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ABSTRACT

The interaction of relativistic magnetized ejecta with an ambient medium

is studied for a range of structures and magnetization of the unshocked ejecta.

We particularly focus on the effect of the ambient medium on the dynamics of

an impulsive, high-sigma shell. It is found that for sufficiently high values of

the initial magnetization σ0 the evolution of the system is significantly altered

by the ambient medium well before the shell reaches its coasting phase. The

maximum Lorentz factor of the shell is limited to values well below σ0; for a

shell of initial energy E = 1052E52 erg and size r0 = 1012T30 cm expelled into

a medium having a uniform density ni we obtain Γmax ≃ 180(E52/T
3
30ni)

1/8 in

the high sigma limit. The reverse shock and any internal shocks that might

form if the source is fluctuating are shown to be very weak. The restriction

on the Lorentz factor is more severe for shells propagating in a stellar wind.

Intermittent ejection of small sub-shells doesn’t seem to help, as the shells merge

while still highly magnetized. Lower sigma shells start decelerating after reaching

the coasting phase and spreading away. The properties of the reverse shock then

depend on the density profiles of the coasting shell and the ambient medium.

For a self-similar cold shell the reverse shock becomes strong as it propagates

inwards, and the system eventually approaches the self-similar solution derived

recently by Nakamura & Shigeyama.

1. Introduction

The interaction of relativistic ejecta with the surrounding medium is an issue of con-

siderable interest. During the early stages of the evolution a double shock structure forms,

consisting of a forward shock that propagates in the ambient medium, a reverse shock cross-

ing the ejecta and a contact interface separating the shocked ejecta and the shocked ambient
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medium. Under certain conditions, an observable flash of electromagnetic radiation is ex-

pected to be emitted during the propagation of the reverse shock. In the fireball scenario

commonly adopted, the naive expectation has been that optical flashes associated with re-

verse shock crossing should be quite common (e.g., Kumar & Panaitescu 2003; but c.f.

Nakar & Piran 2004), however, despite considerable observational efforts only a few have

been detected, indicating that such flashes are rare.

It has been proposed that the paucity of optical flashes may be attributed to an early

onset of a R-T instability (Levinson, 2010a,b), or strong magnetization of the ejecta (e.g.,

Zhang & Kobayashi 2005; Mimica et al. 2009). The latter is anticipated if the free energy

is extracted magnetically in the form of a Poynting-flux- dominated flow (e.g., Levinson &

Eichler 1993; Lyutikov & Blandford 2003 ; Giannios & Spruit 2005). Stationary magnetic

outflows allow, in general, only partial conversion of magnetic-to-kinetic energy, implying

high magnetization at the onset of the afterglow phase. A better conversion can be achieved

if the outflow is collimated into a small opening angle, θ ≃ Γ−1 (Komissarov et al. 2009),

though corking from a star, as in the collapsor model for GRBs, can alleviate the latter

condition (Tchekhovskoy et al., 2010; Komissarov et al. 2010). However, even then σ ∼ 1 is

anticipated at best (Lyubarski 2009).

Recently it has been shown (Granot et al., 2010; hereafter GKS10; Lyutikov 2010a,b)

that time-dependent effects may play a crucial role in the acceleration of a magnetized

flow. These authors considered the acceleration of a spherical, impulsive high sigma shell

of initial width ∆ = r0 and magnetization σ0, expelled by a central source. They have

shown that, unlike a stationary flow for which acceleration ceases at Γ∞ ∼ σ
1/3
0 , σ∞ ∼ σ

2/3
0 ,

the impulsive shell continues accelerating even after loosing causal contact with the central

source until reaching nearly complete conversion of magnetic energy into bulk kinetic energy.

The terminal Lorentz factor of the shell is Γ∞ ≃ σ0. During the acceleration phase, that

they term “magnetic rocket acceleration”, the major fraction of the shell energy is contained

in a layer of width 2r0, bounded between the front of a rarefaction wave reflected from the

central source and the head of the shell. The average Lorentz factor of the shell, roughly

equals the Lorentz factor of the fluid at the rarefaction front, evolves as < Γ >∝ t1/3. The

structure of this layer is well described by a self-similar solution. Once the shell enters the

coasting phase its width starts growing and its magnetization continues to drop.

In this paper we consider the interaction of the shell with the external medium and show

that in the high-sigma limit the evolution of the system is dramatically altered. A preliminary

account of the effect of the ambient medium is given in GKS10, and a more detailed discussion

in Lyutikov (2010a,b). Specifically, it is shown that for initial magnetization σ0 larger than

some critical value, deceleration of the contact interface commences well before the shell has
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reached the coasting phase, when it is still highly magnetized. The Lorentz factor of the

contact discontinuity evolves as Γc ∝ t−1/2, while the rear boundary of the unshocked shell

is still accelerating. The maximum Lorentz factor of the compressed shell is then limited

to Γ << σ0. The reverse shock in this case is very weak or nonexistent, and within the

framework of ideal MHD no internal dissipation is practically expected (by either the reverse

shock or any internal shocks that might form in a multi-shell scenario) before the onset of

the afterglow phase. Lower sigma shells start decelerating after reaching the coasting phase.

The properties of the reverse shock then depend on the density profiles of the coasting shell

and the ambient medium, as discussed in §2.2.

Fig. 1.— Schematic representation of the double-shock system. There are three characteristic

surfaces: a forward shock propagating in the ambient medium, a reverse shock sweeping the

ejecta, and a contact discontinuity separating the shocked ejecta and the shocked ambient

medium. The Lorentz factors of the three surfaces, measured with respect to the unshocked

ambient medium, are indicated. Quantities in the shocked ambient medium and shocked

ejecta are denoted by subscripts 1 and 2, respectively.

2. Thin Shell Model

We consider the interaction of a cold, magnetized shell with an ambient medium having

a density profile ρi(r) = air
−k. The ejecta is characterized by a Lorentz factor γe(r, t),

density ρe(r, t) and magnetic field vector bµe (r, t), assumed to be given, where the 4-vector of
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the magnetic field, bµ, is defined in appendix A. To simplify the analysis we shall assume

a spherical shell with a purely toroidal magnetic field, viz., bµe = (0, 0, 0, be). The magnetic

pressure of the shell is then b2e/2 and the corresponding sigma parameter is σe = b2e/ρe. The

structure of the shocked shell is shown schematically in Fig. 1. The subscript 1 refers to

the shocked ambient medium and 2 to the shocked shell. The Lorentz factors of the forward

shock, reverse shock and the contact discontinuity are denoted by Γf(t), Γr(t) and Γc(t),

respectively, and satisfy the relation Γr < Γc < Γf .

The thin shell approximation assumes that the shocked layers are uniform. Then γ1 =

γ2 = Γc. For the situations envisaged here the forward shock can be considered ultra-

relativistic, Γf >> 1. The jump conditions at the forward shock then yield Γf =
√
2Γc,

and

p1 =
4

3
ρiΓ

2
c . (1)

The reverse shock, on the other hand, cannot be considered ultra-relativistic in general

and, therefore, a complete treatment is required. The jump conditions at the reverse shock,

derived in appendix A, yield the relations

ρ2 = ρeh(q2, qe), , b2 = beh(q2, qe), p2 = ρef(q2, qe, σe), (2)

subject to the condition

Ψ(q2, qe, σe) = 0, (3)

here q2 = (Γc/Γr)
2, qe = (γe/Γr)

2, and the functions f , h and Ψ are defined in Eqs. (A17)-

(A19). Pressure balance at the contact, viz., p1 = p2+b
2
2/2, yields (4/3)ρiΓ

2
c = ρef+b

2
eh

2/2 =

ρe(f + σeh
2/2), where Eqs. (1) and (2) have been employed. Dividing the latter equation

by (4/3)ρiγ
2
e , noting that Γ2

c/γ
2
e = q2/qe, and defining

G(r, t) = 3ρe/(4ρiγ
2
e), (4)

one finally arrives at

q2/qe = G(Rr, t)[f(q2, qe, σe) + σe(Rr, t)h
2(q2, qe)/2]. (5)

The functions G(r, t) and σe(r, t) in Eq. (5) are computed just upstream of the reverse shock,

at r = Rr(t), where

Rr(t) = Rr0 +

∫ t

t0

Vrdt
′ = Rr0 +

∫ t

t0

(

1− 1

2Γ2
r

)

dt′ (6)

is the trajectory of the reverse shock, given to order O(Γ−2
r ) by approximating the velocity

of the reverse shock as Vr ≃ 1− 1/2Γ2
r. Here t = t0 is the initial time of impact. Equations
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(3), (5), and (6) determine the evolution of the variables q2(t), qe(t), and Rr(t) once G(r, t)

and σe(r, t) are specified.

The shock compression ratio is given by

r =
ρ2γ

′

2

ρeγ′e
=

(q2 + 1)(qe − 1)

(q2 − 1)(qe + 1)
, (7)

where γ′e = γeΓr(1− veVr) and γ
′

2 = γ2Γr(1− v2Vr) are the Lorentz factors of the unshocked

and shocked ejecta, as measured in the shock frame. For an unmagnetized, relativistic shock

qe >> 1, q2 ≃ 2 and r = 3 as it should. The fast magnetosonic Mach number of the flow

just upstream the reverse shock is given by

MA(t) =
u′e

√

σe(Rr, t)
=

qe − 1

2
√
qe
√

σe(Rr, t)
, (8)

with u′e = (γ′2e − 1)1/2. The reverse shock exists as long as MA > 1. For MA < 1 the

compression of the shell is communicated by a magnetosonic wave that propagates from the

contact discontinuity backwards in the fluid rest frame.

2.1. Unmagnetized shell

The limit of very low magnetization simplifies to σe = 0 in the above equations. To

illustrate the properties of the solutions we examine two situations. The first one is that

of a uniform shell, ∂rγe = ∂rρe = 0. For a non-expanding shell mass conservation implies

ρe = ρe0(t/t0)
−2 and G(Rr, t) = (3ρe0/4ai)γ

−2
e (t/t0)

k−2. For sufficiently small values of G the

reverse shock is relativistic, yielding Γ2
c ≃ 2Γ2

r, γ
2
e >> Γ2

r , or equivalently q2 ≃ 2, qe >> 1.

Eq. (A18) with σe = 0, a = 4, q2 = 2, qe >> 1 gives f(q2, qe) ≃ qe/6. Substituting the above

results into Eq. (5) one finally obtains

Γc(t) = γ1/2e (ρe0/4ai)
1/4(t/t0)

(k−2)/4, (9)

recovering earlier results (Sari & Piran 1995).

Our second example is the self similar ejecta considered by Nakamura and Shigeyama

(2006; NS06), and discussed in appendix B. In this case γe(χ) = Γ0χ
−1/2 and the density

profile is unrestricted. Here χ = (1 + 2Γ2
0)(1 − r/t) is the self-similar parameter of the

unshocked shell and Γ0 is the initial Lorentz factor at the shell’s head (χ = 1) just before

impact (at t = t0). The location of the reverse shock is given by

χr(t) = (1 + 2Γ2
0)(1−Rr/t). (10)
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Fig. 2.— The evolution of qe = (γe/Γr)
2 (left panel) and q2 = (Γc/Γr)

2 (right panel) for

adiabatic index γ̂ = 5/3, k = 0 (a constant density medium), n = 2, and different values of

the parameter G0 ≡ 3ae/4aiΓ
2
0.

Differentiating the latter equation, using dRr/dt = 1 − 1/2Γ2
r from Eq. (6), and omitting

terms of order Γ−2
0 and higher, gives

d

dt
(tχr) = (Γ0/Γr)

2 =
qe(χr)Γ

2
0

γ2e(χr, t)
. (11)

The initial conditions at t = t0 are χr = 1, γe(χr) = Γ0. For illustration we adopt ρe =

ae(t/t0)
−3χn/2 for which

G(χr, t) = (3ae/4aiΓ
2
0)(t/t0)

k−3χ1+n/2
r . (12)

Equations (11), (3) and (5), with σe = 0 and G given by (12), are solved simultaneously to

yield Γc(t), Γr(t) and χr(t).

A particular solution can be sought for which qe, q2 are constants. Equation (11) with

γe(χr)/Γ0 = χ
−1/2
r readily yields

χr(t) = (t/t0)
(qe−1), Γr = q−1

e Γ0(t/t0)
(1−qe)/2, Γc =

√

qe/q2Γr. (13)

Eq. (5) with dqe/dt = dq2/dt = 0 and σe = 0 implies dG/dt = 0, and using (12) one finds

qe − 1 =
6− 2k

n+ 2
, (14)
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in accord with the self-similar solution derived by NS06. The value of q2 is computed

numerically from Eq. (3). For any initial condition different than the value given in Eq.

(14) self-similarity is broken and qe, q2 must evolve with time. However, it is found that

for the range of values for which the NS06 solution is applicable the dynamics of the shell

eventually approaches the self-similar limit, as naively expected since there is no scale in

the problem. This is demonstrated in Fig 2, where solutions for qe and q2 are plotted

for different initial conditions. As seen, the evolution quickly converges to the self-similar

solution, whereby qe = 2.5 and q2 = 1.26 for the choice of parameters in this example (k = 0,

n = 2).

2.2. Magnetized Shell

The structure of an impulsive high-σ shell has been computed recently by GKS10 and

Lyutikov (2010a,b). They considered a situation in which a shell, initially at rest, is ex-

panding into vacuum by pushing against a conducting wall. The shell is assumed to be

uniform initially with a density ρ0, magnetization σ0 = b20/ρ0 >> 1, and finite width r0.

For a spherical shell the total energy is E = (4π/3)r30ρ0σ0. The dynamics of the shell fol-

lows several phases. At t = 0 the shell starts accelerating, a simple rarefaction wave forms

and propagates from the the shell’s head towards the wall. At t = r0 the rarefaction wave

reaches the wall, reflects, and starts propagating back towards the head of the shell. At

this point the shell loses causal contact with the wall. The major fraction of the energy

(as measured in the Lab frame) is contained in a layer of thickness ∼ 2r0 bounded by the

reflected wave (at the rear end) and the shell’s head (see appendix B.2). The structure of this

layer can be described by a self similar solution. The rear boundary of the shell accelerates

as γw ≃
√
2σ

2/3
0 (t/r0)

1/6 (corresponding to the local magnetosonic speed in the fluid frame)

and the fluid at the boundary as Γ⋆ ≃ (σ0t/2r0)
1/3. The head moves at a maximum Lorentz

factor Γ0 = 2σ0. In terms of the self-similar variable

χ = 8σ2
0[1− (r − 2r0)/t], (15)

the solution for the magnetization, density and Lorentz factor is given approximately by (see

appendix B)

σe(χ) =
(χ1/3 − 1)2

4χ1/3
, ρe(χ) = ρ0

σe(χ)

σ0
(t/r0)

−2. γe = 2σ0χ
−1/3. (16)

This solution is applicable above the front of the rarefaction wave, at χ < χ⋆(t), where

χ⋆(t) = [1 + (8σ2
0r0/t)

2/3]3/2 ≃ 8σ2
0(t/r0)

−1 (17)



– 8 –

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

Ln(t/t
0
)

 

 

0 0.5 1 1.5
0

1

2

3

4

5

Ln(t/t
0
)

 

 

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Ln(t/t
0
)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Ln(t/t
0
)

Γ
c
/Γ

0

Γ
r
/Γ

0

γ
e
/Γ

0

β

r

M
A

Fig. 3.— Left panels: time profiles of the Lorentz factors of the unshocked ejecta γe, con-

tact discontinuity Γc and the reverse shock Γr, for adiabatic index γ̂ = 5/3, k = 0 and

3ρ0/(8σ
3
0ai) = 0.1 (upper window), 3ρ0/(8σ

3
0ai) = 103 (lower window). Right panels: the

evolution of the shock compression ratio r (see Eq. [7]), the ratio of kinetic-to-magnetic

pressure β = 2p2/b
2
2, and the fast magnetosonic Mach number MA of the fluid upstream the

reverse shock (see Eq. [8]).

(see Eq. [B21]). The head of the shell is located at χ = 1.

To study the effect of the ambient medium on the evolution of the shell during the

acceleration phase we assume that the structure of the unshocked shell is given by (16). We

then obtain

G(χr, t) =
3ρ0
8σ3

0ai
χ2/3
r σe(χr)(t/r0)

k−2. (18)

The trajectory of the reverse shock is governed by the equation (see Eq. [11])

d

dt
(tχr) =

qe(χr)Γ
2
0

γ2e(χr, t)
=
qe(χr)

2
χ2/3
r . (19)

At t = t0, χr = 1 and ρe = σe = 0. A strong shock forms initially at the shell’s head and

quickly propagates inwards (in the fluid rest frame). This brief initial phase is an artifact

of out initial conditions that implicitly assume that impact with the external medium starts

only after reflection of the rarefaction wave by the central source. As the density and
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magnetization increases the shock weakens and the contact discontinuity accelerates until

reaching a terminal value (Figs 3 and 4). This phase lasts for a very short time. Subsequently,

the contact discontinuity starts decelerating if k < 2 or maintain a constant speed if k = 2.

For k > 2 the shell will eventually approach free expansion with Γc ≃ 2σ0. For qe >> 1,

q2 >> 1 we have from Eq. (A17) h2 ≃ qe/q2. Equation (5) with f = 0 then admits the

solution

Γc(t) =

(

3ρ0σ0
8ai

)1/4

(t/r0)
(k−2)/4, (20)

which is viable as long as Γc < Γ0 = 2σ0. At early times, when qe and q2 are of order unity

the solution must be obtained numerically. Note that for k = 2 Eq. (20) reduces to Eq.

(47) in Lyutikov (2010a), that gives the Lorentz factor of a one-dimensional planar shell

expanding in a constant density medium. This is expected since for the case considered here

(a cold shell with a purely toroidal magnetic field) the flow equations in spherical geometry,

(B1)-(B4), reduce to those in planar geometry upon the change of variables: ρ→ r2ρ, b→ rb.
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Fig. 4.— Left panel: time profiles of Γc for γ̂ = 5/3, k = 0, and different values of G0, where

G0 = 3ρ0/(8σ
3
0ai). Right panel: the corresponding trajectories of the reverse shock χr(t).

The red dotted lines mark the location of the rear boundary of the shell (the front of the

reflected rarefaction wave) χ⋆(t), for σ0 = 10 (lower curve) and σ0 = 30 (upper curve). The

intersection of the two trajectories χr(t) and χ⋆(t) gives the time at which crossing of the

accelerating shell by the reverse shock has completed.
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Fig 4 delineates solutions for k = 0 (a constant density medium) and different values

of G0 ≡ 3ρ0/(8σ
3
0ai). For G0 >> 1 the effect of the ambient medium is initially small; the

reverse shock is confined at the head of the shell, viz., χr ∼ 1 (see right panel of Fig 4), and

Γc ∼ Γ0 and declines slowly. For sufficiently high σ0 the reverse shock will eventually start

accelerating inwards in the shell frame before crossing of the shell has completed, so that γe
becomes significantly larger than Γr and qe >> 1, q2 >> 1. As seen in the left panel of Fig.

4, the evolution of the contact discontinuity then approaches Γc ∝ t−1/2, as expected from

Eq. (20). This transition occurs at a time t = tdec, where

tdec/r0 =

(

3ρ0
8σ3

0ai

)1/(2−k)

=

(

9E

32πr30σ
4
0ai

)1/(2−k)

, (21)

at which G(Rr, tdec) in Eq. (5) approaches unity. Here E = ρ0σ04πr
3
0/3 is the total energy of

the shell. The transition will occur before complete shock crossing, that is at 1 < χ(tdec) <

χ⋆(tdec), if tdec < 8σ2
0r0, or

σ0 > σcrt =
1

2

(

9E

32πr30ai

)1/(8−2k)

. (22)

The latter scaling can be derived also from energy considerations. The energy accumulated

inside the shocked ambient medium layer (i.e., between the forward shock and the contact

discontinuity) at time t is approximately Ef = 4πΓ2
0air

3
0(t/r0)

3−k/(3 − k). Deceleration of

the shocked layer will commence before the shell reaches the coasting phase if Ef ≃ E at

time t < 8σ2
0r0. With Γ0 = 2σ0 the latter condition yields

σ0 >
1

2

[

(3− k)E

32πr30ai

]1/(8−2k)

, (23)

in rough agreement with (22). For a burst of duration T = 30T30 sec and total energy

E = 1052E52 ergs, expanding in an ambient medium of constant number density ni measured

in c.g.s units the condition (22) reduces to

σ0 > σcrt = 90

(

E52

T 3
30ni

)1/8

, (24)

where the initial shell width has been taken to be r0 = cT . Consequently, sub-critical shells

(i.e., σ0 < σcrt) will not be significantly affected by the ambient medium before reaching the

coasting phase. High-sigma shells (σ0 >> σcrt), on the other hand, will experience significant

deceleration of the head well before the onset of the coasting phase, and it is anticipated

that the Lorentz factor of the shell will be limited to Γmax ≃ 2σcrt. The dependence of the

terminal Lorentz factor on the initial magnetization σ0, obtained from numerical integrations
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3
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of Eqs. (3), (5) and (19), is exhibited in Fig. (5). As seen, for high-sigma shells the scaling

Γmax ≃ 2σcrt = 180(E52/T
3
30ni)

1/8, derived above using heuristic arguments, is in quite good

agreement with the numerical result. Note that the critical magnetization (24) depends on

the initial energy density of the shell, E/r30. Thus, for a given power L = E/T = cE/r0 we

have σcrt ∝ L1/8r
−1/4
0 , implying a less restrictive constraint on the Lorentz factor for smaller

(sub) shells. For all cases studied it is found that a reverse shock always exists (i.e., MA > 1)

in the acceleration phase, however, except for the very early stages of the evolution the shock

is weak and magnetically dominated, that is β = 2p2/b
2
2 << 1. Emission from the shocked

ejecta is not anticipated in high sigma shells, at least not in the ideal MHD case.

In case of a stellar wind (k = 2) the shocked layer, after a brief rearrangement phase,

maintains a constant speed (Fig. 6), as expected from Eq. (20). The reverse shock in

this case quickly weakens and eventually dies away (MA becomes smaller than unity). The

communication with the contact discontinuity then proceeds via a magnetosonic wave. For

a mass loss rate Ṁw = Ṁ−510
−5 M⊙ yr−1 and terminal velocity vw = 108vw8 cm s−1 the

ambient density scales as ni = 1011Ṁ−5(r/R0)
−2v−1

w8 cm−3, with R0 = 1013R13 cm being the

radius at the wind’s base. With this parametrization Eq. (20) yields for the Lorentz factor



– 12 –

of the contact

Γc ≃ 10

(

E52vw8

T30R
2
13Ṁ−5

)1/4

. (25)
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and the reverse shock Γr, for adiabatic index γ̂ = 5/3, k = 2 and 3ρ0/(8σ
3
0ai) = 103

(upper window), 3ρ0/(8σ
3
0ai) = 1 (lower window). Right panels: the evolution of the shock

compression ratio r, the ratio of kinetic-to-magnetic pressure β = 2p2/b
2
2, and the Alfven

Mach number MA.

As explained above, in a uniform circumburst medium a shell with initial magnetization

σ0 < σcrt will start decelerating only after reaching the coasting phase, when conversion

of magnetic energy into bulk kinetic energy has nearly completed. Once approaching the

coasting phase the shell starts spreading and its structure is altered (GKS10). To compute

the evolution of the system in this region we adopt the self-similar solution derived in GKS10

(see also appendix B) for the unshocked, coasting ejecta. As noted in appendix B, this

solution is not fully self-consistent in vacuum, as it implicitly assumes a confining agent

at the head. However, is can be matched self-consistently to a shocked layer through the

jump conditions at the reverse shock, and so may provide a reasonable description for the

interacting ejecta after its spreading. With this choice γe = Γ0χ
−1/2, G(χ, t) is given by Eq.
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2 (right panel) for

adiabatic index γ̂ = 5/3, k = 0, n = 2, 3ae/4aiΓ
2
0 = 0.1, and different magnetizations.

(12) (see appendix B), and

σe(χ, t) = σhχ
−(n/2+1)(t/tdec)

−1, (26)

where σh denotes the magnetization at the head (χ = 1) of the freely coasting shell at time

of impact, t = tdec. The energy density of the unshocked shell can be expressed as

T 00 = ρe(1 + σe)γ
2
e = aeΓ

2
0(t/tdec)

−3χ(n/2−1)(1 + σe), (27)

with σe given by (26), so that for σe << 1 the choice n = 2 corresponds roughly to a uniform

energy distribution (since the shell is thin). Inspection of Eq. (26) reveals that for n > −2 the

magnetization of the shell decreases with increasing χ. Consequently, it is anticipated that

the solution will eventually converge to that of NS06 discussed in §§2.1. This is confirmed

in Fig. 7. In practice the shell has a finite width ∆. At the onset of the coasting phase the

width of the shell is still ∆c ∼ 2r0, corresponding to ∆χ ∼ (2r0/rc)2Γ
2
0 ≃ 1, using rc ∼ σ2

0

and Γ0 ∼ σ0 for the coasting radius and terminal Lorentz factor (GKS10 and appendix B).

At this point the width of the shell starts growing and at the deceleration radius rdec it is

expected to be ∆ ∼ η∆c, corresponding to ∆χ ∼ η, where η is a fraction of the ratio rdec/rc.

Fig 8 exhibits solutions for a shell of width ∆χ = 10 interacting with a constant density
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medium (k = 0). Although σe < 1 is expected in the coasting phase, we present also a

case with σh = 10 to elucidate the general behavior of the system. As seen, for σh < 1 the

compression ratio of the reverse shock increases considerably and the pressure downstream

becomes kinetic dominated before complete crossing of the reverse shock, at ln(t/tdec) = 0.5.

We find this behavior to be quite robust for self-similar ejecta with n ≥ 0.
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Fig. 8.— Evolution of the Lorentz factor of contact discontinuity (left), ratio of kinetic-to-

magnetic pressures β = 2p2/b
2
2 (middle), and shock compression ration r (right), for a shell

of initial width ∆χ = 10, k = 0, n = 2, and different values of the magnetization σh. The

time at which reverse shock crossing is completed is ln(t/tdec) = 0.5

2.3. Multiple shell model

The rapid variability observed in many GRBs is commonly attributed to ejection of

many sub-shells of small width that collide at relatively large radii. Such a multi-shell

scenario can be envisaged also for magnetically dominated ejecta. In that case collisions of

shells should occur only after full conversion of magnetic energy into bulk kinetic energy is

accomplished, and before the onset of deceleration by the ambient medium. As explained

above the restriction on the dynamics of a single shell imposed by the surrounding medium

(Eq. [24]) is less stringent for a shell of small width, so that in principle it is anticipated that
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for sufficiently rapid ejections the resultant shells may accelerate to the maximum Lorentz

factor, Γ ∼ σ0 ( at which the initial magnetic energy is fully converted), before a substantial

fraction of their energy is dissipated at the forward shock. However, in order that the

shells will collide only after reaching the coasting phase, the time interval between successive

ejections of shells must be large enough, otherwise the shells will merge to form a steepening

magnetosonic wave train with a characteristic size of the order of the engine’s life time.

To estimate the duty cycle required for shells to collide at the coasting phase, consider

two shells of initial width li and magnetization σi0 (i = 1, 2) expelled into vacuum. The

shells will collide provided σ20 > σ10. Suppose that the first shell is ejected at time t0
and the second one at t0 + ∆t. Now, the rarefaction wave of the first shell accelerates as

γw1 =
√
2σ

2/3
10 (t/l1)

1/6 (see Eq. [B19]). Let γe2(χ2) = 2σ20χ
−1/3
2 denotes the Lorentz factor

of some point (that is, a fixed value of the self-similarity parameter χ2) above the front of

the rarefaction wave of the second shell. The relative velocity between that point and the

rarefaction front of the first shell is

ve2 − vw1 ≃
1

2γ2w1

− 1

2γ2e2
=

1

4
σ
−4/3
10 (t/l1)

−1/3

[

1− σ
4/3
10

γ2e2

(

t

l1

)1/3
]

. (28)

The two parts will catch up at time

tcoll =

∫ ∆t

0

dt′

ve2 − vw1

≃ 4l1σ
4/3
10

∫ y1

0

y1/3

1− (2σ
4/3
10 /γ

2
e2)y

1/3
dy, (29)

where y1 = ∆t/l1. For 2σ
4/3
10 y

1/3
1 << γ2e2 the result is approximately

tcoll ≃ 3l1(σ10∆t/l1)
4/3. (30)

The coasting time (radius) of the first shell is tcost ≃ 8σ2
10l1. Thus, collision will occur after

the first shell has reached the coasting phase provided tcoll > tcost or

(∆t/l1) > (8/3)3/4σ
1/2
10 . (31)

For σ10 >> 1 Eq. (31) implies an unlikely small duty cycle. The above discussion suggests

that within the framework of ideal MHD intermittent ejection of magnetically dominated

outflow leads ultimately to one impulsive shell of size roughly equals the life time of the

system.

3. Conclusions

We considered the interaction of a relativistic magnetized shell with an ambient medium,

focusing on the case of an impulsive, high-sigma shell. We find that for values of the initial
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magnetization σ0 larger than the critical value given by Eq. (22) the evolution of the system

is significantly altered by the ambient medium well before the shell reaches its coasting

phase. For such high sigma shells a major fraction of the explosion energy is dissipated

behind the forward shock by the time compression of the shell by the ambient medium is

communicated to the accelerating rarefaction wave. The maximum Lorentz factor of the

shell is then limited to values well below σ0 (see Fig. 5). Such episodes are expected to

produce a smooth, relatively fast rising slowly decaying (power law) light curve, even in a

multi-shell scenario. Events like GRB080916C and GRB090510 (Abdo et al. 2009a,b) are

not easily accounted for by the impulsive high-sigma shell model. If extracted magnetically,

such outflows may require magnetic dissipation beyond the ideal MHD limit, as may occur

in e.g., a striped wind model. Intermittent ejection doesn’t seem to help, as unlikely small

duty cycle is required in order for shells to collide after reaching the coasting phase.

Lower sigma shells start decelerating only after reaching the coasting phase. The proper-

ties of the reverse shock then depend on the structure of the coasting shell. For a self-similar

shell with a reasonable density profile the magnetization decreases inwards and it is antic-

ipated that the reverse shock will become strong before complete crossing. The evolution

of the shocked layers is shown to quickly approach (for shells with σ < 1) the self-similar

solution derived by Nakamura and Shigeyama (2006). The slow acceleration of high sigma

shells, (Γ ∝ r1/3), relative to a radiatively driven outflow (Γ ∝ r), implies a smaller optical

depth at the radius of collision. This can alleviate the need for extremely high Lorentz

factors for most GRBs, to avoid strong absorption of the highly variable prompt emission.

I thank Yoni Granot, Yuri Lyubarsky, Maxim Lyutikov, and Udi Nakar for useful com-

ments, and the anonymous referee for a detailed report. This work was supported by an ISF

grant for the Israeli Center for High Energy Astrophysics.

A. Jump conditions at the reverse shock

The stress-energy tensor of a magnetized fluid takes the form

T µν = ρh̃uµuν − gµν p̃− bµbν , (A1)

where ρ is the proper density, p̃ = p + pb is the sum of kinetic pressure p and magnetic

pressure pb = bµbµ/2 = b2/2, h̃ = e+p/ρ+ b2/ρ is the generalized specific enthalpy, uα is the

fluid 4-velocity and gµν is the metric tensor. The 4-vector of the magnetic field is defined in

terms of the electromagnetic tensor F µν as

bα =
1

2
ηαβγδu

βF γδ, (A2)
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where ηαβγδ is the Levi -Civita tensor. The jump conditions are obtained from integration

of the flow equations,

∂µ(ρu
µ) = 0, (A3)

∂µT
µν = 0, (A4)

∂µ(b
µuν − bνuµ) = 0, (A5)

across the shock surface ψ(xµ) ≡ r − R(t, θ, φ) = 0, whereby we have

[ρuµ]nµ = 0, [bµuν − bνuµ]nν = 0, [T µν ]nν = 0. (A6)

The square brackets denote the difference of the enclosed quantity across the shock front,

and

nµ =
∂µψ

√

∂µψ∂µψ
(A7)

is a 4-vector normal to the shock front. For the reverse shock with R(t, θ, φ) = Rr(t)

nµ = Γr(−Vr, 1, 0, 0), (A8)

here Vr = dRr/dt is the velocity of the reverse shock and Γr = (1−V 2
r )

−1/2. Equations (A1),

(A6) and (A8) yield for the quantities defined in Fig. 1

beγe(ve − Vr) = b2γ2(v2 − Vr), (A9)

ρeγe(ve − Vr) = ρ2γ2(v2 − Vr), (A10)

ρeh̃eγ
2
eve(ve − Vr) + p̃e = ρ2h̃2γ

2
2v2(v2 − Vr) + p̃2, (A11)

ρeh̃eγ
2
e(ve − Vr) + p̃eVr = ρ2h̃2γ

2
2(v2 − Vr) + p̃2Vs. (A12)

We assume a cold ejecta, pe = 0, and adopt h2 = ρ2 + ap2 where a = γ̂/(γ̂− 1) and γ̂ is

the adiabatic index, for the shocked ejecta (see Fig 1). Then, to order O(Γ−2
r ) the solution

of Eqs. (A9)-(A12) is given by

Ψ(q2, qe, σe) = 0, (A13)

ρ2 = ρeh(q2, qe), (A14)

b2 = be(ρ2/ρe) = beh(q2, qe), (A15)

p2 = ρef(q2, qe, σe), (A16)

with

h(q2, qe) =

√
q2√
qe

(

qe − 1

q2 − 1

)

, (A17)

f(q2, qe, σe) =
(qe − 1)

a(q2 − 1) + 2

[

1−
√

q2/qe +
qeσe
qe − 1

− σeq
2
2(qe − 1)

qe(q2 − 1)2

]

, (A18)

Ψ(q2, qe, σe) = 2qe(1 + σe −
√
q2/

√
qe) + (a− 2)q2σe

(

qe − 1

q2 − 1

)
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+(1 + σe)[a(q2 − 1) + 2]

(

q2 − qe
q2 + 1

)

− aσeqe

(

q2 − 1

qe − 1

)

, (A19)

where q2 = (Γc/Γr)
2, qe = (γe/Γr)

2, and σe = b2e/ρe. The relations (A17)-(A19) generalize

those derived by Kennel & Coroniti (1984) for a high Alfven Mach number shock, corre-

sponding to qe >> q2 in our notation. In this limit Eqs. (A13) and (A19) with γ̂ = 4/3

reduce to
2− q2
q2

+

(

q2 + 1

q2 − 1

)(

σe
1 + σe

)

= 0. (A20)

This condition can be expressed in terms of the 4-velocity of the downstream fluid, measured

with respect to the shock frame, u′2 = Γrγ2(v2 − Vr) = (q2 − 1)/2
√
q2 +O(Γ−2

r ), as

1 + 4u′22 −
√

1 + u′22
u′2

(

4u′22 − σe
1 + σe

)

= 0, (A21)

which is equivalent to Eq. (4.10) in Kennel & Coroniti (1984). The solution for u′2 is given

by Eq. (4.11) in the same reference.

B. Self-similar ejecta

We consider a spherically symmetric, magnetized ejecta with a purely toroidal magnetic

field, viz., bµe = (0, 0, 0, be). The flow equations (A3)-(A5) then reduce to

∂(ρeγe)

∂t
+

1

r2
∂

∂r
(r2ρeγeve) = 0, (B1)

∂(beγe)

∂t
+

1

r

∂

∂r
(rbeγeve) = 0, (B2)

ρh̃eγ
2
e

dve
dt

+ ve
∂p̃e
∂t

+
∂p̃e
∂r

+
b2e
r

= 0, (B3)

d

dt
ln
(

pe/ρ
γ̂
e

)

= 0. (B4)

We seek self-similar solutions that are separable, to order O(Γ−2, in the variables τ = ln(t)

and

χ = {1 + 2(m+ 1)Γ2
0}[1− (r − ra)/t], (B5)

with the front of the expanding ejecta located at χ = 1, and Γ0 = γe(χ = 1) = At−m/2 =

Ae−mτ/2. We adopt the following parametrization of the fluid variables:

γ2e = Γ2
0g(χ), (B6)

be = b0e
−pτB(χ), (B7)

ρ′e = ρeγe = ρ′oe
−qτH(χ). (B8)
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Transforming from the coordinates (r, t) to (χ, τ) and using the relations

t∂t = ∂τ + [(m+ 1)(2Γ2
0 − χ) + 1]∂χ, (B9)

t∂r = −[1 + 2(m+ 1)Γ2
0]∂χ, (B10)

(B11)

one obtains, upon substitution of Eqs. (B6)-(B8) into the flow equations (B1)-(B4),

A

g

d ln g

dχ
= m(1− gχ)− 4σe(1− p−m/2), (B12)

A

g

d lnB

dχ
= m− (1− p)(1− gχ)− 2σe(1− p−m/2), (B13)

A

g

d lnH

dχ
= m− (2− q)(1− gχ) +

4σe
(1− gχ)

[m/2 + p− 1 + (2− q)gχ]. (B14)

to order O(Γ−2
0 ), where A = (m+ 1)[(1− gχ)2 − 4σegχ].

B.1. Freely expanding ejecta

For a freely expanding ejecta dγe/dt = −m/2 + (m + 1)(1/g − χ)∂χ
√
g = 0. The

boundary condition g(χ = 1) = 1 implies m = 0 and g(χ) = χ−1. Equations (B12)-(B14)

give p = 2, q = 3, B(χ) = χ−1/2. The function H(χ) is unrestricted. To summarize, the

solution can be expressed as

γ2e = Γ2
0χ

−1, be = b0e
−2τχ−1/2, ρ′e = aeΓ0e

−3τH(χ), σe = σ0e
−τχ−3/2H−1(χ), (B15)

with b0 denoting the value of be at τ = 0 χ = 1. The discussion in NS06 suggests that a

power law density profile, ρe ∝ γ−n
e , corresponding to H = χ(n−1)/2, provides a reasonable

description of realistic ejecta. Note that magnetic and kinetic energies have different scaling,

ρeγ
2
e ∝ t−3 and b2eγ

2
e ∝ t−4, so that the enthalpy is not self-similar. Note also that magnetic

energy is not conserved, viz., b2et
3 ∝ t−1, implying a loss of Poynting energy from the front.

This is a consequence of an implicit boundary condition at the vacuum-shell interface that

assumes a confining agent. The loss of magnetic energy is then associated with a pdV

work. For the interacting shell this solution can be matched with the shocked shell layer, as

discussed in §2.2.
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B.2. An accelerating high-σ shell

The solution describing an impulsive accelerating shell (GKS10, Lyutikov 2010a) corre-

sponds to the choice m = 0, p = 1, q = 2. Eqs. (B12)-(B14) then readily yield

σe(χ, τ) =
(χ1/3 − 1)2

4χ1/3
, (B16)

independent of τ , and

g(χ) = χ−2/3, (B17)

B(χ) = H/
√
g = σe(χ). (B18)

The requirement γe = Γ0χ
−1/3 > 1 formally implies χ < χ0 = Γ

1/3
0 and Γ0 < 4σ0. However,

the above solution is applicable only well above the magnetosonic point, defined by the

condition σe = γ2ev
2
e ≃ γ2e . A full treatment (GKS10) gives Γ0 = 2σ0 where σ0 is the initial

magnetization of the shell. To the order at which we are working the self-similar variable is

then given by (15) and the solution by (16) with ρ0 denoting the initial density of the shell.

We choose ra = rm = 2r0 in (B5), where r0 is the initial shell width and rm is the

magnetosonic radius. Then at τ = 0 (corresponding to t = rm) the front of the reflected

rarefaction wave is located at χ = 8σ2
0. The local velocity of the front, as measured in the fluid

frame, is v′w =
√

σe/(1 + σe), and the corresponding Lorentz factor is γ′w = (1−v′2w )−1/2. The

Lorentz factor of the wave front in the lab frame is obtained upon a Lorentz transformation:

γw = γeγ
′

w(1 + vev
′

w) ≃ 2γe
√
σe. (B19)

The trajectory of the wave front is governed by the equation dr⋆/dt = vw ≃ 1−1/2γ2w, which

can be translated into

d

dt
(tχ⋆) = (8σ0/γw)

2 =
χ
2/3
⋆

4σe(χ⋆)
≃ χ1/3

⋆ , (B20)

where the last equality holds at χ⋆ >> 1 for which 4σe ≃ χ
1/3
⋆ . The solution of the latter

equation reads

χ⋆(t) = [1 + (8σ2
0r0/t)

2/3]3/2, (B21)

At t << 8σ2
0r0 we have χ⋆ ≃ 8σ2

0(r0/t) and γe(χ⋆) ≃ (σ0t/2r0)
1/3, γw ≃

√
2σ

2/3
0 (t/r0)

1/6 in

agreement with GKS10 and Lyutikov (2010a).

The energy density is

T 00 = ρe(1 + σe)γ
2
e ≃ ρ0σ0

4
(1− χ−1/3)4(t/r0)

−2. (B22)
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Using r2dr = (t3/8σ2
0)dχ we obtain for the total energy contained between the reflected

rarefaction wave and the head

∆E =

∫

T 004πr2dr = πρ0σ0r
2
0(t/8σ

2
0)

∫ χ⋆

1

(1− χ−1/3)4dχ ≃ πρ0σ0r
3
0 = (3/4)E (B23)

independent of time, where E is the initial energy (i.e., the explosion energy).
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