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Abstract

We examine a naming game on an adaptive weighted network. A
weight of connection for a given pair of agents depends on their com-
munication success rate and determines the probability with which the
agents communicate. In some cases, depending on the parameters of
the model, the preference toward successfully communicating agents
is basically negligible and the model behaves similarly to the naming
game on a complete graph. In particular, it quickly reaches a single-
language state, albeit some details of the dynamics are different from
the complete-graph version. In some other cases, the preference to-
ward successfully communicating agents becomes much more relevant
and the model gets trapped in a multi-language regime. In this case
gradual coarsening and extinction of languages lead to the emergence
of a dominant language, albeit with some other languages still being
present. A comparison of distribution of languages in our model and
in the human population is discussed.

keywords: adaptive weighted networks, naming game

*Corresponding author



1 Introduction

Understanding the evolution of human language is one of the hardest prob-
lems in science and remains a great challenge [10]. Indeed, language is a very
complex human behaviour, which results from interactions among a popula-
tion of individuals, who in turn interact with their environment. In addition,
language continuously changes over time by adapting to the environment and
the individuals.

A comprehensive approach to the language evolution should consider it
in a wider perspective of communication systems. Trying to identify the
most fundamental features of human language, one often lists composition-
ality, arbitrariness, syntax, cultural transmission, displaced signals, or inten-
tionality [22]. Although still under debate, the list of such features might,
nevertheless, be helpful to specify, for example, the differences between hu-
man language and communication systems developed by some other animal
species [41]. Moreover, understanding the role of such basic ingredients of
language communication could be vital in constructing artificial organisms
(embodied robots or software bots) fitted with some kind of communication
system enabling them to interact with each other or with humans. There
is already a growing number of software agents (programs) collecting and
exchanging various information often without any human intervention. An
increasing autonomy of such agents might even result in some kind of (spon-
taneously created) communication system among them and it is certainly
desirable that humans should be able to understand and control such a pro-
cess.

It is also important to take into account the biological context of language
emergence and its subsequent evolution. Indeed, the emergence of language
was accompanied by some genetic changes and is even considered as one of
the major evolutionary transitions of life on Earth [35]. A precise role of
biological factors remains, however, unclear and the attitude of researchers
to this issue ranges from nativism [9] to empiricism [44] with many scholars
taking an intermediate stance. Further division among researchers is due
to the possible adaptive value of language with adaptationists [13] and non-
adaptationists [19] at the two extremes. Recent influential paper of Pinker
and Bloom strongly advocates an adaptive role of language and has catalysed
many linguistic and biological studies [42].

Closely related to biological considerations are game-theory aspects of
communication and language. Sending or receiving information requires



some decisions and efforts to be made and some benefits or costs might
be related with such actions. However, among individuals competing, for ex-
ample, for food, even the very emergence of language is questionable because
in such a case deception seems to be the most profitable strategy [27]. The
resolution of these dilemmas usually refers to the kin selection [21] or recip-
rocal altruism [49]. In other words, speakers remain honest because they are
helping their relatives or they expect that others will do the same for them in
the future. As an alternative explanation Dessalles [16] suggests that honest
information is given freely because it is profitable — it is a way of competing
for status within a group. Some related results on computational modelling
of the honest cost-free communication are reported by Noble [37].

From the above exposition it is clear that understanding language emer-
gence and evolution requires considerable efforts [25][5]. It seems that cultural
interactions between users play the major role in shaping the language for-
mation. Recently, a promising approach to model such interactions is based
on computational simulations [15] [39] 40, [I7, [45], especially those based on
the so-called multi-agent systems [6], 38] .

An important class of such models originates from the naming game in-
troduced by Steels to describe processes leading to the establishment of a
shared vocabulary, i.e., a set of mappings between words and meanings [46].
In the naming game, agents are involved in pairwise interactions, which direct
the model to a state of linguistic synchronization, i.e., to the conformance
of agents’ vocabularies. Let us emphasize that while conversations of agents
take place strictly locally (each involves only two agents) and go on without
any central control, nevertheless the final result of these processes, i.e., a
common vocabulary shared by all agents, emerges globally.

To specify the naming game model, one has to define the topology of in-
teractions between agents. For mathematical and computational simplicity,
a complete-graph topology is often assumed, where each agent can interact
with any other agent [3]. Another possibility is to place agents at sites of a
regular lattice and allow interactions only between the nearest neighbours [2].
However, real networks of social interactions seem to be much more complex
than the above mentioned graphs [50, 52} [1]. To take into account the hetero-
geneous nature of social interactions, the naming game on scale-free networks
and on small-world networks were also studied. Although some quantitative
differences in the dynamics were observed, the overall behaviour, namely a
relatively fast convergence to the monolingual state, was predominantly the
same [12, [11] [34].



Such a behaviour is in contrast with the multi-language structure of the
human population. Indeed, despite gradual extinction, there are thousands
of languages still in use, and at a time scale of tens or hundreds of years, many
languages, especially those relatively common ones, seem to be very stable.
In the present paper, we show that the naming game defined on an adaptive
weighted network allows us to examine such stable multi-language structures.
Interactions in our model try to mimic certain features of social interactions.
In particular, the weights of connections between agents differentiate the
probabilities of their mutual communication. Moreover, these weights are
adaptive and depend on the success rate of past communication attempts of
agents. Let us notice that the formation of multi-language states has already
been observed by Dall’Asta et al. for complex networks with a community
structure [12]. However, their networks are a bit artificial with a community
structure imposed by hand”. In our opinion, the multi-language structure
of human population is a result of a certain dynamic process, which, we hope,
is to some extent captured in our model.

2 Model and numerical method

In the original formulation [46], the naming game describes cultural trans-
mission within a single generation of agents. Agents are involved in pairwise
negotiations and try to establish a common vocabulary for a certain number
of objects present in their environment. Most of the research, however, is
limited to a single-object case (for a recent review see [33]) since it seems to
be sufficient to capture the essence of the dynamics also in a more general
case. Multi-object [28] 48, [31] as well as evolutionary [30, 29] versions of
the naming game were also studied.

The naming game is also related to models used to describe opinion for-
mation, with the voter model being the prime example [7]. Let us stress
again that the main emphasis in the naming game model is on the cultural
(single-generation) transmission of language. An alternative approach to the
language evolution, where inter-generational interactions play an important
role, is called Iterated Learning Model and was used in some other con-
texts [24] [47].

In our model we consider a population of N agents playing the single-
object naming game. Each agent has its lexicon, i.e., a list of words (initially
empty). Basic steps of the game are as follows:



1. First, a speaker i and a hearer j are selected (i # j). Then the speaker
selects randomly one of the words from its lexicon (if the lexicon is
empty, the agent generates a word randomly) and communicates this
word to the hearer.

2. The game ends successfully when the hearer has the word in its lexicon;
in such a case both agents retain only the communicated word in their
lexicons.

3. The game fails when the hearer does not have the word in its lexicon;
in this case the word is added to the hearer’s lexicon.

After the game, both the number of successes the pair of agents (i, j) have
achieved so far as well as the number of all their communication attempts are
updated and the communicative success rate for this pair of agents s;; = s;;
is calculated as the ratio of these two numbers (of course, initially s;; = 0 for
all pairs of agents).

The above definition corresponds to the so-called minimal version of the
naming game [3]. Of course, the above rules greatly reduce computational
complexity, but are to some extent artificial. For example, in the case of
success, an immediate obliteration of all the words except the communicated
one drastically simplifies human memory management.

To complete the definition of our model, we have to specify how we select
the speaker and the hearer. Our intention is to simulate an important, in our
opinion, criterion: we talk most preferably with those with whom we already
have communicated successfully. This is implemented as follows:

e The speaker i is selected randomly.

e The hearer j is selected using the roulette rule, with the probability

wij
= = 1
Pij ij\f:1 Wi ( )
where the weights
) sijte fori#
w”_{() fori =7 (2)

for i,j = 1,2,...,N. The (positive and typically small) parameter e
ensures that a speaker can sometimes play the naming game also with



such agents with which its up-to-now communicative success rate is
very small or even equals zero.

Let us notice that the behaviour of some opinion formation models, which
constitute a related class of models, strongly depends on the details of the
selection of the pair of agents. In particular, one can expect that some
properties of our model might change when the hearer is selected prior to
the speaker [36].

From the above rules, it follows that our model constitutes an adaptive
weighted network. The weights of links, which depend on the success rates
that pairs of agents have achieved so far, change in time and control the
intensity of their subsequent interactions. Generally, the bigger the success
rate, the more frequent communication attempts, however, due to the pa-
rameter €, there is always a possibility to communicate also with such an
agent with which there have not been scored any successes so far.

Obviously, the characteristics of our model change during simulation. To
examine their time dependence and compare the results for different numbers
of agents N, we have defined a unit of time as N communication attempts
(which corresponds to two on average communication attempts per agent).
We have monitored a number of time-dependent observables in the system,
in particular:

e 5 —the communicative success rate defined as a fraction of all successes
during the last N communication attempts, i.e., within the last unit
of time. Let us emphasize that s is calculated for N most recent com-
munication attempts in the entire system of N agents while s;;, i.e.,
the communicative success rate of a pair of agents ¢ and j, which de-
termines the weight w;; (2) of the connection between them, stores the
entire history of their interactions.

e [ — the number of different words in lexicons of all agents. At later
stages of simulations, when most of agents have only one word in their
lexicons, L could be interpreted as the number of languages the agents
use at this moment of the evolution of the system.

e N, — the number of agents that have the most common word in their
lexicons, i.e., the word that appears in the largest number of lexicons.
In some cases we measured also the number of users of less common
words.



To smooth-out statistical fluctuations, the measured quantities s, L, and Ny
were averaged over independent runs. Some other observables are described
in the following text.

3 Numerical results

Initially, all weights w;; = € for « # j and thus the selected speaker chooses
any agent as a hearer with equal probability. As the evolution of the model
progresses, some pairs of agents (7, j) might successfully communicate and
that increases the corresponding weights w;;. Consequently, an agent will
communicate with some agents more often than with others and after some
time clusters of such agents will be formed, with communication taking place
mainly within these clusters. Hence, linguistic synchronization is quickly
reached inside clusters and all agents in a cluster eventually use the same
language, i.e., they have the same (and only one) word in their lexicons.
One should keep in mind, however, that the structure of the network set
by the collection of the weights w;; is dynamic and even strong connections
(w;; =~ 1) might become weak later on (and also weak connections might get
stronger).

The details of the dynamics and the final state of the model depend on
the parameters N and e. In some cases, the model quickly reaches the regime
where all agents have only one and the same word in their lexicons. Such a
single-language regime appears in general when N and e are sufficiently large
(Figure [[l). Otherwise, dynamics of the model leads to a multi-language
regime. In our simulations, except for a relatively short initial interval of
simulation time, the number of languages remained nearly constant, which
indicates a strong stability of the multi-language regime, similar perhaps to
the stability of a glassy phase in supercooled liquids [14] or in some spin
systems [43], [32]. Although in the limit of large N (and fixed €) the model
always enters the single-language regime, for finite N the multi-language
phase might exist.

3.1 Single-language regime

Although communication between agents takes place mainly within clusters,
some outside-cluster communication attempts are also made. This is because
the weight (2)) is positive even for agents with (so far) zero success rate. As a
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Figure 1: The time dependence of the number of languages L calculated for
e = 107 and ¢ = 107°, and for various numbers of agents N (logarithmic
scales).

result of such attempts, some agents might change the cluster they belong to;
eventually, some clusters might even disintegrate. Such a process resembles
the coarsening dynamics and the order/disorder transition found in other
versions of the naming game [3].

Obviously, the larger e, the greater the intensity of the outside-cluster
communication. The number of agents IV is yet another factor that increases
the intensity of such processes. This is because for large N an agent belonging
to a cluster of a given size has so many more candidates to communicate
with (albeit of very small weights ~ €). One might expect that it is the
combination of ¢ and NN, rather than those parameters taken separately,
which is the control parameter of the model. Although we cannot provide
a rigorous derivation, some arguments (Figure 2)) suggest that in our model,
some important processes, which most likely underlie the coarsening, take
place at a rate that scales as Ne2. The numerical results presented below are
collected in sets corresponding to constant Ne? and their reasonably good
convergence (for increasing N) seems to support the suggestion that N €
indeed is the control parameter of the model.

Our simulations show that when Ne? is sufficiently large, the outside-
cluster communication is sufficiently frequent and the model behaves simi-
larly to the naming game on a complete graph, where it is known to reach a
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Figure 2: In the final stage of the coarsening process, almost all agents form a
single-language cluster (black circles). To include a given (grey) agent which
belongs to a certain small cluster into the main cluster, one needs two steps:
(i) a black speaker selects a grey hearer, which results in failure, and the
grey agent adds to its lexicon the word used by black agents (the rate of this
processes scales as e N/N = ¢); (ii) the grey agent as a speaker selects a black
hearer and the word it chooses to communicate is the one acquired in step (i)
(the rate N]jfrl ~ Ne for small Ne). Because the second step is a success,
all words but the communicated one are removed from agents’ lexicons, and
the grey agent becomes black. The combined rate of steps (i) and (ii) should
scale as Ne2.

state of complete synchronization [3]. Our numerical results confirm basically
such a behaviour but exhibit some important differences as well. In Figure 3]
we present the success rate s calculated for Ne? = 107°. One can notice
that after an initial interval, agents reach the state where they communicate
with a large success rate s ~ 1. Interestingly, this initial interval is almost
the same (¢t ~ 750) for all examined systems even though their sizes N differ
substantially.

Since the number of languages L diminishes in time (Figure H), we con-
clude that indeed the system evolves toward the single-language state. The
inset of Figure [l shows that at the same time when the success rate s ap-
proaches unity (t ~ 750, Figure [3]), the normalized number of languages
L/N drops to 0. Let us also note that the crossing point around ¢ = 900
in Figure 4] suggests that in the limit N — oo for ¢ > 900, there is only
one language in the system. Figure [5 where the ratio of users of the most
common language Ny/N is plotted, shows that for ¢ > 750 almost all agents
use the same language.

As it is already known, a characteristic time 7 to reach a single-language
state in the naming game increases with the system size N. For example,
it is found that on a complete graph 7 ~ N'® [3]. To compare this result
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Figure 5: The time dependence of the ratio of agents that use the most com-
mon language Ny/N calculated for several values of N and for Ne? = 107°.

with the behaviour of our model, we calculated 7 for several values of N and
the results are presented in Figure They show that 7 does not diverge
for increasing N but most likely converges to a finite value =~ 1050, which
is approximately consistent with the time scale seen in the behaviour of s,
Ny/N, and L. An additional comparison with a complete-graph version can
be obtained from the analysis of the number of words kept in the lexicons
of agents. Typically, this number (as a function of time ¢) first gradually
increases and then decreases as the single-language state is being approached.
It is known that the averaged maximum number of words (per agent) M on
a complete graph increases asymptotically as N°? [3]. Numerical results for
our model, shown in the right panel of Figure [6] suggest that M increases
asymptotically as N%45. Such a discrepancy is yet another indication that
the dynamics of our model, despite qualitative similarities, differs from the
complete-graph version.

3.2 Multi-language regime

When Neé? is sufficiently small, the outside-cluster communication attempts
are very rare, which results in a much different behaviour of our model. In
the right panel of Figure [7] one can notice that the success rate s reaches
unity around ¢t = 103, however, at that time the ratio of agents using the most
common language Ny/N is much smaller than unity. Only after ¢ ~ 3 - 10*,
this fraction significantly increases, which suggests the emergence of a dom-
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Figure 6: Left panel shows the size dependence of the average time needed
to reach a single-language state. Calculations were done for N = 500, 1000,
2000, 4000, 8000, 16000 and for Ne? = 10~°. For each N, usually 100 in-
dependent runs were made. Right panel shows the size dependence of the
averaged maximum number of words M in agents’ lexicons (Ne* = 107°).
The fitted dashed line has the slope 0.45 and the continuous line corresponds
to the complete graph (slope 0.5).

Figure 7: Left panel shows the time dependence of the ratio of agents that
use the most common language N;/N calculated for several values of N and
for Ne? = 107°. The right panel shows the time dependence of the success
rate s for the same values of N and Ne2.
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Figure 8: The time dependence of the number of languages L calculated for
several values of N and for Ne2 = 1077, The inset shows the time dependence
of the normalized number of users L/N.

inant language. However, the dominant language only partially invades the
system, since some other languages also persist, apparently for an arbitrarily
long time (Figure §)). Indeed, around ¢ = 10° the number of languages satu-
rates at L ~ 10 and does not seem to diminish even up to ¢ = 10%. Although
there are several languages for ¢t > 10°, their number is only a small fraction
of the number of agents N (inset in Figure []]).

In the multi-language regime one can thus distinguish three phases. The
first one (¢t < 103) can be called pre-linguistic since the success rate remains
relatively low. Next (10° <t < 3-10%) there is a phase with many languages
but without a dominant language (Ny/N < 1). In this phase the number
of languages gradually decreases. In the third phase (¢t > 3 - 10%) several
languages exist but one of them emerges as a dominant one and is used by a
large fraction of agents. Let us notice that for increasing N, the emergence
of a dominant language becomes more and more abrupt.

To get some insight into a possible mechanism that stabilizes the multi-
language state, we calculated the numbers of users of the 50 most common
languages. We made only a single run (no averaging over independent runs)
and Figure [9 shows how these numbers change in time. Initially, one can
observe a gradual increase in the numbers of users of the most common lan-
guages at the expense of the less prevalent ones. Around ¢t = 10° only 12
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most common languages, calculated for N = 1000 and ¢ = 107¢ (i.e., in a
multi-language regime).

languages are left and at ¢t = 3 - 10° the least common one (among these 12)
becomes extinct. One can notice that there are virtually no other changes
between the data at t = 10° and t = 3 - 10°. Let us also observe that the
remaining languages are relatively prevalent and even the least frequently
used one has more than 20 users (2% of the population). For comparison,
we present analogous data from the single-language regime (Figure [[0]). Al-
though transiently a number of relatively common languages are formed in
this case, eventually only one of them survives. Thus it is not a sheer number
of users that determines whether a language will survive or not but also the
value of the control parameter Ne?, which plays an important role.

We are tempted to think that the behaviour of our model in the multi-
language regime bears some similarity to the evolution of human languages.
If so, some very basic characteristics of human languages could be reproduced
within our model. In Figure[I1], we present the distribution of users of the 20
most common existing languages [51] compared with analogous distributions
obtained for our model. We made a simulation for N = 10% and € = 107,
which corresponds to the multi-language regime. The simulation time was
chosen in such a way that the percentage of users of the most common lan-
guage was equal to 20.7%, i.e., the percentage of speakers of Chinese. Let us
notice that there is a reasonably good agreement even for less common lan-
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guages and perhaps by modifying the value of Ne? (within a multi-language
regime), a still better fit could be achieved. However, taking into account the
complexity of the evolution of human language, such an agreement is most
likely accidental and should be considered with great care. For example, such
important factors responsible for the distribution of languages as population
changes due to births and deaths are entirely neglected in our approach. Let
us notice, however, that there are some naming game models implementing
such processes [30]. Partially, the problem of populational factors could be
taken into account considering only languages of populations with a simi-
lar growth rate (for example only European languages) but further analysis
along this line is left for the future.

4 Remarks and Conclusions

In the present paper we examined the naming game on an adaptive weighted
network. In some cases, depending on the parameters of the model, the
preference due to successful communication in the past is basically negligible
and the model behaves similarly to the naming game on a complete graph.
In particular, it quickly reaches the state of complete synchronization where
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most common languages, calculated for N = 1000 and ¢ = 107¢ (i.e., in a
multi-language regime) compared with Weber’s statistical data [51]. The first
three languages according to Weber are Chinese (20.7% of the population,
i.e., 1.1-10° speakers), English (6.2%, 3.2-10%), and Spanish (5.6%, 3.0-108).

all agents use the same language. However, the average time needed to reach
such a state does not diverge as the number of agents N increases — contrary
to the naming game on complete graphs. Moreover, the average maximum
number of words in the lexicons of agents increases as N%4°, which is close
but different than the N'/? increase expected for the naming game on a
complete graph.

For some other values of the parameters, the preference due to successful
communication in the past is much more relevant and quite different and
perhaps more interesting behaviour of our model appears. In this case our
model does not reach complete synchronization but remains trapped in a
multi-language state. Three phases can be distinguished in the evolution
of our model. In the first one, the average success rate of communicating
agents is rather low and most likely this phase corresponds to a prelinguistic
phase. In the next phase, although the average success rate is close to unity,
many languages exist in the system and none of them dominates. At a
certain moment, however, the model enters the third phase where many
languages still exist but one of them becomes dominant. Since languages
are dynamically equivalent, the emergence of the dominant language might

16



be considered as some kind of spontaneous symmetry breaking. Interesting
issues of broken ergodicity or stability of the resulting structures are, however,
omitted in the present paper.

We also would like to mention that reaching the consensus in naming-
game models shows some similarity to analogous processes in opinion for-
mation models. Trapping the dynamics in a multi-language state in our
model resembles cluster formation in some opinion-formation models where
some adaptive rewiring mechanisms generate strong community structure
[18, 23] 26]. It would be interesting to examine further relations with these
two classes of models.

One can speculate about the possibility that human languages evolved
similarly to the multi-language scenario. Such an idea gets some support from
the comparison of Weber’s distribution of the 20 most common languages and
the analogous distribution in our model. An interesting, in our opinion, ques-
tion is whether the rapidly progressing extinction of less widespread ethnic
languages will lead to the emergence of a dominant language and if so, when
such a situation occurs. With this respect, our work is, of course, inconclu-
sive. Let us notice, however, that the users of the most common language
currently constitute about 20% of the human population and according to
Figure [7, we might be very close to the transition where the dominant lan-
guage will emerge. We should emphasize, however, that our model is very
simple and its applicability to real linguistic data should be considered with
care. For example, a constant number of agents N is not consistent with
fluctuations in real human populations due to, e.g., demographic processes.
Perhaps it would be more appropriate to compare our numerical data rather
with the distribution of dialects of a sufficiently widespread language such
as, for example, Chinese.

For models on adaptive networks, there is a subtle point concerning the
time scales that govern the evolution of the network itself and of the model
(in our case, the naming game). In principle, these processes might have
two independent time scales, which in some cases might even be well sep-
arated [20, 4]. In our model, however, the evolution of weights is strongly
coupled with agreeing dynamics of the naming game. Since the success rate
stores the entire history of communication between agents, the weights (2))
typically lag behind the agreeing dynamics. In particular, these weights will
evolve even when the naming game has already reached the single-language
state (in such a case, the weights will gradually evolve toward w;; = 1+ €
for every i # 7). It would be desirable to analyse the interplay of these two

17



time scales in more detail, for example, in the case when the success rate
stores only a limited number of last communication attempts. It would also
be interesting to have a better understanding of the strong stability and long
lifetimes of languages in the multi-language regime. One can consider multi-
language states as metastable states of the dynamics and perhaps there is
some analogy with metastable states in a certain voter model on complex
networks with a strong community structure [§]. We also suggested some
similarity of the multi-language state with the glassy state of some physical
systems. Further studies on this subject as well as a more detailed analysis
of the structure of the adaptive network is, however, left for the future.
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