmin 6= 0, we should
have not �continuous equations� (24) and (26) but the equations discrete
for αx.
In greater detail this problem is considered in the second part of the follow-
ing Section.
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3 Minimal Length and Measurability

3.1 Minimal Length and Measurable and Nonmeasur-
able Quantities

In the previous Section it has been supposed that the minimal length lmin ∝
lP is involved only at high energies E on the order of Planck’s energies
E ∝ EP , whereas at low energies E � EP the theory, to a high accuracy,
may be considered continuous, the following limit being the case: lmin → 0.
An alternative view is that, provided a minimal length exists, it is existent
at all the energy scales and not at high (Planck’s) scales only.
What is inferred on this basis for real physics? At least, it is suggested that
the use of infinitesimal quantities dxµ in a mathematical apparatus of both
quantum theory and gravity is incorrect, despite the fact that both these
theories give the results correlating well with the experiment (for example,
[52]).
Indeed, in all cases the infinitesimal quantities dxµ bring about an infinitely
small length ds [27]

ds2 = gµνdxµdxν (29)

that is inexistent because of lmin.
The same is true for any function Υ dependent only on different parameters
Li whose dimensions of length of the exponents are equal to or greater than
1 νi ≥ 1

Υ ≡ Υ(Lνii ). (30)

Obviously, the infinitely small variation dΥ of Υ is senseless as, according
to (30), we have

dΥ ≡ dΥ(νiL
νi−1
i dLi). (31)

But, because of lmin, the infinitesimal quantities dLi make no sense and
hence dΥ makes no sense too.
Instead of these infinitesimal quantities, reasonable are �minimal variations
possible� ∆min of the quantity L having the dimension of length, i.e. the
quantity

∆minL = lmin. (32)
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And then

∆minΥ ≡ ∆minΥ(νiL
νi−1
i ∆minLi) = ∆minΥ(νiL

νi−1
i lmin). (33)

However, the �minimal variations possible� of any quantity having the
dimensions of length (32) which are equal to lmin ∝ lP require, according to
the Heisenberg Uncertainty Principle (HUP) [53]:

∆x ≥ ~
∆p

(34)

maximal momentum pmax ∝ PPl and energy Emax ∝ EP . Here lP , PPl, EP
– Planck’s length, momentum, and energy, respectively.(Note that the nor-
malization ∆x∆p ≥ ~ is used rather than ∆x∆p ≥ ~/2.)
But at low energies (far from the Planck energy) there are no such quantities
and hence in essence ∆minL = lmin ∝ lP (32) corresponds to the high-energy
(Planck’s) case only.
For the energies lower than Planck’s energy, the �minimal variations pos-
sible� ∆minL of the quantity L having the dimensions of length must be
greater than lmin and dependent on the present E

∆min ≡ ∆min,E,∆min,EL > lmin. (35)

Besides, as we have a minimal length unit lmin, it is clear that any quantity
having the dimensions of length is �quantized�, i.e. its value measured in
the units lmin equals an integer number and we have

L = NLlmin, (36)

where NL– positive integer number.
The problem is, how the �minimal variations possible� ∆min,E (35) are
dependent on the energy or, what is the same, on the scales of the measured
lengths?
Then assuming that HUP is to a high accuracy derived from GUP on going
to low energies or that HUP is a special case of GUP at low values of the
momentum, we have

(GUP,∆p→ 0) = (HUP ). (37)
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By the language of NL from (36), (37) is nothing else but a change-over to
the following:

(N∆x ≈ 1)→ (N∆x � 1). (38)

The assumed equalities in (34) and (3) may be conveniently rewritten in
terms of lmin with the use of the deformation parameter α∆x (13).
Then with the equality (∆p∆x = ~) (3) is of the form

∆x =
~

∆p
+
α∆x

4
∆x. (39)

In this case due to formulae (36) and (38) the equation (39) takes the
following form:

N∆xlmin =
~

∆p
+

1

4N∆x
lmin (40)

or

(N∆x − 1

4N∆x
)lmin =

~
∆p

. (41)

That is

∆p =
~

(N∆x − 1
4N∆x

)lmin
. (42)

From (40)–(42) it is clear that HUP (34) in the case of the equality appears
to a high accuracy in the limit N∆x� 1 in conformity with (38).
It is easily seen that the parameter αa from (13) is discrete as it is nothing
else but

αa = l2min/a
2 =

l2min
N2
a l

2
min

=
1

N2
a

. (43)

At the same time, from (43) it is evident that αa is irregularly discrete.
It is clear that from formula (42) at low energies (N∆x � 1), up to a
constant

~2

l2min
=
~c3

4α′G
(44)

we have
α∆x = (∆p)2. (45)
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But all the above computations are associated with the nonrelativistic case.
As known, in the relativistic case, when the total energy of a particle with
the mass m and with the momentum p equals [54]:

E =
√
p2c2 +m2c4, (46)

a minimal value for ∆x takes the form [55]:

∆x ≈ c~
E
. (47)

And in the ultrarelativistic case

E ≈ pc (48)

this means simply that

∆x ≈ ~
p
. (49)

Provided the minimal length lmin is involved and considering the �Inte-
grality Condition� (IC) (36), in the general case for (47) at the energies
considerably lower than the Planck energies E � EP we obtain the follow-
ing:

∆x = N∆xlmin ≈ c~
E
,

or

E ≈ c~
N∆x

. (50)

Similarly, at the same energy scale in the ultrarelativistic case we have

p ≈ ~/N∆x. (51)

Note that all the foregoing results associated with GUP and with its lim-
iting transition to HUP for the pair (∆x,∆p), as shown in [32], may be in
ultrarelativistic case easily carried to the �energy - time� pair (∆t,∆E).
Indeed (3) gives [32]:

∆x

c
≥ ~

∆pc
+ α′l2P

∆p

c~
, (52)
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then

∆t ≥ ~
∆E

+ α′
l2p
c2

∆pc

~
=

~
∆E

+ α′t2p
∆E

~
. (53)

where according to (48) the difference between ∆E and ∆(pc) can be ne-
glected and tP is the Planck time tP = LP/c =

√
G~/c5 ' 0, 54 10−43sec.

From whence it follows that we have a maximum energy of the order of
Planck’s:

Emax ∼ EP

Then the foregoing formulas (34)–(41) are rewritten by substitution as fol-
lows:

∆x→ ∆t; ∆p→ ∆E; lmin → tmin;NL → Nt=L/c (54)

Specifically, (41) takes the form

(N∆t − 1

4N∆t
)tmin =

~
∆E

. (55)

As shown, for the ultrarelativistic case there is tmin.
Next we assume that for all cases there is a minimal measuring unit of
time

tmin = lmin/vmax = lmin/c. (56)

Then, similar to (36), we get the �Integrality Condition� (IC) for any
time t:

t ≡ t(Nt) = Nttmin, (57)

for certain |Nt| ≥ 0 – integer.
According to (55), let us define the corresponding energy E

E ≡ E(Nt) =
~

|Nt − 1
4Nt
|tmin

. (58)

Note that at low energies E � EP , that is for |Nt| � 1, the formula (58)
naturally takes the following form:

E ≡ E(Nt) =
~

|Nt|tmin =
~

|t(Nt)| . (59)
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Definition 2.
Let us define the quantity having the dimensions of length L or time t mea-
surable, when it satisfies the relation (36) (and respectively (57)).

Thus, measurable infinitesimal changes in length (and hence in time)
are impossible and any such changes are dependent on the existing ener-
gies.
In particular, a minimal possible measurable change of length is lmin. It
corresponds to some maximal value of the energy Emax or momentum Pmax,
If lmin ∝ lP , then Emax ∝ EP ,Pmax ∝ PPl, where Pmax ∝ PPl, where PPl
is where the Planck momentum. Then denoting in nonrelativistic case
with 4p(w) a minimal measurable change every spatial coordinate w
corresponding to the energy E we obtain

4Pmax(w) = 4Emax(w) = lmin. (60)

Evidently, for lower energies (momentums) the corresponding values of
4p(w) are higher and, as the quantities having the dimensions of length
are quantized (36), for p ≡ p(Np) < pmax, 4p(w) is transformed to

|4p(Np)(w)| = |Np|lmin. (61)

where |Np| > 1-integer so that we have

|Np − 1

4Np

|lmin =
~

|p(Np)| . (62)

In the relativistic case the formula (60) holds, whereas (61) and (62) for
E ≡ E(NE) < Emax are replaced by

|4E(NE)(w)| = |NE|lmin, (63)

where |NE| > 1-integer.
Next we assume that at high energies E ∝ EP there is a possibility only for
the nonrelativistic case or ultrarelativistic case.
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Then for the ultrarelativistic case, with regard to (48)–(55), formula (62)
takes the form

|NE − 1

4NE

|lmin =
~c

E(NE)
=

~
|p(Np)| , (64)

where NE = Np.
In the relativistic case at low energies we have

E � Emax ∝ EP . (65)

In accordance with (46),(47) formula (61) is of the form

|4E(NE)(w)| = |NE|lmin =
~c

E(NE)
, |NE| � 1− integer. (66)

In the nonrelativistic case at low energies (65) due to (62) we get

|4p(Np)(w)| = |Np|lmin =
~

|p(Np)| , |Np| � 1− integer. (67)

In a similar way for the time coordinate t, by virtue of formulas (57)–(59),
at the same conditions we have similar formulas (60),(61),(62)

4Emax(t) = tmin. (68)

For E ≡ E(Nt) < Emax

|4E(Nt)(t)| = |Nt|tmin, (69)

where |NE| > 1-integer, so that we obtain

|Nt − 1

4Nt

|tmin =
~c

E(Nt)
. (70)

In the relativistic case at low energies

E � Emax ∝ EP , (71)
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in accordance with (46),(47), formula (61) takes the form

|4E(Nt)(w)| = |Nt|lmin =
~c

E(Nt)
, |Nt| � 1− integer. (72)

Comment 1
Obviously, when lmin is involved, the foregoing formulas for the momentums
p(Np) and for the energies E(NE), E(Nt) may certainly give the highly ac-
curate result that is close to the experimental one only at the verified low
energies: |Np| � 1, |NE| � 1, |Nt| � 1.
In the case of high energies E ∝ Emax ∝ EP or, what is the same |Np| →
1, |NE| → 1, |Nt| → 1, we have a certain, experimentally unverified, model
with a correct low-energy limit

In what follows, within the scope of the above definitions, we consider,
unless stated otherwise, only measurable increments (variations) of the
space-time quantities and the corresponding momentums and energies.
Proceeding from all the above, this simply means that all minimal incre-
ments (variations) of the space-time quantities are dependent on the present
energies and coincident with the corresponding minimal uncertainties
from the Uncertainty Principle at the All Scales Energies.

3.2 Gravity for the Static Spherically-Symmetric Space
With Horizon in Terms of Measurable Quantities

Now let us return to the example of a horizon space given in Subsection 2.2.2
(formula (22)), considering it in greater detail and in view of Definition 2.
Gravity and thermodynamics of horizon spaces and their interrelations are
currently most actively studied [46], [56]–[67]. Let us consider a relatively
simple illustration – the case of a static spherically-symmetric horizon in
space-time, the horizon being described by the metric

ds2 = −f(r)c2dt2 + f−1(r)dr2 + r2dΩ2. (73)

The horizon location will be given by a simple zero of the function f(r), at
the radius r = a.
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This case is studied in detail by T.Padmanabhan in his works [56, 46]. We
use the notation system of [46]. Let, for simplicity, the space be denoted as
H.
It is known that for horizon spaces one can introduce the temperature that
can be identified with an analytic continuation to imaginary time. In the
case under consideration ([46], eq.(116))

kBT =
~cf ′(a)

4π
. (74)

Therewith, the condition f(a) = 0 and f ′(a) 6= 0 must be fulfilled.
Then at the horizon r = a Einstein’s field equations

c4

G

[
1

2
f ′(a)a− 1

2

]
= 4πPa2 (75)

where P = T rr is the trace of the momentum-energy tensor and radial pres-
sure.
Now we proceed to the variables �α� from the formula (13) to consider (75)
in a new notation, expressing a in terms of the corresponding deformation
parameter α. In what follows we omit the subscript in formula (13) of αx,
where the context implies which index is the case. In particular, here we
use α instead of αa. Then we have [29]

a = lminα
−1/2. (76)

Therefore,
f ′(a) = −2l−1

minα
3/2f ′(α). (77)

Substituting this into (75) we obtain in the considered case of Einstein’s
equations in the �α–representation� the following [29]:

c4

G
(−αf ′(α)− 1

2
) = 4πPα−1l2min. (78)

Multiplying the left- and right-hand sides of the last equation by α, we get

c4

G
(−f ′(α)α2 − 1

2
α) = 4πP l2min. (79)
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L.h.s. of (79) is dependent on α. Because of this, r.h.s. of (79) must be
dependent on α as well, i. e. P = P (α), i.e

c4

G
(−f ′(α)α2 − 1

2
α) = 4πP (α)l2min. (80)

Note that in this specific case the parameter α within constant factors is
coincident with the Gaussian curvature Ka [68] corresponding to a:

l2min
a2

= l2minKa. (81)

Substituting r.h.s of (81) into (80), we obtain the Einstein equation on
horizon, in this case in terms of the Gaussian curvature

c4

G
(−f ′(Ka)K

2
a −

1

2
Ka) = 4πP (Ka). (82)

This means that up to the constants

−f ′(Ka)K
2
a −

1

2
Ka = P (Ka), (83)

i.e. the Gaussian curvature Ka is a solution of Einstein equations in this
case.
Then we examine different cases of the solution (83) within the scope of
Definition 2 – in the case when a is a measurable quantity (36).

3.2.1) First, let us assume that a � lmin. As, according (36), the radius a
is quantized, we have a = Nalmin with the natural number Na � 1. Then
it is clear that the Gaussian curvature Ka = 1/a2 ≈ 0 takes a (nonuniform)
discrete series of values close to zero, and, within the factor 1/l2min, this
series represents inverse squares of natural numbers

(Ka) = (
1

N2
a

,
1

(Na ± 1)2
,

1

(Na ± 2)2
, ...). (84)

Note that Na � 1 is associated with the low-energy case E � EP and hence
all variations (increments) of the radius R = a are given by the formulas
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(66) or (67).
For definiteness, without the loss in generality, we suggest that the case
under consideration (66) is relativistic, and the minimal increment a is
given by

a→ a±NElmin

1� |NE| � Na. (85)

Then it is clear that

a±4E(NE)
≡ a±4E(NE)(w) = Na(1± |NE|

Na

)lmin. (86)

But, as Na � 1, for sufficiently large Na and fixed E, the bracketed expres-
sion in r.h.s. (86) is close to 1 under (85):

1± |NE|
Na

≈ 1. (87)

Obviously, we get for fixed E

lim
Na→∞

(1± |NE|
Na

)→ 1. (88)

As a result, the Gaussian curvatureKa±4E(NE)
corresponding to r = a±4E(NE)

Kaa±4E(NE)
= 1/a2

±4E(NE)
∝ 1

N2
a (1± |NE |

Na
)2

(89)

in the case under study is only slightly different from Ka.
Thus, the Gaussian curvature Ka, for fixed E, due to its smallness (Ka � 1,
is practically continuously dependent on the increments 4E(NE) (formulas
(86)–(89)). Then in terms of Ka, up to the constant factor, we can obtain
the following:

d[L(Ka)] = d[P (Ka)], (90)

Where have

L(Ka) = −f ′(Ka)K
2
a −

1

2
Ka, (91)
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i. e. l.h.s of (82) (or (83)).
But in fact, as in this case the energies are low, it is more correct to consider

L(Ka±4E(NE)
)− L(Ka) = P (Ka±4E(NE)

)− P (Ka) ≡ FE[P (Ka)], (92)

with fixed E and 4E(NE) from (65),rather than (90).
In view of the foregoing arguments 3.2.1), the difference between (92) and
(90) is insignificant and it is perfectly correct to use (90) instead of (92).
3.2.2) Now we consider the opposite case or the transition to the ultraviolet
limit

a = κlmin. (93)

Here κ is on the order of 1.
Then it is clear that formulas (87) and (88) are no longer valid as the ener-
gies E ∝ EP , Na = κ are close to 1 and |4E(NE)|/a = |NE|/Na ≈ 1.
In this case the Gaussian curvature Ka is not a �small value� continuously
dependent on a and takes, according to (89), a discrete series of values
Ka, Ka±ηlmin

, Ka±η′ lmin
, .., where η, η

′
, ...– integers on the order of 1.

Yet (75), similar to (82) (83), is valid in the semiclassical approximation
only, i.e. at low energies.
In accordance with the above arguments, the limiting transition to high
energies (93) gives a discrete chain of equations or a single equation with
a discrete set of solutions as follows:

−f ′(Ka)K
2
a −

1

2
Ka = Θ(Ka);

−f ′(Ka±ηlmin)K2
a±ηlmin −

1

2
Ka±ηlmin = Θ(Ka±ηlmin);

and so on. Here Θ(Ka) – some function that in the limiting transition
to low energies must reproduce the low-energy result to a high degree of
accuracy, i.e. P (Ka) appears for a� lmin from formula (83)

lim
Ka→0

Θ(Ka)) = P (Ka). (94)
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In general, Θ(Ka) may lack coincidence with the high-energy limit of the
momentum-energy tensor trace (if any):

lim
a→lmin

P (Ka). (95)

At the same time, when we naturally assume that the Static Spherically-
Symmetric Horizon Space-Time with the radius of several Planck’s units
(93) is nothing else but a micro black hole, then the high-energy limit (95)
is existing and the replacement of Θ(Ka) by P (Ka) in r.h.s. of the foregoing
equations is possible to give a hypothetical gravitational equation for the
event horizon micro black hole.
In all the cases under study, 3.2.1) and 3.2.2), the deformation parameter αa
(13) is, within the constant factor, coincident with the Gaussian curvature
Ka that is in essence continuous in the low-energy case and discrete in the
high-energy case.
In this way the above-mentioned example shows that, despite the
absence of infinitesimal spatial-temporal increments owing to the
existence of lmin and the essential �discreteness� of a theory, this
discreteness at low energies is not �felt�, the theory being actu-
ally continuous. The indicated discreteness is significant only in
the case of high (Planck’s) energies.

It is seen that the infinitesimal increment of entropy dS of the spheri-
cally symmetric holographic screen S with the radius R and with the surface
area A is a nonmeasurable quantity.
Really, it is obvious that infinitesimal variations of the screen surface area
dA are possible only in a continuous theory involving no lmin.
When lmin ∝ lP is involved, the minimal variation 4A is evidently associ-
ated with a minimal variation in the radius R

R→ R± lmin = R±4Emax(R) (96)

it is dependent on R and growing with ∼ R for R� lmin (possible only at
the maximum energy Emax ∝ EP )

4±A(R) = (A(R± lmin)−A(R)) ∝ (±2Rlmin + l2min) ∝ (±2NR + 1), (97)
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where NR = R/lmin, as indicated above in (36).
But if E � Emax ∝ EP , then a minimal variation in the radius R is
obviously greater than lmin

labelbitdensity1.1R→ R±4E(NE)(R) = R± |NE|lmin, (98)

and in this case in the right-hand side of (97), within the constant l2min, we
have the number quickly growing at low energies as well:

4±A(R) = (A(R± lmin)− A(R)) ∝ (±2RNElmin +N2
El

2
min)

∝ NE(±2NR +NE). (99)

In any case from this it follows that dA has no chance to be a measurable
quantity, as its measurability suggests measurability of the quantity dR,
and this is impossible.
Since dS, within a multiplicative constant, equals dA [19],[20]: dS ∝ dA/4,
dS is also a nonmeasurable quantity.
Because of this, the �main instrument� in the well-known paper [1] that
is the infinitesimal variation dN in the bit numbers N on the holographic
screen S is also a nonmeasurable quantity [3] as dN ∝ dS to within an
integer factor.

Let us return to equation (22) of Section 2, but now in the new context.
In [46] it is more generally shown that the Einstein Equation for horizon
spaces in the differential form may be written as a thermodynamic identity
(the first principle of thermodynamics) ([46], formula (119)):

~cf ′(a)

4π︸ ︷︷ ︸
kBT

c3

G~
d

(
1

4
4πa2

)

︸ ︷︷ ︸
dS

− 1

2

c4da

G︸ ︷︷ ︸
−dE

= Pd

(
4π

3
a3

)

︸ ︷︷ ︸
P dV

. (100)

where, as noted above, T – temperature of the horizon surface, S –corresponding
entropy, E– internal energy, V – space volume.
Similar to the previous example from [1], with the use of formulas (96)–(99)
we can demonstrate that, in terms of the measurable quantities of Def-
inition 2, there are no infinitesimal increments da, dV, dS.
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In fact, we have no-go theorems.
It should be noted that the example given in this Subsection has been stud-
ied in [3], with a single but significant difference – instead of the energy
dependent increments of the radius R = a, in [3] the space fluctuations R
[69]–[92] have been considered.

4 Conclusion

The last statements concerning dS, dN may be explicitly interpreted using
the language of a quantum information theory as follows:
due to the existence of the minimal length lmin, the minimal area
l2min and volume l3min are also involved, and that means �quantiza-
tion� of the areas and volumes. As, up to the known constants, the
�bit number� N from (2) and the entropy S from (4) are nothing else but

S =
A

4l2min
, N =

A

l2min
, (101)

it is obvious that there is a �minimal measure� for the �amount of data� that
may be referred to as �one bit� (or �one qubit�).
The statement that there is no such quantity as dN (and respectively dS)
is equivalent to claiming the absence of 0, 25 bit, 0, 001 bit, and so on.
This inference completely conforms to the Hooft-Susskind Holographic Prin-
ciple (HP) [5]–[8] that includes two main statements:

(a)All information contained in a particular spatial domain is concentrated
at the boundary of this domain.
(b)A theory for the boundary of the spatial domain under study should
contain maximally one degree of freedom per Planck’s area l2P .

In fact (but not explicitly) HP implicates the existence of lmin = lP . The
existence of lmin ∝ lP totally conforms to HP, providing its generalization.
Specifically, without the loss of generality, l2P in point (b) may be replaced
by l2min.
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So, as demonstrated in the previous Section for the particular cases, pro-
vided a theory involves the minimal length lmin ∝ lP , gravity is almost
independent of the parameters associated with this length, specifically αl
i.e. the dependence is weak, and so the theory is practically continuous.
This stems from the fact that these parameters are very small due to re-
moteness of the energies characterizing them from the Planck energies and
almost insensitive to the corresponding change in measuring scales.

Despite a discrete nature of the theory owing to the existence of lmin,
to a high degree of accuracy we can use infinitesimal variations of dxµ, co-
incident in the case under study with lmin and tmin. In this way in the case
considered in Section 3.2 the Conformity Principle stating that (on going
to low energies the known theory (in particular GR) must be reproduced to
a high degree of accuracy, at least its experimentally verified part) holds to
a high accuracy.

Still it is clear that, as formally GR has no additional parameters asso-
ciated with lmin and the low-energy for now hypothetical variant of the
minimal length theory denoted as Gravlmin has such parameters, there is
also the high accuracy limit indicated above. This limit in every case
determines the �gap� between GR and Gravlmin . Evaluation of this gap is
a real challenge for those trying to construct a unified theory at all energy
levels.

As noted in 3.2, for high energies, i.e. for l → lmin, a discrete chain of
equations (or a single equation with a discrete set of solutions) is derived
that is numbered by inverse squares of the integers 1; 1/4; 1/9; .....

We have used GR to demonstrate that the above models in 3.2 at low
energies are actually insensitive to variations of the discrete parameters αl
associated with the minimal length. Of course, it is more correct to use
Gravlmin and to compare the obtained results with GR. But, as yet there
is no Gravlmin , it is connived that at low energies GR and Gravlmin differ
insignificantly and the indicated parameters, provided lmin is involved, are
introduced into GR similarly to Gravlmin .
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As the Planck length lP = (~G/c3)1/2 is expressed in terms of the funda-
mental constants, the proportionality coefficient ξ from formula (3), relating
lmin and lP , in a minimal-length theory lmin should also be a fundamental
constant because it (along with G, ~, and c) must be involved in all the
basic formulae of this theory. Then the question arises: what is its value?
In [13] for the coefficient α′ in GUP (3) the substantiated value was equal to
1. Provided this is true, ξ = 2 and hence the Bekenstein-Hawking formula
for the black hole entropy SBH may be written most naturally and elegantly
as follows:

SBH =
A

l2min
. (102)

So, the principal inference of Section 3 this work is as follows:
provided the minimal length lmin is involved, its existence must be taken into
consideration not only at high but also at low energies, both in a quantum
theory and in gravity. This becomes apparent by rejection of the infinites-
imal quantities associated with the spatial-temporal variations dxµ, .... In
other words, with the involvement of lmin, the General Relativity (GR)
must be replaced by a (still unframed) minimal-length gravitation theory
that may be denoted as Gravlmin . In their results GR and Gravlmin should
be very close but, as regards their mathematical apparatus (instruments),
these theories are absolutely different.
Besides, Gravlmin should offer a rather natural transition from high to low
energies

[NL ≈ 1]→ [NL � 1] (103)

and vice versa
[NL � 1]→ [NL ≈ 1], (104)

where NL – integer from formula (36) determining the characteristics scale
of the lengths L (energies E ∼ 1/L ∝ 1/NL).
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