
An Algorithm for Road Coloring

A.N. Trahtman?

Bar-Ilan University, Dep. of Math., 52900, Ramat Gan, Israel
Lect. Notes in Comput. Sci., 7056, 349{360. Springer 2011, IWOCA 2011

Abstract. A coloring of edges of a �nite directed graph turns the graph
into a �nite-state automaton. The synchronizing word of a deterministic
automaton is a word in the alphabet of colors (considered as letters) of its
edges that maps the automaton to a single state. A coloring of edges of a
directed graph of uniform outdegree (constant outdegree of any vertex)
is synchronizing if the coloring turns the graph into a deterministic �nite
automaton possessing a synchronizing word.
The road coloring problem is the problem of synchronizing coloring of
a directed �nite strongly connected graph of uniform outdegree if the
greatest common divisor of the lengths of all its cycles is one. The prob-
lem posed in 1970 has evoked noticeable interest among the specialists
in the theory of graphs, automata, codes, symbolic dynamics as well as
among the wide mathematical community.
A polynomial time algorithm of O(n3) complexity in the worst case and
quadratic in the majority of studied cases for the road coloring of the
considered graph is presented below. The work is based on the recent
positive solution of the road coloring problem. The algorithm was imple-
mented in the freeware package TESTAS.

Keywords: algorithm, road coloring, graph, deterministic �nite automaton, syn-
chronization

Introduction

The road coloring problem was stated almost 40 years ago [2], [1] for a strongly
connected directed �nite deterministic graph of uniform outdegree where the
greatest common divisor (gcd) of the lengths of all its cycles is one. The edges of
the graph being unlabelled, the task is to �nd a labelling of the edges that turns
the graph into a deterministic �nite automaton possessing a synchronizing word.
The outdegree of the vertex can be considered also as the size of an alphabet
where the letters denote colors.

The condition on gcd is necessary [1], [9]. It can be replaced by the equivalent
property that there does not exist a partition of the set of vertices on subsets
V1, V2, ..., Vk = V1 (k > 2) such that every edge which begins in Vi has its end
in Vi+1 [9], [16].

? Email: trakht@macs.biu.ac.il

Together with the �Cerny conjecture [7], [8], [15], [20] the road coloring prob-
lem used to belong to the most fascinating problems in the theory of �nite
automata. The popular Internet Encyclopedia "Wikipedia" mentioned it many
years on the list of the most interesting unsolved problems in mathematics.

For some results in this area, see [5], [6], [10], [11], [12], [13], [14], [16], [17],
[19]. A detailed history of investigations can be found in [6]. The �nal positive
solution of the problem is stated in [24].

An algorithm for road coloring oriented on DNA computing [13] is based on
the massive parallel computing of sequences of length O(n3). The implementa-
tion of the algorithm as well as the implementation of e�ective DNA computing
is still an open problem.

Another new algorithm for road coloring (ArXiv [4]) as well as our algo-
rithm below is based on the proof of [24]. This proof is constructive and leads
to an algorithm that �nds a synchronized labelling with cubic worst-case time
complexity. Both of the above mentioned algorithms use concepts and ideas of
the considered proof together with the concepts from [9], [14], but use di�erent
methods to reduce the time complexity. A skillful study of the graph was added
in [4].

The presented algorithm for the road coloring (see also ArXiv [22]) reduces
the time complexity with the help of the study of two cycles with common vertex
(Lemma 10). It gives us the possibility to reduce quite often the time complexity.

The theorems and lemmas from [24] and [23] are presented below without
proof. The proofs are given only for new (or modi�ed) results. The time com-
plexity of the algorithm for a graph with n vertices and d outgoing edges of any
vertex is O(n3d) in the worst case and quadratic in the majority of the studied
cases. The space complexity is quadratic. This is the �rst embedded algorithm
for road coloring.

The description of the algorithm is presented below together with some
pseudo codes of the implemented subroutines. The algorithm is implemented in
the freeware package TESTAS (http://www.cs.biu.ac.il/�trakht/syn.html) [25].
The easy access to the package ensures the possibility to everybody to verify the
considered algorithm.

The role of the road coloring is substantial also in education. "The Road Col-
oring Conjecture makes a nice supplement to any discrete mathematics course"
[18]. The realization of the algorithm is demonstrated on the basis of a linear
visualization program [25] and can analyze any kind of input graph.

Preliminaries

As usual, we regard a directed graph with letters assigned to its edges as a �nite
automaton, whose input alphabet � consists of these letters. The graph is called
a transition graph of the automaton. The letters from � can be considered as
colors and the assigning of colors to edges will be called coloring.

2

A �nite directed strongly connected graph with constant outdegree of all its
vertices where the gcd of lengths of all its cycles is one will be called an AGW
graph (as introduced by Adler, Goodwyn and Weiss).

We denote by jP j the size of the subset P of states of an automaton (of
vertices of a graph).

If there exists a path in an automaton from the state p to the state q and the
edges of the path are consecutively labelled by �1; :::; �k, then for s = �1:::�k 2
�+ we shall write q = ps.

Let Ps be the set of states ps for p 2 P , s 2 �+. For the transition graph �
of an automaton, let �s denote the map of the set of states of the automaton.

A word s 2 �+ is called a synchronizing word of the automaton with tran-
sition graph � if j�sj = 1.

A coloring of a directed �nite graph is synchronizing if the coloring turns the
graph into a deterministic �nite automaton possessing a synchronizing word.

Bold letters will denote the vertices of a graph and the states of an automaton.
A pair of distinct states p;q of an automaton (of vertices of the transition

graph) will be called synchronizing if ps = qs for some s 2 �+. In the opposite
case, if ps 6= qs for any s, we call the pair a deadlock.

A synchronizing pair of states p, q of an automaton is called stable if for any
word u the pair pu;qu is also synchronizing [9], [14].

We call the set of all outgoing edges of a vertex a bunch if all these edges are
incoming edges of only one vertex.

The subset of states (of vertices of the transition graph �) of maximal size
such that every pair of states from the set is a deadlock will be called an F -clique.

1 Some properties of F -cliques and stable pairs

The road coloring problem was formulated for AGW graphs [1] and only such
graphs are considered in Sections 1 and 2.

Let us recall that a binary relation � on the set of the states of an automaton
is called congruence if � is equivalence and for any word u from p � q follows pu
� qu. Let us formulate an important result from [9], [14] in the following form:

Theorem 1 [14] Let us consider a coloring of an AGW graph � . Let � be
the transitive and re
exive closure of the stability relation on the obtained au-
tomaton. Then � is a congruence relation, �=� is also an AGW graph and a
synchronizing coloring of �=� implies a synchronizing recoloring of � .

Lemma 1 [24], [9] Let F be an F -clique of some coloring of an AGW graph � .
For any word s the set Fs is also an F -clique and any state p belongs to some
F -clique.

Lemma 2 Let A and B (with jAj > 1) be distinct F -cliques of some coloring
of an AGW graph � such that jAj � jA \ Bj = 1. Then for all p 2 A n A \ B
and q 2 B nA \B, the pair (p;q) is stable.

3

Proof. By the de�nition of an F -clique, jAj = jBj and jBj � jA \ Bj = 1, too.
If the pair of states p 2 A n B and q 2 B n A is not stable, then for some
word s the pair (ps;qs) is a deadlock. Any pair of states from the F -clique
A and from the F -clique B, as well as from the F -cliques As and Bs, is a
deadlock. So any pair of states from the set (A [B)s is a deadlock. One has
j(A[B)sj = jAsj+1 = jAj+1 > jAj. So the size of the set (A[B)s of deadlocks
is greater than the maximal size of F -clique. Contradiction.

Lemma 3 If some vertex of an AGW graph � has two incoming bunches, then
the origins of the bunches form a stable pair by any coloring.

Proof. If a vertex p has two incoming bunches from q and r, then the couple q,
r is stable for any coloring because q� = r� = p for any � 2 �.

2 The spanning subgraph of an AGW graph

De�nition 4 Let us call a subgraph S of an AGW graph � , a spanning sub-
graph of � , if S contains all vertices of � and if each vertex has exactly one
outgoing edge. (In usual graph-theoretic terms it is a 1-outregular spanning sub-
graph).

A maximal subtree of a spanning subgraph S with its root on a cycle from S
and having no common edges with the cycles of S is called a tree of S.

The length of a path from a vertex p through the edges of the tree of the
spanning set S to the root of the tree is called a level of p in S.

A tree with a vertex of maximal level is called a maximal tree.

Remark 5 Any spanning subgraph S consists of disjoint cycles and trees with
roots on the cycles. Any tree and cycle of S is de�ned identically. The level of the
vertices belonging to some cycle is zero. The vertices of the trees except the roots
have positive level. The vertices of maximal positive level have no incoming edge
in S. The edges labelled by a given color de�ned by any coloring form a spanning
subgraph. Conversely, for each spanning subgraph, there exists a coloring and
a color such that the set of edges labelled with this color corresponds to this
spanning subgraph.

?

c
�
�	

c

-c
@
@R

c

@@R
c

���c
@@I c��	

c

max level 3

level 0
Cycle

level 2

level 1

level 0
TreePPqc

Lemma 6 [24] Let N be a set of vertices of maximal level in some tree of the
spanning subgraph S of an AGW graph � . Then, via a coloring of � such that
all edges of S have the same color �, for any F -clique F holds jF \N j � 1.

4

Lemma 7 [24] Let � be an AGW graph with a spanning subgraph R which
is a union of cycles (without trees). Then the non-trivial graph � has another
spanning subgraph with exactly one maximal tree.

Lemma 8 Let R be a spanning subgraph of an AGW graph � . Let T be a
maximal tree of R with a vertex p of maximal positive level L and with a root r
on a cycle H of R. Let us change the spanning subgraph by means of the following

ips:

1)an edge �a = a ! p replaces the edge �d = a ! d of R for appropriate
vertices a and d 6= p,

2) replacing edge �b = b! r of T by an edge b! x for appropriate vertices
b and x 6= r,

3) replacing edge �c = c! r of H by an edge c! x for appropriate vertices
c and x 6= r.

Suppose that one or two consecutive
ips do not increase the number of
edges in cycles (Condition�) and no vertex of � has two incoming bunches
(Condition��). Then there exists a spanning subgraph with a single maximal
non-trivial tree.

Proof. In view of Lemma 7, suppose that R has non-trivial trees. Further con-
sideration is necessary only if the maximal tree T is not single.

c c c?

cc

c

� �

A
AK�

��

c

p

r
a

d

c

b- -� � �

� � �

� � � � � � � � � � � �

�
�a

�w

�c
�b

H

T

�
��

�
�

Our aim is to increase the maximal level L using the three aforesaid
ips. If
one of the
ips does not succeed, let us go to the next, assuming the situation in
which the previous fails, and excluding the successfully studied cases. We check
at most two
ips together. Let us begin from

the edge �a) Suppose �rst a 62 H. If a belongs to the path in T from p to
r then a new cycle with part of the path and the edge a ! p is added to R
extending the number of vertices in its cycles in spite of Condition� of lemma.
In the opposite case the level of a is L+ 1 in a single maximal tree.

So let us assume a 2 H. In this case the vertices p, r and a belong to a cycle
H1 of a new spanning subgraph R1 obtained by removing �d and adding �a. So
we have the cycle H1 2 R1 instead of H 2 R. If the length of the path from r
to a in H is r1, then H1 has length L+ r1 + 1. A path from r to d of the cycle
H remains in R1. Suppose that its length is r2. So the length of the cycle H is
r1 + r2 + 1. The length of the cycle H1 is not greater than the length of H in
view of Condition�. So r1 + r2 + 1 � L+ r1 + 1, whence r2 � L. If r2 > L, then
the length r2 of the path from d to r in a tree of R1 (as well as the level of d)
is greater than L. The tree containing d is the desired single maximal tree.

So we can assume for further consideration that L = r2 and a 2 H. An
analogous statement can be stated for any maximal tree.

5

the edge �b) Suppose that the set of outgoing edges of the vertex b is not a
bunch. So one can replace in R the edge �b by an edge �v = b! v (v 6= r).

The vertex v could not belong to T because in this case a new cycle is added
to R in spite of Condition�.

If the vertex v belongs to another tree of R but not to the cycle H, then T
is a part of a new tree T1 with a new root of a new spanning subgraph R1 and
the path from p to the new root has a length greater than L. Therefore the tree
T1 is the unique maximal tree in R1.

If v belongs to some cycle H2 6= H in R, then together with replacing �b by �v,
we also replace the edge �d by �a. So we extend the path from p to the new root
v of H2 at least by the edge �a = a ! p and there is a unique maximal tree of
level L1 > L which contains the vertex d.

Now it remains only the case when v belongs to the cycle H. The vertex p
also has level L in a new tree T1 with root v. The only di�erence between T and
T1 (just as between R and R1) is the root and the incoming edge of this root.
The new spanning subgraph R1 has the same number of vertices in their cycles
just as does R. Let r

0
2 be the length of the path from d to v 2 H.

For the spanning subgraph R1, one can obtain L = r
0
2 just as it was done

earlier in the case of the edge �a) for R. From v 6= r follows r
0
2 6= r2, though

L = r
0
2 and L = r2.

So for further consideration suppose that the set of outgoing edges of the
vertex b is a bunch to r.

The edge �c) The set of outgoing edges of the vertex c is not a bunch in virtue
of Condition�� (r has another bunch from b.)

Let us replace in R the edge �c by an edge �u = c ! u such that u 6= r. The
vertex u could not belong to the tree T because one has in this case a cycle with
all vertices from H and some vertices of T whence its length is greater than jHj
and so the number of vertices in the cycles of a new spanning subgraph grows
in spite of Condition�.

If the vertex u does not belong to T , then the tree T is a part of a new tree
with a new root. The path from p to the new root is extended at least by a part
of H starting at the former root r. The new level of p therefore is maximal and
greater than the level of any vertex in another tree.

Thus in any case we obtain a spanning subgraph with a single non-trivial
maximal tree.

Lemma 9 For some coloring of any AGW graph � , there exists a stable pair
of states.

Proof. We exclude the case of two incoming bunches of a vertex in virtue of
Lemma 3. There exists a coloring such that for some color �, the corresponding
spanning subgraph R has maximum edges in cycles.

By Lemma 8, we must consider now a spanning subgraph R with a single
maximal tree T . Let the root r of T belong to the cycle C.

By Lemma 1, in a strongly connected transition graph for every word s and
F -clique F of size jF j > 1, the set Fs also is an F -clique of the same size and
for any state p there exists an F -clique F such that p 2 F .

6

In particular, some F -clique F has a non-empty intersection with the set N
of vertices of maximal level L. The set N belongs to one tree, whence by Lemma
6 jN \ F j = 1. Let p 2 N \ F .

The word �L�1 maps F on an F -clique F1 of size jF j. One has jF1 n Cj = 1
because any sequence of length L� 1 of edges of color � in any tree of R leads
to a cycle. For the set N of vertices of maximal level, N�L�1 6� C holds. So
jN�L�1 \ F1j = jF1 n Cj = 1, p�L�1 2 F1 n C and jC \ F1j = jF1j � 1.

Let the integer m be a common multiple of the lengths of all considered
cycles colored by �. So for any r in C as well as in F1 \ C holds r�m = r. Let
F2 be F1�m. We have F2 � C and C \ F1 = F1 \ F2.

Thus the two F -cliques F1 and F2 of size jF1j > 1 have jF1j � 1 common
vertices. So jF1 n (F1 \ F2)j = 1, whence by Lemma 2, the pair of states p�L�1
from F1 n (F1 \ F2) and q from F2 n (F1 \ F2) is stable. It is obvious that
q = p�L+m�1.

Theorem 2 [24] Every AGW graph has a synchronizing coloring.

Theorem 3 [23] Let every vertex of a strongly connected directed graph � have
the same number of outgoing edges. Then � has synchronizing coloring if and
only if the greatest common divisor of lengths of all its cycles is one.

The goal of the following lemma is to reduce the complexity of the algorithm.

Lemma 10 Let � be an AGW graph having two cycles Cu and Cv. Suppose
that either Cu \Cv = fp1g or Cu \Cv = fpk,..., p1g, where all incoming edges
of pi develop a bunch from pi+1 (i < k).

Let u 2 Cu and v 2 Cv be the distinct edges of the cycles Cu and Cv leaving
p1. Let Ru be a spanning subgraph with all edges from Cu and Cv except u. The
spanning subgraph Rv is obtained from Ru by removing v and adding u.

Then at least one of two spanning subgraphs Ru, Rv has a unique maximal
tree whose root is p1.

Proof. Let us add to Ru the edge u and consider a set of trees with roots on
the cycles Cu and Cv. The trees have no common vertices and have no vertices
except a root on the cycles Cu and Cv. The same set of trees can be obtained
by adding the edge v to Rv.

Let us de�ne the levels of vertices of a tree as in the case of a spanning
subgraph and consider the set of maximal trees (the trees with a maximal vertex
level).

If all maximal trees have a common root, then Ru (and also Rv) is a spanning
subgraph with a unique maximal tree.

If maximal trees have di�erent roots, then let as take a maximal tree T with
root r such that the length of the path P from r to p1 on the cycle Cu (or Cv) is
maximal. If P belongs to Cu, then the tree T is extended by the path P , whence
Ru has a unique maximal tree. In the opposite case, Rv has a unique maximal
tree.

7

3 The algorithm for synchronizing coloring

Let us start with transition graph of an arbitrary deterministic complete �nite
automaton.

3.1 Preliminary steps

The study is based on Theorem 3. A synchronizing graph has a sink strongly
connected component (SCC). Our aim is to reduce the study to sink SCC (if
it exists) in order to remove non-synchronizing graphs without sink SCC and
then check the condition on gcd.

The function CheckSinkSCC veri�es the existence of sink SCC. We use
the linear algorithm for �nding strongly connected components SCC [3], [21].

Then we remove all SCC as having outgoing edges to other SCC. If only one
SCC remains then let us continue. In the opposite case a synchronizing coloring
does not exist.

We study a strongly connected graph (with one SCC). The function Find-
GCDofCycles �nds the great common divisor (gcd) of lengths of cycles of the
automaton and veri�es the necessary conditions of synchronizability (gcd = 1).

Let p be an arbitrary �xed vertex. Suppose d(p) = 1. Then we use a depth-
�rst search from p. For an edge r! q where d(r) is already de�ned and d(q) is
not, suppose d(q) = d(r)+1. If d(q) is de�ned, let us add the non-zero di�erence
abs(d(q)� 1� d(r)) to the set D. The integer from D is a di�erence of lengths
of two paths from p to q. In a strongly connected graph, the gcd of all elements
of D is also a gcd of lengths of all cycles [2], [23].

If gcd = 1 for all integers from D, then the graph has synchronizing coloring.
In opposite case the answer is negative. So we reduce the investigation to an
AGW graph.

Let us proceed with an arbitrary coloring of such a graph � with n vertices
and constant outdegree d. The considered d colors de�ne d spanning subgraphs
of the graph.

We keep the preimages of vertices and colored edges by any transformation
and homomorphism.

If there exists a loop in � around a state r, then let us color the edges of
a tree whose root is r with the same color as the color of the loop. The other
edges may be colored arbitrarily. The coloring is synchronizing [1]. The function
FindLoopColoring �nds the coloring.

3.2 Help subroutines

In the case of two incoming bunches of some vertex, the origins of these bunches
develop a stable pair by any coloring (Lemma 3). We merge both vertices in
the homomorphic image of the graph (Theorem 1) and obtain according to the
theorem a new AGW graph of a smaller size. The pseudo code of corresponding
procedure returns two such origins of bunches (a stable pair).

8

The linear search of two incoming bunches and of the loop can be made at
any stage of the algorithm.

The function HomonorphicImage of linear complexity reduces the size of
the considered automaton and its transition graph. The congruence classes of the
homomorphism are de�ned by a stable pair (Theorem 1). A new AGW graph
of a smaller size will be the output.

The main part of the algorithm needs the parameters of the spanning sub-
graph: levels of all vertices, the number of vertices (edges) in cycles, trees, next
and former vertices. We keep the tree and the cycle of any vertex, the root of the
tree. We form the set of vertices of maximal level and the set of maximal trees.
The function FindParameters (spanning subgraph S, parameters) is linear
and used by any recoloring step.

The subroutine MaximalTreeToStablePair of linear complexity �nds a
stable pair in a given spanning subgraph with unique maximal tree. The stable
pair consists of two beginnings of incoming edges of the root of the unique
maximal tree (Lemma 9).

3.3 A possibility to reduce the complexity

Our algorithm as well as the algorithm of [4] is based on [24]. Only this section
essentially di�ers in both these papers.

If there are two cycles with one common vertex (path) then we use Lemma
10 and �nd a spanning subgraph with single maximal tree. Then after coloring
edges of spanning subgraph by a color �, we �nd a stable pair (beginnings of
two incoming edges to the root of the tree).

The function TwoCyclesWithIntersection as a rule returns a pair of
cycles with common vertex (path). The vast majority of digraphs contains such
a pair of cycles. The goal of the subroutine is to omit the cubic complexity of the
algorithm. The search of a stable pair is linear in this case and thus the whole
algorithm is quadratic.

TwoCyclesWithIntersection (graph G)
1 levels of all vertices �rst are negative
2 level(r) = 1 and add r to stack
3 for every vertex q from stack
4 do
5 for every letter �
6 do
7 add q� to stack
8 if level(q�) � 0
9 level(q�) =level(q) + 1
10 keep the cycle C of vertices q�;q and break from both cycles
11 remove q from stack
12 for every vertex r
13 do
14 if r 62 C level((r) = �1 (for a search of second cycle)

9

15 for every vertex q from cycle C
16 do
17 r = q�
18 for every letter �
19 do
20 if r 6= q� break
21 if r 6= q� break
22 add q to stack 1 (possible intersection of two cycles)
23 for every vertex r from stack 1
24 do
25 for every letter �
26 do
27 if level(r�) < 0
28 level(r�) =level(r) + 1
29 add r� to stack 1
30 if r� = q (found second cycle)
31 develop trees with roots on both cycles, �nd maximal trees
32 color the edge v from q on cycle of maximal tree by color 2
33 color the edges of trees and both cycles except v by color 1
34 FindParameters (spanning subgraph of color 1)
35 MaximalTreeToStablePair (subgraph, p, s)
36 return p, s (stable pair)
37 remove r from stack 1
38 return False

3.4 The recoloring of the edges

A repainting of the edges of the transition graph for to obtain a spanning sub-
graph with single maximal tree is a most complicated part of the algorithm. Let
us �x the spanning subgraph R of edges of a given color �. We consider the
ips
from Lemmas 7 and 8. The
ips change R. According to the Lemmas, after at
most 3d steps either the number of edges in the cycles is growing or there exists
a single maximal tree.

The subroutine of pseudo code Flips (spanning subgraph F) returns either
a stable pair or enlarges the number of edges in cycles of the spanning sub-
graph. The subroutine uses linear subroutines FindParameters, Maximal-
TreeToStablePair and also has linear time complexity O(nd).

We repeat the procedure with pseudo code Flips for a new graph if the
number of edges in cycles after the
ips grows. In the opposite case, we �nd a
stable pair and then a homomorphic image of a smaller size. For a graph of given
size, the complexity of this step is quadratic.

3.5 Main procedure and complexity

The Procedure Main uses all above-mentioned linear procedures and returns a
synchronizing coloring (if exists) of the graph.

10

Main()
1 arbitrary coloring of G
2 if False(CheckSinkSCC(graph G))
3 return False
4 if FindLoopColoring(F=SCC of G)
5 return
6 if False(FindGCDofCycles(SCCF))
7 return False
8 while jGj > 1
9 ifFindLoopColoring(F)
10 change the coloring of generic graph G
11 return
12 for every letter �
13 do
14 ifFindTwoIncomingBunches(spanning subgraph,stable pair)
15 HomonorphicImage(automaton A,stable pair,new A)
16 FindParameters (A = new A)
17 break
18 while Flips(spanning subgraph F of color �) = GROWS
19 F = new F
20 if FindTwoIncomingBunches(F ,stable pair)
21 HomonorphicImage(automaton A,stable pair,new A)
22 FindParameters (A = new A)
23 break
24 MaximalTreeToStablePair (subgraph, stable pair)
25 HomonorphicImage(automaton A,stable pair,new A)
26 FindParameters (A = new A)
27 change the coloring of G on the base of the last homomorphic image

Some of above-mentioned linear subroutines are included in cycles on n and
d, sometimes twice on n. So the upper bound of the time complexity is O(n3d).

Nevertheless, the overall complexity of the algorithm in a majority of cases is
O(n2d). The upper bound O(n3d) of the time complexity is reached only if the
number of edges in the cycles grows slowly, the size of the automaton decreases
also slowly, loops do not appear and the case of two ingoing bunches emerges
rarely (the worst case). The space complexity is quadratic.

References

1. Adler, R.L.,Goodwyn, L.W., Weiss, B.: Equivalence of topological Markov shifts,
Israel J. of Math., 27, 49-63 (1977).

2. Adler, R.L., Weiss, B.: Similarity of automorphisms of the torus, Memoirs of the
Amer. Math. Soc., 98, Providence, RI, (1970).

3. Aho, A., Hopcroft, J., Ulman,J.: The Design and Analisys of Computer Algorithms,
Addison-Wesley, (1974).

11

4. B�eal, M.P., Perrin, D.: A quadratic algorithm for road coloring. arXiv:0803.0726v2
[cs.DM] (2008).

5. Budzban, G., Mukherjea, A.: A semigroup approach to the Road Coloring Problem.
Probability on Alg. Structures. Contemporary Mathematics, 261, 195-207, (2000).

6. Carbone, A.: Cycles of relatively prime length and the road coloring problem. Israel
J. of Math., 123, 303-316, (2001).

7. �Cerny, J.: Poznamka k homogenym eksperimentom s konechnymi automatami,
Math.-Fyz. �Cas., 14, 208-215 (1964).

8. �Cerny, J., Piricka, A., Rosenauerova, B.: On directable automata, Kybernetika 7,
289-298 (1971).

9. Culik, K., Karhumaki, J., Kari, J.: A note on synchronized automata and Road
Coloring Problem. Developments in Language Theory (5th Int. Conf., Vienna,
2001), J. of Found. Comput. Sci., 13, 459-471 (2002).

10. Friedman, J.: On the road coloring problem. Proc. of the Amer. Math. Soc., 110,
1133-1135 (1990).

11. Gocka, E., Kirchherr, W., Schmeichel, E.: A note on the road-coloring conjecture.
Ars Combin., 49, 265-270, (1998).

12. Hegde, R., Jain, K.: Min-Max theorem about the Road Coloring Conjecture. Eu-
roComb 2005, DMTCS proc., AE, 279 - 284, (2005).

13. Jonoska, N., Karl, S. A.: A molecular computation of the road coloring problem.
DNA Based Computers II, DIMACS Series in DMTCS, 44, 87-96, (1998).

14. Kari, J.: Synchronizing �nite automata on Eulerian digraphs. Lect. Notes in Comp.
Sci., Springer, 2136, 432-438,(2001).

15. Mateescu, A., Salomaa, A.: Many-Valued Truth Functions, �Cerny's Conjecture and
Road Coloring. Bull. of European Ass. for TCS, 68, 134-148, (1999).

16. O'Brien, G.L.: The road coloring problem. Israel J. of Math., 39, 145-154, (1981).
17. Perrin, D., Sch�utzenberger, M.P.: Synchronizing pre�x codes and automata, and

the road coloring problem. In Symbolic Dynamics and Appl., Contemp. Math.,
135, 295-318, (1992).

18. Rau�, J. V.: Way back from anywhere: exploring the road coloring conjecture.
Math. and Comput. Education. 01,(2009).

19. Roman, A.: Decision Version of the Road Coloring Problem is NP-complete, Lect.
Notes in Comp. Sci., 5699 287-297 (2009).

20. Rystsov, I. C.: Quasioptimal bound for the length of reset words for regular au-
tomata, Acta Cybernetica, 12, 145-152 (1995.)

21. Tarjan, R.E.: Depth �rst search and linear graph algorithms. SIAM J. Comput.,
1, 146-160 (1972).

22. Trahtman, A.N.: A subquadratic algorithm for road coloring. arXiv:0801.2838 v1
[cs.DM] (2008).

23. Trahtman, A.N.: Synchronizing Road Coloring., 5-th IFIP WCC-TCS, Springer,
273, 43-53 (2008).

24. Trahtman, A.N.: The road coloring problem. Israel Journal of Math., 172(1), 51-60
(2009).

25. A.N. Trahtman, Bauer T., Cohen N. Linear visualization of a Road Coloring. 9th
Twente workshop on graphs and Comb. Optim., Cologne, 13-16 (2010).

12

