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Abstract

Collection of PL-mappings admitting a relative abelian, cyclic,

quaternionic, bicyclic, and quaternionic-cyclic structures are con-

structed.

Introduction

A map with a target in an Euclidean space is assumed PL, if a smoothness
conditions do not mentioned. A generic PL-map is a PL-map, such that each
pair of hyperplanes spanned by the images of corresponding pair of simplexes
are transversal. A critical point is a point, such that the restriction of the
map on an arbitrary neighborhood of this point is not an embedding. We do
not assume extra conditions for a generic PL-map in critical points.

Let us consider the groups Z/2[s], this group was defined in the introduc-
tion of [A2] as a subgroup of the group Z/2

∫
Σ(2s−1), and the corresponding

cobordism groups of immersions (see [A2, Diagram (21)]). In [A2, Diagram
(20)] subgroups Ib× İb, Eb×ḃ, Ja×J̇a, Q×Z/4 of the groups Z/2[s], 2 ≤ s ≤ 5,
are defined and the following definitions were considered: abelian structure
(Definition 5), Eb×ḃ–structure (Definition 14), Ja × J̇a–structure (bicyclic
structure) (Definition 16), and quaternionic–cyclic structure (Definition 23)
for corresponding framed immersions. These notions are used in Theorems
8, Lemmas 15 and 17, Theorem 25 to prove the Main Theorem in section 5.

The definitions of abelian, Eb×ḃ–structure, Ja × J̇a–structure, and

quaternionic–cyclic structure of Z/2[s−1]–framed immersions, s ≥ 2, are in-
troduced to weaken the condition of a reduction of classifying mappings of
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the self-intersection Z/2[s]–framed immersions of the considered framed im-
mersion, see [A2, Definitions 4, 13, 13, 22] correspondingly. Analogously, for
the notion of quaternionic reduction see Definitions 19 in [A1]. In the present
part of the paper these notions were not considered, the analogous relative
notions were considered, and I will recall them.

The definitions of abelian, cyclic, and quaternionic structure of framed
immersions admit relative analogs for formal PL–mappings with singulari-
ties of the standard projective (see [A2, Definition 10]), standard Z/4–lens
(see [A1, Definition 25]). The definitions of Eb×ḃ–structure and Ja × J̇a–
structure of framed immersions also admit relative analogs for formal PL–
mappings with singularities of the standard skeleton of the corresponding
Eilenberg-Mac Lane spaces (see [A2, Definition 29, 31]). The definitions
of quaternionic–cyclic structure also admit relative analogs, this analogous
definition is formulated for PL–mappings with singularities of the standard
skeleton of the corresponding Eilenberg-Mac Lane space (see [A2,Definition
36]).

The existence of (a relative) abelian structure is formulated in Lemma 7
of [A2], for convenience this lemma is reformulated below as Lemma 1. (In
the statement of this lemma below we re-denote the integer k′ by k.)

Lemma 1. For the dimensional restrictions

n− k ≡ −1 (mod 4), k ≥ 4, n ≡ 0 (mod 2) (1)

there exists a formal (equivariant) mapping d(2) : RPn−k×RPn−k → Rn×Rn,
which admits an abelian structure (in the sense of [A2, Definition 10]).

The existence of (a relative) cyclic structure is formulated in Lemma 32
of [A1], this lemma is reformulated below as Lemma 2.

Lemma 2. A. For the dimensional restrictions

n− k ≡ 1 (mod 2), n− 3k − 10 > 0, n ≡ 0 (mod 2) (2)

there exists a generic PL-mapping d : RPn−k → Rn (with singularities) with a
marked closed component of the self-intersection, for which the formal exten-
sion d(2) admits a cyclic structure (in the sense of Definition [A1, Definition
24]).

B. For the dimensional restrictions

k ≥ 5, n− k ≡ 0 (mod 4) (3)

there exists a formal mapping d(2) with formal self-intersection along a
marked closed component Na, which admits a cyclic structure (in the sense
of [A1, Definition 24]).
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Remark. Lemma 2 for the proof of the main result of [A1] is not used.

The existence of (a relative) quaternionic structure is claimed in [A1,
Lemma 33] and is reformulated below. this lemma is reformulated below as
Lemma 3 (in this lemma we re-denote the mapping c by d1).

Lemma 3. For n = 4k + (2σ − 1), n = 2ℓ − 1, ℓ ≥ 7, σ =
[
ℓ−1
2

]
, then there

exists a generic PL-mapping d1 : S
n−2k/i → Rn with singularities admitting

a quaternionic structure in the sense of [A1, Definition 25].

The existence of a relative Eb×ḃ–structure in the sense of [A2, Definition
29] is formulated in [A2, Proposition 30].

The existence of a relative Ja×J̇a–structure in the sense of [A2, Definition
31] is formulated in [A2, Proposition 32].

The existence of a relative Q×Z/4–structure in the sense of [A2, Defini-
tion 36] is formulated in [A2, Lemma 37].

In this part of the paper we shall prove all the results formulated above
from a unified point of view. The possibility of such an approach in the case
of cyclic structure was discovered by Prof. A.V.Chernavsky at the end of
the last century, and by Dr. S.A.Melikhov (2005) in the case of quaternionic
structure. Preliminary results for cyclic and Eb×ḃ–structure in the case of
weaker restrictions on the codimension of the immersion, are given in the
papers [Akh1], [Akh2].

Let us formulate a number of remarks, which seem to be of interest.
1. It is not, in general, possible to formulate the notion of abelian

structure (and analogous notions considered above) in terms of the reduc-
tion of a classifying mapping to the classifying subspace of a corresponding
abelian subgroup. For example, in the case n = 62 there is, as proved
in [M], an obstruction to the reduction of the classifying mapping for the
self-intersection manifold of an immersion f : Mn−1

# Rn into classifying
subspace K(Ib × İb, 1) ⊂ K(Z/2[2], 1) of the abelian subgroup.

2. For the construction of cyclic and quaternionic structure for im-
mersions (relative cyclic and quaternionic structures for PL–mappings with
singularities) only double self-intersection points of immersions (of PL–
mappings) are considered. Alternatively, in the paper [E] (this paper, as was
noted in [A1],[A2], is the foundation of our construction) self-intersection
points of an arbitrary multiplicity were considered. In particular, it is inter-
esting to define and to study a quaternionic structure, related with quadruple
points manifolds of skew-framed immersions.

3. The construction of quaternionic structure in Lemma 3 does not require
the Massey embedding S3/Q ⊂ R4 [M], see also [Me]. Such an embedding
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was known earlier to W.Hantzsche [He]. By means of such an approach, it
might be possible to weaken the dimensional restrictions in Lemma 3. For
example, the Massey embedding allows to generalize Lemma 3 for maps in
the range 4

5
(for maps Mm → Rn, m

n
≤ 4

5
). This means that one may consider

an extra two quadratic extensions of the quaternionic group as the structure
group of framing of immersions.

Note that in [A1] the cases n = 15, n = 31 and n = 63 were not con-
sidered. Additional arguments, in particular, might yield a proof of the last
cases in the Adams Theorem on Hopf invariants, and clarify the remaining
case in dimension 126 not covered by the Hill-Hopkins-Ravenel Theorem on
Kervaire invariants.

1 Auxiliary mappings

Cтроятся вспомогательные отображения. В Лемме 1 вспомогательное
отображение c0 для отображение d0; в Лемме 2 вспомогательные
отображения ĉ, c для отображения d; в Лемме 3 вспомогательные
отображения c1, c̃1 для отображения d1.

We start by construction of auxiliary mappings. In Lemma 1 this is axil-
lary mapping c0 for the mapping d0; in Lemma 2 there are axillary mappings
ĉ, c for the mapping d; in Lemma 3 there are axillary mappings c1, c̃1 for the
mapping d1.

The transformation in Lemma 2 to the required formal (equivariant)
mapping d(2) from the mapping c is given by an approximation, which is
constructed in Lemma 10.

To proof the mentioned lemmas and propositions we introduce on the
singular set of auxiliary mappings the coordinate system called angle-
momentum. By means of this coordinate system in Lemmas 5,6. The config-
uration space in Lemma 5 is defined as finite-dimensional resolution spaces
for the singularity of the mapping c. In Lemma 6 the resolution spaces is
much simpler, because the mapping under investigation is close to stable.

Construction of an axillary mapping c0 : RP
n−k → Rn in Lemma 1

Denote by J0 the standard (n − k)–dimensional sphere of codimension k in
Rn, which is represented as the join of

n− k + 1

2
= r (4)

copies of the circle S1. We denote the standard embedding of J0 into Rn by

iJ0 : J0 ⊂ R
n. (5)
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A mapping p′0 : Sn−k → J is obtained as a result of taking the join of r
copies of the standard double covering S1 → RP1. The standard antipodal
action Id × Sn−k → Sn−k (here and below for notations of the group Id etc.
see the first part of the section 2 in [A1]) commutes with the mapping p0.
Hence, there results a mapping with ramification p′0 : RPn−k → J0. The
required mapping c0 : RPn−k → Rn is defined by means of the following
composition: iJ0 ◦ p0.

Construction of axillary mappings c : RPn−k → Rn, ĉ : Sn−k/i→ Rn in
Lemma 2

The mapping p′ : Sn−k → J is well defined as the join of r (see (4)) copies
of the standard 4-sheeted coverings S1 → S1/i. The standard action Ia ×
Sn−k → Sn−k commutes with the mapping p′. Thus, the map p̂ : Sn−k/i→ J
is well defined and the map p : RPn−k → J is well defined as the composition
p̂ ◦ π : RPn−k → J of the standard double covering π : RPn−k → Sn−k/i with
the map p̂.

The required mapping c is defined by the formula

iJ ◦ p : RPn−k → J ⊂ R
n. (6)

The required mapping ĉ is defined by the formula

iJ ◦ p̂ : Sn−k/i→ R
n. (7)

Construction of axillary mappings c1 : Sn−2k+2σ−1
/i → Rn, c̃1 :

Sn−2k/i→ Rn

Let a positive integer parameter k and a positive integer n are given as in
Lemma 3. Let us denote by J1 a (n − 2k + 2σ−1)–dimensional polyhedron
(the equation n−2k+2σ−1 = n−1

2
+2σ is satisfied), this polyhedron is defined

as the join of

n+ 1

2σ+1
+ 1 = r1 (8)

copies of the standard quaternionic lens space S2σ−1/Q. Below we shall used
the following notation nσ = 2σ − 1, as in [A1] and mσ = 2σ − 2, as in [A2]).
By the Hirsch Theorem an embedding iQ : Snσ/Q ⊂ Rnσ−3 is well defined.

Assuming n = 4k + 2σ − 1, ℓ ≥ 7 the embedding J1 ⊂ Rn, as the join of
r1 copies of the embedding iQ, is well defined; let us denote this embedding
by iJ1 : J1 ⊂ Rn (comp. with the mapping in [Lemma 35, A2].

5



The mapping p′1 : S
n−2k+nσ−1−1 → J1 is well defined as the join of r1 copies

of the standard coverings Snσ → Snσ/Q. The action Q × Sn−2k+nσ−1−1 →
Sn−2k+nσ−1−1 is well defined as the standard diagonal action, given by (23)-
(25) in [A1], this action commutes with the mapping p′1.

Thus, the map p̂1 : S
n−2k+nσ−1−1/Q→ J1 is well defined and the map

p1 ∼= p̂1 ◦ π1 : S
n−2k+nσ−1−1/i→ J1, (9)

as the composition of the standard double covering π1 : Sn−2k+nσ−1−1/i →
Sn−2k+nσ−1−1/Q with the map p̂1.

Define the required mapping c1 as the composition iJ1 ◦ p1 :
Sn−2k+nσ−1−1/i → Sn−2k+nσ−1−1/Q → J1 ⊂ Rn. Consider the submanifold
i : Sn−2k/i ⊂ Sn−2k+nσ−1−1/i, this submanifold is in general position with
respect to strata of the manifold Sn−2k+nσ−1−1/i, the strata are determined
by the join structure. Define the mapping

p̃1 ∼= p̂1 ◦ π1 ◦ i : S
n−2k/i ⊂ Sn−2k+nσ−1−1/i→ J1. (10)

Define the required mapping c̃1 as the composition

c̃1 : S
n−2k/i ⊂ Sn−2k+nσ−1−1/i

c1−→ R
n. (11)

2 Configuration spaces and singularities

Subspaces and factorspaces of the 2-configuration space for RPn−k,
related with the axillary mapping c in Lemma 1

In [A1, Section 3 (46)] the space Γ, its double covering Γ̄, and the structural
mapping ηΓ : Γ → K(D, 1) were defined. The space Γ is a manifold with
boundary. Denote the interior of this manifold by Γ◦. The restriction of the
structural map ηΓ on Γ◦ will be denoted by ηΓ◦

: Γ◦ → K(D, 1).
Denote by K◦ ⊂ Γ◦ the polyhedron of double-point singularities of the

map p : RPn−k → J , this polyhedron is defined by the formula {[(x, y)] ∈
Γ◦, p(x) = p(y), x 6= y} (see [Formula (39),A1]). This polyhedron is equipped
with a structural mapping

ηK◦
: K◦ → K(D, 1), (12)

which is induced by the restriction of the structural mapping ηΓ◦
(see [A1]

and below) to the subspace K◦.
Consider the manifold, which is defined by the compactification of the

open manifold Γ◦ by means of diagonal component Σdiag (the blowing up
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of the diagonal is not considered). Denote the closure of Cl(K◦) of the
polyhedron K◦ in this manifold with singularities by K. Denote by Qdiag

the space Cl(K◦) \K◦. Obviously, Qdiag ⊂ K. Let us call this subspace the
boundary of the polyhedron K.

The restriction of the structure mapping ηK◦
on a regular deleted neigh-

borhood UQdiag◦ is given by the composition of the mapping ηUQdiag◦
:

UQdiag◦ → K(Ib, 1) and the mapping iIb,D : K(Ib, 1) → K(D, 1). Homo-
topy classes of the mappings ηdiag and ηUQdiag◦

are related by the equation:

ηdiag ◦ projdiag = pIb,Id ◦ ηUQdiag◦
.

Note that the structural mapping of ηK◦
does not extended from K◦ to the

component Qdiag of the boundary. The mapping κdiag : Qdiag → K(Id, 1) is
well defined. Denote by U(Qdiag)◦ ⊂ K◦ a small regular deleted neighborhood
of Qdiag .

Subspaces and factorspaces of the 2-configuration space for RPn−k,
related with the axillary mappings c, ĉ in Lemma 2

The space Γ, the subspace Γ◦ ⊂ Γ, its double coverings Γ̄, Γ̄◦ were defined
above. The structural mapping ηΓ◦

: Γ◦ → K(D, 1) also were defined.
Denote by

Σ◦ ⊂ Γ◦ (13)

the polyhedron of double-points singularities of the map p : RPn−k → J ,
this polyhedron is defined by the formula {[(x, y)] ∈ Γ◦, p(x) = p(y), x 6= y}.
This polyhedron is equipped with a structural mapping ηΣ◦

: Σ◦ → K(D, 1),
which is induced by the restriction of the structural mapping ηΓ◦

on the
subspace Σ◦.

The standard free involution i : RPn−k → RPn−k is well defined. This
involution permutes points in each fiber of the standard double covering
RPn−k → Sn−k/i. The space Γ̄◦ admits an involution (with fixed points)

Ti◦ : Γ̄◦ → Γ̄◦, (14)

which is defined as the restriction of an involution i × i : RPn−k × RPn−k,
constructed by the involution i on each factor, on the subspace Γ̄◦ ⊂ RPn−k×
RPn−k. On the quotient Γ̄◦/T = Γ◦ of Γ◦ by the another involution T , which
permutes the coordinates, the factorinvolution Ti◦ : Γ◦ → Γ◦ is well defined.

Let us denote by Σantidiag ⊂ Γ◦ a subspace, called the antidiagonal, which
is formed by all antipodal pairs {[(x, y)] ∈ Γ◦ : x, y ∈ RPn−k, x 6= y, i(x) = y}.
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It is easy to verify that the antidiagonal Σantidiag ⊂ Γ◦ is the set of fixed points
for the involution Ti◦.

The subpolyhedron Σ◦ ⊂ Γ◦ of multiple-points of the map p is represented
by a union Σ◦ = Σantidiag ∪K◦, where K◦ is an open subpolyhedron contains
all points of Σ◦ outside the antidiagonal. The subpolyhedron K◦ ⊂ ΓK◦

is
invariant under the involution Ti◦.

Define the restriction of the involution Ti◦|K◦
by TK◦

. The considered
restriction is a free involution. Denote the factorspace K◦/TK◦

by K̂◦. The
restriction of the structure mapping ηΓ◦

: Γ◦ → K(D, 1) on K◦ denote by
ηK◦

.
Denote the closure of Cl(K◦) of the polyhedron K◦ (respectively, the

closure of the polyhedron Cl(K̂◦) polyhedron K̂(◦)) by K (respectively, by

K̂).
Denote by Qdiag the space ∂Γdiag∩K. Obviously, Qdiag ⊂ K. We shall call

this subspace the component of the boundary of the polyhedron K. Similarly,
we denote by Q̂diag the component of the boundary of the polyhedron K̂.

Note that the mapping ηK is not expendable to boundary component
Qdiag . The mapping κdiag : Qdiag → K(Id, 1) is well defined. Let us denote
by U(Qdiag)◦ ⊂ K◦ a small regular deleted neighborhood of Qdiag. The
projection projdiag : U(Qdiag)◦ → Qdiag of the regular deleted neighborhood
to Qdiag . The restriction of the structural mapping ηK◦

to the neighborhood
U(Qdiag)◦ is represented by a composition of the map ηU(Qdiag)◦ : U(Qdiag)◦ →
K(Ib, 1) and the maps iIb,D : K(Ib, 1)→ K(D, 1). Homotopy classes of maps
ηK |Qdiag

and ηU(Qdiag)◦ satisfy the equation:

ηdiag ◦ projdiag = pIb,Id ◦ ηUQdiag◦
.

Let us investigate the polyhedron of singularities of an axillary mapping
ĉ. define the following commutative diagram of subgroups:

Ib×ḃ

ր ∩
Id ⊂ Ia ⊂ D ⊂ H.

ց ∩
Ic

(15)

In this diagram, the inclusion D ⊂ H is a central quadratic extension of
D by the element i (of the order 4), for which i2 coincides with the generator
−1 of the subgroup Id ⊂ D. The abelian groups Ha,Hb×ḃ,Hc,Hd are the
subgroups in H, this groups are the quadratic extensions of the corresponding
subgroups Ia, Ib × İb, Ic, Id by means of the element i. Note that the groups
Hb×ḃ and Eb×ḃ (see above [formula (84), A2]) are isomorphic.
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The difference between the considered groups Hb×ḃ and Eb×ḃ are the fol-

lowing: the representation of Hb×ḃ → Z[3] (see below [Example 16, A1])

and Eb×ḃ → Z/2[3] (see [Diagram (85), A2]) are different. The kernel of the
epimomorphism

Hb×ḃ → Z/2[3] → Z/2, (16)

where Z/2[3] → Z/2 corresponds to the subgroup [(19),A2] of the index 2,
contains an element i ∈ Hd ⊂ Hb×ḃ of the order 4 (comp. with Diagram
(18) below, in which Hd = Hc ∩ Hb×ḃ). The kernel of the homomorphism

Eb×ḃ → Z/2[3] → Z/2 coincides with the subgroup Ib×ḃ ⊂ Hb×ḃ, which is an
elementary 2-group.

The induced automorphism χ[3] : Z/2[3] → Z/2[3] of the group Hb×ḃ,
re-denoted by

χ̂[2] : Hb×ḃ → Hb×ḃ, (17)

is defined by the formula χ̂[2](i) = i, where i ∈ Hd–is the generator.
The following natural mapping ηK̂◦

: K̂◦ → K(H, 1), which corresponds
to the mapping of canonical 2-sheeted covering, is well-defined:

K̄◦
r̄
−→ K̃◦ K(Ic, 1) −→ K(Hc, 1)

↓ ↓ −→ ↓ ↓

K◦
r
−→ K̂◦ K(D, 1) −→ K(H, 1).

(18)

Horizontal maps between the spaces of the diagrams we re-denote for
brevity by η̄, η̌, η, η̂, respectively.

Subspaces and factorspaces of the 2-configuration space for Sn−2k/i,
related with the axillary mapping c1

The space Γ1, its double covering Γ̄1, and the structural map ηΓ1 : Γ1 →
K(H, 1) was defined in [A1, Section 4, (62) and below]. The space Γ1 is a
manifold with boundary. Denote the interior of this manifold by Γ1◦. The
restriction of the structural map ηΓ1 to Γ1◦ will be denoted by ηΓ1◦ : Γ1◦ →
K(H, 1).

Denote by Σ1◦ ⊂ Γ1 circ the polyhedron of double-points singularities of
the map p : Sn−2k → J1, this polyhedron is obtained by the blowing up of the
polyhedron {[(x, y)] ∈ Γ1◦, p(x) = p(y), x 6= y}. This polyhedron is equipped
with a structural mapping

ζΣ1◦ : Σ1◦ → K(H, 1), (19)
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which is induced by the restriction of the structural mapping ζΓ1◦ on the
subspace Σ1◦.

The subpolyhedron Σ1◦ ⊂ Γ1◦ of multiple-points of the map p1 is repre-
sented by a union Σ1◦ = Σantidiag∪K1◦, where K1◦ is an open subpolyhedron,
this subpolyhedron contains all points of Σ1◦ outside the antidiagonal. Let
us denote the restriction of the structural mapping ζΓ1◦ : Γ1◦ → K(H, 1) on
ΓK1◦ and on K1◦ by ζΓ1◦ and by ζK1◦ respectively.

Denote the closure of Cl(K1◦) of the polyhedron K1◦ in Γ1 (respectively,
the closure of the polyhedron Cl(K̂1◦) polyhedron K̂1◦ in Γ̂1) by K1 (respec-
tively, by K̂1). Denote by Qantidiag the space Σantidiag ∩K1, denote by Qdiag

the space ∂Γdiag ∩K1. Obviously, Qdiag ⊂ K1, Qantidiag ⊂ K1. We shall call
these subspaces the components of the boundary of the polyhedron K1.

Note that the structural mapping of ζK1◦ is extended from K1◦ to the
component Qantidiag of the boundary. Denote this extension by ζQantidiag

:
Qantidiag → K(H, 1). The mapping ζQantidiag

is the composition ζantidiag :
Qantidiag → K(Q, 1) and the inclusion iQ,H : K(Q, 1) ⊂ K(H, 1).

Note that the mapping ζK1 is not expendable to boundary component
Qdiag . The mapping ζdiag : Qdiag → K(Ia, 1) is well defined. Let us denote
by U(Qdiag)◦ ⊂ K1◦ a small regular deleted neighborhood of Qdiag. The
projection projdiag : U(Qdiag)◦ → Qdiag of the regular deleted neighborhood
to Qdiag to the central manifold is well defined.

The restriction of the structural mapping ζK1◦ to the neighborhood
U(Qdiag)◦ is represented by a composition of the map ζUQdiag◦

: UQdiag◦ →
K(Hb×ḃ, 1) and the maps iH

b×ḃ
,H : K(Hb×ḃ, 1)→ K(H, 1).

Homotopy classes of maps ζdiag and ζUQdiag◦
are related by the equation:

ζdiag ◦ projdiag = pH
b×ḃ

,Ia ◦ ζUQdiag◦
.

3 Resolution spaces for singularities

Resolution spaces for polyhedra K◦ and K̂◦

We construct a space RK◦, which we call the resolution space of the polyhe-
dron K◦. In [A2] the group (Ib × İb)χ[2]Z, equipped with the homomorphism

Φ[2] : (Ib × İb)χ[2]Z → D, and the subgroup Ib × İb ⊂ (Ib × İb)χ(2)Z are well
defined.

Consider the following diagrams:
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RK◦

pr
−→ K◦

φ ↓

K((Ib × İb)χ(2)Z, 1),

(20)

RQdiag◦
pr
−→ UQdiag◦

φց ւ ηdiag◦
K(Ib × İb, 1),

(21)

where RQdiag◦ = (pr)−1(UQdiag◦).

Lemma 4. There exists the space RK◦, which is included into the commu-
tative diagram (20). The following diagram (21) determines the boundary
conditions.

Resolution spaces for polyhedra Σ and K̂

Define a space RΣ◦, which is called the resolution space for the polyhedron
Σ◦, which is given by the formula (13).

The space RΣ◦ contains two components, which is denoted by RΣa,
RKb×ḃ◦:

RΣa ∪RKb×ḃ◦ = RΣ◦. (22)

The space RΣa is a closed polyhedron, for which the structured mapping

φa : RΣa → K(Ia, 1) (23)

is well-defined. The mapping (23) is included into the following commutative
diagram:

Σ◦

pr
←− RΣa

↓ η◦ ↓ φa

K(D, 1) ⊃ K(Ia, 1).

(24)

The space RKb×ḃ◦ is a 2-sheeted covering space of the covering Rrb×ḃ :

RKb×ḃ◦ → RK̂b×ḃ◦.
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K◦

pr
←− RKb×ḃ◦

Rr
b×ḃ
−→ RK̂b×ḃ◦

pr̂
−→ K̂◦

↓ φ̂b×ḃ ↓ φb×ḃ

K(Ib×ḃ

∫
χ[2] Z, 1) ⊂ K(Hb×ḃ

∫
χ̂[2] Z, 1).

(25)

The group Hb×ḃ

∫
χ̂[2] , which is used in Diagram (25) is defined analogously

to the group (Eb×ḃ)
∫
χ[3] Z, [Formula (68), A2], using the automorphism (in-

volution) (17).
Denote (pr̂)−1(ÛQdiag◦) by RQ̂diag◦. The following inclusion RQ̂diag◦ ⊂

RK̂b×ḃ◦ is well-defined.
Let us denote by RQdiag◦ the boundary of the corresponding 2-sheeted

covering space over RQ̂diag◦. The following diagram is well-defined.

RQ̂diag◦
pr̂
−→ UQ̂diag◦

φ̂b×ḃ ↓ η̂diag◦ ↓

K(Hb×ḃ

∫
χ[2] Z, 1) ⊃ K(Hb×ḃ, 1).

(26)

To prove the main result of the section we will use the following lemma.

Lemma 5. There exists a space RΣ◦, which is satisfies the equation (22).
The component RΣa is equipped by the mapping (23), which is included

into the commutative diagram (24).
The component RKb×ḃ◦ is the total space of a regular 2-sheeted covering

over the space RK̂b×ḃ◦ such that the commutative diagram (25) is well-defined.
Moreover, the commutative diagram (26), which determines boundary condi-
tions, is well-defined.

Resolution space for the polyhedron Σ1

We shall define a space RΣ1◦, which we call resolution space of the polyhedron
Σ1. The space RΣ1◦ contains two components, which is denoted by RΣQ,
RKE

b×ḃ
◦, as follows:

RΣQ ∪ RKH
b×ḃ

◦ = RΣ1◦. (27)

Let us consider the following diagrams:
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RΣQ ∪ RKH
b×ḃ

◦

pr1
−→ Σ1

φ1 ↓

K(Q, 1) ∪K(Hb×ḃ, 1),

(28)

RQdiag
pr1
−→ Qdiag

φ1 ց ւ ζdiag
K(Hb×ḃ, 1),

(29)

in which RQdiag = (pr1)
−1(Qdiag).

The following lemma is analogous to Lemma 5

Lemma 6. There exists a space RK1, which is satisfies the equation (27),
an which is included in the commutative diagram (28). Moreover, the com-
mutative diagrams (29) determines boundary conditions.

4 Доказательствo Леммы 2

5 Proof of Lemma 2

Let us recall that the polyhedron J is PL homeomorphic to the standard
sphere Sn−k. Consider the embedding (5). Decomposes this embedding into
the following composition of the standard embeddings: i1 : J ⊂ J × Rk−5 ⊂
Rn−5, i2 : R

n−5 ⊂ Rn−1, i3 : R
n−1 ⊂ Rn.

Consider the mapping ĉ : Sn−k/i → Rn, which is given by the formula
(7). Let us represents this mapping by the composition of the mapping
ĉ′1 : S

n−k/i→ J×Rk−5, the inclusion i2 : J×Rk−5 ⊂ Rn−1, and the standard
inclusion i3 : R

n−1 ⊂ Rn.
Define the mapping ĉ1 : S

n−k/i→ Rn−5 as a result by a special C1–small
PL–deformation of the mapping ĉ′1.

Denote by UJ,1 ⊂ Rn−5 the regular neighborhood of the embedded sphere
J ⊂ J×Rk−5 ⊂ Rn−5. Denote by projJ : UJ,1 → J the orthogonal projection
of a smallest neighborhood onto the central sphere J . The PL–deformation
ĉ′1 7→ ĉ1 is defined as a vertical deformation with respect to the orthogonal
projection projJ .

Consider the mapping c1 = p ◦ ĉ1 : RPn−k → Sn−k/i → Rn−5 and define
a mapping c′1 : RP

n−k → Rn−5 as the result of an additional C1-small defor-
mation c1 7→ c′1, which is vertical with respect to the projection projJ , and
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which has the caliber ε, much smaller then the caliber ε̂ of the deformation
ĉ′1 7→ ĉ1.

Let us denote the self-intersection polyhedron of the mapping c′1, and the
open subplolyhedron the of regular self-intersection points of this map by

N ′
◦ ⊂ N ′. (30)

By dimensional reasons, the mapping c′1 has no self-intersection points of the
multiplicity 3 and more. Because the codimension codim(Σ(c′1)) = k − 5,
using the condition (2) we get: 2codim(N ′) > n− k.

Because the deformation c1 7→ c′1 is vertical, the polyhedron N ′
◦ is a

subpolyhedron in the polyhedron Σ◦. Denote by

N ′

b×ḃ◦
⊂ N ′

◦ (31)

an open polyhedron, which is defined by the inverse image of the subpolyhe-
dron (42) (see below) by the standard inclusion N ′

◦ ⊂ Σ◦.
Because ε << ε̂, the subpolyhedron (31) is equipped by the involution,

which is induced from the involution (14) by the standard inclusion. This
involution is a free involution, because the polyhedron (31) does not intersects
the antidiagonal. Let us denote by N̂ ′

b×ḃ◦
the quotient of the polyhedron N ′

b×ḃ◦
with respect to this involution. The associated 2-sheeted covering denote by

N ′

b×ḃ◦
→ N̂ ′

b×ḃ◦
. (32)

The following commutative diagrams are well defined:

N ′
◦ ⊃ U(N ′

diag◦)

↓ η′◦ ↓ η′diag◦

K(D, 1) ⊃ K(Ib×ḃ, 1),

(33)

N̂ ′

b×ḃ◦
⊃ U(N̂ ′

diag◦)

↓ η̂′◦ ↓ η̂′diag◦

K(H, 1) ⊃ K(Hb×ḃ, 1).

(34)

Below we shall define the required mapping d : RPn−k → Rn as the result
of a special deformation i2 ◦ c

′
1 7→ d. The deformation i2 ◦ c

′
1 7→ d, gener-

ally speaking, is not a vertical deformation with respect to the orthogonal

14



projection projJ ◦ (R
n → Rn−5). Let us denote by N◦ an open polyhedron

of self-intersection points of the mapping d. The following subpolyhedra are
well defined: Nb×ḃ◦ ⊂ N◦, N̂b×ḃ◦. Properties of the mapping d is described in
the following lemma.

Lemma 7. There exists a C0–small PL-deformation i2◦c
′
1 7→ d, d : RPn−k →

Rn−1, such that for the polyhedron N◦ is decomposed into the union of two
subpolyhedra:

N◦ = Na ∪Nb×ḃ◦, (35)

where Na is closed.
The restriction of the structure mapping η◦ on the closed subpolyhedron

Na admits a reduction, given by a mapping µa : Na → K(Ia, 1):

ηa = ia ◦ µa : Na → K(Ia, 1) ⊂ K(D, 1). (36)

The restriction of the structured map ηb×ḃ◦ to the component Nb×ḃ◦ is

a 2-sheeted covering mapping over a mapping η̂b×ḃ◦ : N̂b×ḃ◦ → K(H, 1).

The mapping η̂b×ḃ◦ admits a reduction by a mapping µ̂b×ḃ◦ : N̂b×ḃ◦ →
K(Hb×ḃ

∫
χ[2] Z, 1):

η̂b×ḃ◦ = Φ̂[2] ◦ µ̂b×ḃ◦ : Nb×ḃ◦ → K(Hb×ḃ

∫

χ[2]

Z, 1)→ K(H, 1), (37)

where Φ̂[2] : K(Hb×ḃ

∫
χ[2] Z, 1)→ K(H, 1) is a natural mapping (see an anal-

ogous [Diagram (85),A2]).

A sketch of the proof of Lemma 2

The deformation i2 ◦ c
′
1 7→ d will be defined, such that the polyhedron (35)

admits a resolution mapping:

ta ∪ tb×ḃ◦ : Na ∪Nb×ḃ◦ → RKa ∪ RKb×ḃ◦.

The following properties are well-defined: The mapping ta induces the fol-
lowing mapping µa = φa ◦ ta : Na → K(Ia, 1), which is the required mapping.
The mapping ta induces the following mapping µb×ḃ◦ = φb×ḃ◦◦tb×ḃ◦ : Nb×ḃ◦ →
K(Ib×ḃ

∫
χ[2] Z, 1). This mapping is a 2-sheeted mapping over the second re-

quired mapping µ̂b×ḃ◦ : N̂b×ḃ◦ → K(Hb×ḃ

∫
χ[2] Z, 1). An outline of the proof

of Statement A of Lemma 2 is presented. Statement B of Lemma 2 is proved
analogously.
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6 Coordinate system angle-momentum on the

spaces of singularities and construction of the

resolution spaces

The complex stratification of polyhedra J, Σ, Σ◦ by means of the
coordinate system angle - momentum

Let us order lens spaces, which form the join, by the integers from 1 up to
r and let us denote by J(k1, . . . , ks) ⊂ J the subjoin, formed by a selected
set of circles (one-dimensional lens spaces) S1/i with indexes 1 ≤ k1 < · · · <
ks ≤ r, 0 ≥ s ≥ r. The stratification above is induced from the standard
stratification of the open faces of the standard r-dimensional simplex δr under
the natural projection J → δr. The preimages of vertexes of a simplex are
the lens spaces J(j) ⊂ J , J(j) ≈ S1/i, 1 ≤ j ≤ r, generating the join.

Define the space J [s] as a subspace of J , obtained by the union of all
subspaces J(k1, . . . , ks) ⊂ J .

Thus, the following stratification

J (r) ⊂ · · · ⊂ J (1) ⊂ J (0), (38)

of the space J is well-defined. For the considered stratum a number r − s
of missed coordinates to the full set of coordinates is called the deep of the
stratum.

Let us introduce the following denotation:

J [i] = J (i) \ J (i+1). (39)

Denote the maximum open cell of the space p̂−1(J(k1, . . . , ks)) by
Û(k1, . . . , ks) ⊂ Sn−k/i. This open cell is called an elementary stratum of
the depth (r− s). A point at an elementary stratum U(k1, . . . , ks) ⊂ Sn−k/i
is defined by a set of coordinates (x̌k1 , . . . , x̌ks, λ), where x̌ki ∈ S1 is a co-
ordinate on the 1-sphere (circle), covering lens space with the number ki,
λ = (lk1 , . . . , lks) is a barycentric coordinate on the corresponding (s − 1)-
dimensional simplex of the join. Thus if the two sets of coordinates are
identified under the transformation of the cyclic Ia-covering by means of the
generator, which is common to the entire set of coordinates, then these sets
define the same point on Sn−k/i. Points on elementary stratum Û(k1, . . . , ks)
belong in the union of simplexes with vertexes belong to the lens spaces of the
join with corresponding coordinates. Each elementary strata Û(k1, . . . , ks) is
a base space of the double covering U(k1, . . . , ks) → Û(k1, . . . , ks), which
is induced from the double covering RPn−k → Sn−k/i by the inclusion
Û(k1, . . . , ks) ⊂ Sn−k/i.
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The polyhedron Σ◦ is split into the union of open subsets (elementary
strata), these elementary strata are defined as the connected components of
the inverse images of elementary strata (39). Denote these elementary strata
by

K [r−s](k1, . . . , ks), 1 ≤ s ≤ r. (40)

Let us describe an elementary stratum K [r−s](k1, . . . , ks) by means of the
coordinate system. To simplify the notation let us consider the case s = r.
Suppose that for a pair of points (x1, x2), defining a point on K [0](1, . . . , r),
the following pair of points (x̌1, x̌2) on the covering space Sn−k is fixed, and
the pair (x̌1, x̌2) is mapped to the pair (x1, x2) by means of the projection
of Sn−k → RPn−k. Accordingly to the construction above, we denote by
(x̌1,i, x̌2,i), i = 1, . . . , r a set of spherical coordinates of each point. Each
such coordinate with the number i defines a point on 1-dimensional sphere
(circle) S1

i with the same number i, which covers the corresponding circle
J(i) ⊂ J of the join. Note that the pair of coordinates with the common
number determines the pair of points in a common layer of the standard
cyclic Ia-covering S1 → S1/i.

The collection of coordinates (x̌1,i, x̌2,i) are considered up to independent
changes to the antipodal. In addition, the points in the pair (x1, x2) does
not admit a natural order and the lift of the point in K to a pair of points
(x̄1, x̄2) on the sphere Sn−k, is well determined up to 8 different possibilities.
(The order of the group D is equal to 8.)

An analogous construction holds for points on deeper elementary strata
K [r−s](k1, . . . , ks), 1 ≤ s ≤ r.

The coordinate description of elementary strata of the polyhedra
K◦ ⊂ Σ◦

Let x ∈ K [r−s](k1, . . . , ks) be a point on an elementary stratum. Consider
the sets of spherical coordinates x̌1,i и x̌2,i, k1 ≤ i ≤ ks of the point x. For
each i the following cases: a pair of i-th coordinates coincides; antipodal,
the second coordinate is obtained from first by the transformation by means
of the generator (or by the minus generator) of the cyclic cover. Associate
to an ordered pair of coordinates x̌1,ki and x̌2,ki, 1 ≤ i ≤ s the residue
vki = x̌1,ki(x̌2,ki)

−1 of a value +1, −1, +i or −i, respectively. It is easy
to check that the collection of residues {vki} is changed by the following
transformation. When the collection of coordinates of a point is changed
to the antipodal collection, say, the collection of coordinates of the point x2

is changed to the antipodal collection, the set of values of residues of the
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new pair (x̄1, x̄2) on the spherical covering is obtained from the initial set of
residues by changing of the signs:

{(x̌1,ki , x̌2,ki)} 7→ {(−x̌1,ki, x̌2,ki)}, {vki} 7→ {−vki},

{(x̌1,ki , x̌2,ki)} 7→ {(x̌1,ki,−x̌2,ki)}, {vki} 7→ {−vki}.

The residues of the renumbered pair of points change by the inversion:

{(x̌1,ki, x̌2,ki)} 7→ {(x̌2,ki, x̌1,ki)}, {vki} 7→ {v̄ki},

where v 7→ v̄ means the complex conjugation. Obviously, the set of residues
does not change, if we choose another point on the same elementary stratum
of the space K◦.

Elementary strata of the space K(k1, . . . , ks), in accordance with sets of
residues, are divided into 3 types: Ia, Ib×ḃ, Id. If among the set of residues are
only residues {+i,−i} (respectively, only residues {+1,−1}), we shall speak
about the elementary stratum of the type Ia (respectively of the type Ib×ḃ). If
among the residues are residues from the both set {+i,−i} and {+1,−1}, we
shall speak about elementary stratum of the type Id. It is easy to verify that
the restriction of the structure mapping η : K0◦ → K(D, 1) on an elementary
stratum of the type Ia, Ib×ḃ, Id is represented by the composition of a map in
the space K(Ia, 1) (respectively in the space K(Ib×ḃ, 1) or K(Id, 1)) with the
map ia : K(Ia, 1)→ K(D, 1) (respectively, with the map ib×ḃ : K(Ib×ḃ, 1)→
K(D, 1) or id : K(Id, 1) → K(D, 1)). For the first two types of strata the
reduction of the structural mapping (up to homotopy) is not well defined, but
is defined only up to a composition with the conjugation in the subgroups
Ia, Ib×ḃ.

The polyhedron Σ◦ contains the polyhedron K◦ and Σ◦ \K◦ consists of
antidiagonal elementary strata. For an arbitrary elementary antidiagonal
stratum K(k1, . . . , ks) the residue of the each angle coordinate is equal to
+i. A antidiagonal stratum is an elementary stratum of the type Ia. The
polyhedron Σ is derived from Σ◦ by the joining of all diagonal strata (on
each diagonal strata the residue of an arbitrary angle coordinate is equal
+1), which is in the boundary of the polyhedron. It is easy to verify that
Σ \ Σ◦ contains all elementary diagonal strata of the deep greater, or equal,
then 1.

Define the following open subpolyhedra

Ka◦ ⊂ K◦ ⊂ Σ◦, (41)

Kb×ḃ◦ ⊂ K◦ ⊂ Σ◦, (42)
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Kd◦ ⊂ K◦ ⊂ Σ◦ (43)

as the unions of all elementary strata of the corresponding type.
The following polyhedron

K̂b×ḃ◦ ⊂ K̂◦ (44)

is defined as the base of 2-sheeted covering over the polyhedron (42). The
description of (42) by means of the coordinates is obvious and is omitted.

Description of the structural map η◦ : Σ◦ → K(D, 1), by means of
the coordinate system

Let x = [(x1, x2)] be a marked a point on K◦, on a maximal elementary
stratum. Consider closed path λ : S1 → K◦, with the initial and ending
points in this marked point, intersecting the singular strata of the depth
1 in a general position in a finite set of points. Let (x̌1, x̌2) be the two
spherical preimages of the point x. Define another pair (x̌′

1, x̌
′
2) of spherical

preimages of x, which will be called coordinates, obtained in result of the
natural transformation of the coordinates (x̌1, x̌2) along the path λ.

At regular points of the path λ the family of pairs of spherical preimages
in the one-parameter family is changing continuously, that uniquely iden-
tifies the inverse images of the end point of the path by the initial data.
When crossing the path with the strata of depth 1, the corresponding pair of
spherical coordinates with the number l is discontinuous. Since all the other
coordinates remain regular, the extension of regular coordinates along the
path at a critical moment time is uniquely determined. For a given point x
on elementary stratum of the depth 0 of the spaces K◦ the choice of at least
one pair of spherical coordinates is uniquely determines the choice of spheri-
cal coordinates with the rest numbers. Consequently, the continuation of the
spherical coordinates along a path is uniquely defined in a neighborhood of
a singular point of the path.

The transformation of the ordered pair (x̌1, x̌2) to the ordered pair (x̌′
1, x̌

′
2)

defines an element the group D. This element does not depend on the choice
of the path l in the class of equivalent paths, modulo homotopy relation in
the group π1(Σ◦, x). Thus, the homomorphism π1(Σ◦, x)→ D is well defined
and the induced map

η◦ : Σ◦ → K(D, 1) (45)

coincides with structural mapping, which was determined earlier. It is easy
to verify that the restriction of the structural mapping η◦ on the connected
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components of a single elementary stratum K◦(1, . . . , r) is homotopic to a
map with the image in the subspeces K(Ia, 1), K(Ib×ḃ, 1), K(Id, 1), which
corresponds to the type and subtype elementary stratum.

Coordinate description of the canonical covering over an elemen-
tary stratum

Consider an elementary stratum K [r−s](k1, . . . , ks) ⊂ K
(r−s)
◦ of the depth

(r − s). Denote by

π : K [r−s](k1, . . . , ks)→ K(Z/2, 1) (46)

the classifying map, that is responsible for the permutation of a pair of points
around a closed path on this elementary stratum. This mapping is called the
classified mapping for the corresponding 2-sheeted covering.

The mapping π coincides with the composition

K [r−s](k1, . . . , ks)
η
−→ K(D, 1)

p
−→ K(Z/2, 1),

where K(D, 1)
p
−→ K(Z/2, 1) be the map of the classifying spaces, which is

induced by the epimorphism D → Z/2 with kernel Ic ⊂ D . The canonical
2-sheeted covering, which is associated with the mapping π let us denote by

K̄ [r−s](k1, . . . , ks)→ K [r−s](k1, . . . , ks). (47)

With the mapping (46) the following equivariant mapping is associated:

π̄ : K̄ [r−s](k1, . . . , ks)→ S∞, (48)

where the involution in the image is the standard antipodal involution. This
mapping is a 2-sheeted covering over the mapping (46).

For an elementary strata of the type Ib×ḃ with the mapping (48) the
following equivariant mapping is associated:

π̃ : K̃ [r−s](k1, . . . , ks)→ S∞, (49)

where the mapping K̃ [r−s](k1, . . . , ks) ⊂ K̃(Hb×ḃ, 1), (49) is a 2-sheeted cov-
ering over the mapping (48).

Lemma 8. The restriction of the map (48) to the canonical 2-sheeted cov-
ering over an elementary strata of an arbitrary type is homotopic to the
following composition

π̄ : K̄ [r−s](k1, . . . , ks)→ S1 ⊂ S∞. (50)
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The restriction of the equivariant map (49) to the canonical 2-sheeted covering
over an elementary strata of the type Hb×ḃ is homotopic to the following
composition

π̃ : K̃ [r−s](k1, . . . , ks)→ S1 ⊂ S∞, (51)

where S1 ⊂ S∞ is the equivariant embedding of the standard 1-dimensional
skeleton of the classifying space.

Proof of Lemma 8

Let us prove the lemma by means of explicit formulas for the mappings
(50) (51). An arbitrary point [(x1, x2)] ∈ K̂ [r−s,i](k1, . . . , ks), or [(x1, x2)] ∈
K [r−s,i](k1, . . . , ks) is determined by the equivalence class of the collection of
angle coordinates and the momentum coordinate. The structure mapping
η◦, η̂b×ḃ◦ is determined by a transformation of angle coordinates. Let us
define the mappings (50), (51) by the corresponding transformation of the
marked pair of the angle coordinates. Below the prescribed pair of the angle
coordinates for an elementary stratum of each arbitrary type is defined.

Assume that a point [(x̂1, x̂2)] ∈ K̂ [r−s](k1, . . . , ks) is belong to the stratum
of the type Hb×ḃ. Because the residue of the prescribed pair of the angle
coordinates is well-defined, a non-ordered pair of the angle coordinates with
the residue −1 it is convenient to denote by [(x̌1,−, x̌2,−)], a pair of the angle
coordinates with the residue +1 denote by [(x̌1,+, x̌2,+)].

The each coordinate x̌1,−, x̌2,−, x̌1,+, x̌2,+ determines the corresponding
point on S1. It is not difficult to check, that x̌1,+ = x̌2,+, x̌1,− = −x̌2,−.
Therefore the mapping (x̂1, x̂2) 7→ (x̌−1

1,−x̌1,+, x̌
−1
2,−x̌2,+) transforms the points

of an ordered pair into the antipodal points on S1. The changing of a pair
of the angle coordinates to an equivalent pair, which keeps the order of the
points of the pair, does not change the equivariant mapping. The changing
of the order of points in the pair transforms the equivariant mapping to the
antipodal mapping. The constructed equivariant mapping is the required
equivariant mapping (50) for the stratum of the type Hb×ḃ.

Assume a point [(x1, x2)] ∈ K [r−s,i](k1, . . . , ks) belongs to an elementary
stratum of the type Ia (including the case, when a stratum is antidiagonal).
The mapping (50) is determined by a transformation of the prescribed pair
of the angle coordinates with the residue +i, which we denote (and the
same time introduce an order of the pair) as (x̌1,+i, ix̌1,+i). The mapping
(x1, x2) 7→ (x̌2

1,+i,−x̌
2
1,+i) transforms the points of the ordered pair into an

antipodal points on S1. This mapping is the required mapping (50) for the
elementary stratum of the type Ia.
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Assume a point (x1, x2) ∈ K [r−s](k1, . . . , ks) belongs to an elementary
stratum of the type Id. The mapping (50) is determined by a transformation
of the prescribed pair of the angle coordinates with the residue +i, which we
denote by [(x̌1,+i, ix̌1,+i)]. The mapping (x1, x2) 7→ (x̌1,+i)

2,−x̌1,+i)
2 trans-

forms the points of the ordered pair into an antipodal points on S1. This
mapping is the required mapping (50) for the elementary stratum of the type
Id. Let us denote that the constructed mapping (50) on each elementary stra-
tum of the type Id is homotopic to the constant mapping.

Lemma 8 is proved.

Prescribed coordinate system and marked pair of the angle coor-
dinates on an elementary stratum of the polyhedron K̂b×ḃ◦

Let us recall that the space K̂I
b×ḃ

◦ is the union of closures

Cl(K̂ [r−s,i](k1, . . . , ks)), 0 ≤ s ≤ r of elementary strata of the stratification
(40) (closures are considered in the space K̂◦). The collection of coordinates
is fixed by an ordering of the spherical preimages (x̌1, x̌2) of the marked
point. On each elementary stratum α̂ of the type Hb×ḃ let us fix the pre-
scribed coordinate system Ω(α̂) as follows. (In the case an equivalent class
of the prescribed coordinate system of an elementary stratum depends no of
an order of the preimages.)

Let us call a coordinate system a prescribed coordinate system if,
–assuming the number of the angle coordinates is odd, the product of

residues is equal to +1;
–assume that the number of the angle coordinate is even, the number of

residues +1 is greater then the number of residues −1, if the the numbers of
residues +1 and −1 coincide, the residue with the smallest number is equal
to +1.

The angle coordinate of the prescribed system with the residue +1 of the
smallest number is called the marked coordinate on K̂ [r−s,i](k1, . . . , ks).

Prescribed coordinate system and marked pair of the angle coor-
dinates on an elementary stratum of the polyhedron KIa◦

Let us recall that the space K̂Ia◦ is the union of closures
Cl(K [r−s,i](k1, . . . , ks)), 0 ≤ s ≤ r of elementary strata of the stratifi-
cation (40) (closures are considered in the space K◦). On each elementary
stratum α of the type Ia residues are +i, or −i. Let us define the prescribed
coordinate system Ω(α) as follows.

Let us call a coordinate system is the prescribed coordinate system if,
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–assuming the number of the angle coordinates is odd, the product of
residues is equal to +i;

–assume that the number of the angle coordinate is even, the number of
residues +i is greater then the number of residues −i, if the the numbers of
residues +i and −i coincide, the residue with the smallest number is equal
to +i.

The angle coordinate of the prescribed system with the residue +i of the
smallest number is called the marked coordinate on K [r−s,i](k1, . . . , ks).

Prescribed coordinate system and marked pair of the angle coor-
dinates on an elementary stratum of the polyhedron KId◦

On each elementary stratum α of the type Id residues are
{+i,−i,+1,−1}.{+i,−i}. Let us fix the prescribed coordinate system
Ω(α) as follows.

Let us call a coordinate system is the prescribed coordinate system if,
–assuming the number of the angle coordinates with imaginary residues

is odd, the product of imaginary residues is equal to +i;
–assume that the number of the angle coordinate with imaginary residues

is even, the number of residues +i is greater then the number of residues −i,
if the the numbers of residues +i and −i coincide, the imaginary residue with
the smallest number is equal to +i.

The angle coordinate of the prescribed system with the residue +i of the
smallest number is called the marked coordinate on K [r−s,i](k1, . . . , ks).

Let us recall that the space KIa◦ is the union of closures
Cl(K [r−s,i](k1, . . . , ks)), 0 ≤ s ≤ r of elementary strata of the stratification
(40) On each elementary stratum let us fix the coordinate system as follows.

Assume the number of the angle coordinates is odd. Let us call a co-
ordinate system is the prescribed coordinate system, if the sum of residues
of angle coordinates are equal to +i. Assume that the number of the angle
coordinate is even. Let us fixes the prescribed coordinate system arbitrarily,
namely, such that the residue of the pair of coordinates with the smallest
number is equal to +i.

Admissible pair of neighbor strata

Let β be an elementary stratum (a connected component of the space
K [r−s,i](k1, . . . , ks)), let α be an elementary stratum, α ⊂ Cl(β) ⊂
Cl(K(k1, . . . , ks)), β 6= α. In this case we shall write α ≺ β.
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For an arbitrary β ⊂ K [r−s,i](k1, . . . , ks) of the type Ia (correspondingly,
of the type Id), let us consider an arbitrary α, α ≺ β of the same type.
Analogously, for an arbitrary β̂ ⊂ K̂ [r−s,i](k1, . . . , ks) of the type Hb×ḃ, let us

consider an arbitrary α̂, α̂ ≺ β̂ of the same type.
Let us consider the prescribed coordinate system Ω(β) on β and take

the restriction of this coordinate system to α. Assume that the considered
restriction system is prescribed on α. Then we shall call that the pair (α, β)
is admissible. In the case α and β are of different types, we shall call that
the pair (α, β) is admissible.

Assume that a pair (α, β) is not admissible. Take a point b ∈ β ⊂
K(k1, . . . , ks) and a point a ∈ α, which is closet to b on Cl(K(k1, . . . , ks)).
The restriction of the prescribed coordinate system Ω(β)|a is transformed to
the prescribed system Ω(α)|a by one of the following transformation, which
is listed below for the strata of the each type.

A non-admissibility of a pair of strata (α, β) of the type Ia means that
the transformation of Ω(β)|a into Ω(α)|a is one of the following:

(x̌1, x̌2) 7→ (x̌2, x̌1), (52)

(x̌1, x̌2) 7→ (−x̌2,−x̌1), (53)

(x̌1, x̌2) 7→ (−x̌1, x̌2), (54)

(x̌1, x̌2) 7→ (x̌1,−x̌2). (55)

A non-admissibility of a pair of strata (α, β) of the type Id means that
the transformation of Ω(β)|a into Ω(α)|a is one of the following:

(x̌1, x̌2) 7→ (x̌2, x̌1), (56)

(x̌1, x̌2) 7→ (−x̌2,−x̌1), (57)

(x̌1, x̌2) 7→ (−x̌2, x̌1), (58)

(x̌1, x̌2) 7→ (x̌2,−x̌1). (59)

A non-admissibility of a pair of strata (α̂, β̂) of the type Hb×ḃ means that

the transformation of Ω(β̂)|a into Ω(α̂)|a is one of the following:

(x̌1, x̌2) 7→ (−x̌2, x̌1), (60)
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(x̌1, x̌2) 7→ (x̌2,−x̌1), (61)

(x̌1, x̌2) 7→ (−x̌1, x̌2), (62)

(x̌1, x̌2) 7→ (x̌1,−x̌2), (63)

(x̌1, x̌2) 7→ (−ix̌2, ix̌1), (64)

(x̌1, x̌2) 7→ (ix̌2,−ix̌1), (65)

(x̌1, x̌2) 7→ (−ix̌1, ix̌2), (66)

(x̌1, x̌2) 7→ (ix̌1,−ix̌2). (67)

The space Y◦

Let α, β be elementary strata of Σ◦. Assume that α ≺ β and define the
elementary ε-cone of a smallest stratum α into β as an open neighborhood,
which is defined as the open cone of a small height ε, ε << 1, over the interior
of the closure of the union of all lower-dimensional ε-cones, which are inside
Cl(β). The structure of an elementary ε-cone corresponds to the Euclidean
structure in the r-simplex, given by the corresponding momenta coordinates.
The elementary cone of the strata α in β denote by Con′(α, β; ε) ⊂ β.

For each non-admissible pair of strata α ≺ β consider an elementary
ε–cone Con(α, β; ε) and define:

– the reduced ε–cone, which is denoted by Con⊙(α, β; ε) ⊂ βΣ◦; the up-
reduced (correspondingly, the down-deduced) ε–cone, which is denoted by
Con⊙↑(α, β; ε) ⊂ β ⊂ Σ◦ (correspondingly, by Con⊙↓(α, β; ε) ⊂ βΣ◦);

— the thickened reduced (ε, ε1)–cone, where

ε1 << ε << 1, (68)

which is denoted by Con⊙(α, β; ε, ε1) ⊂ Σ◦; the thickened up-reduced
(ε, ε1)–cone (correspondingly, the thickened down-reduced (ε, ε1)–cone),
which is denoted by Con⊙↑(α, β; ε, ε1) ⊂ β ⊂ Σ◦ (correspondingly, by
Con⊙↓(α, β; ε, ε1) ⊂ Σ◦).

Let Con(αi, β; ε) be an arbitrary elementary cone, which is distinguished
from Con(α, β; ε), and

α ≺ αi ≺ β, (69)
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moreover, the pair α ≺ β is non-admissible. Define Con⊙↑(α, β; ε) as the
difference

Con(α, β; ε) \ Cl(∪iCon(αi, β; ε)), (70)

where αi satisfies the condition (69) and the pair αi ≺ β is admissible.
Assume that instead of (69) the following equation is satisfied:

αi ≺ α ≺ β. (71)

Define Con⊙↓(α, β; ε) as the difference

Con(α, β; ε) \ Cl(∪iCon(αi, β; ε)), (72)

where αi satisfies the condition (71) and the pair αi ≺ β is admissible. Define
Con⊙(α, β; ε) as the difference

Con(α, β; ε) \ Cl(∪iCon(αi, β; ε)), (73)

where αi satisfies the condition (71), or the condition (69), and the pair
αi ≺ β is admissible.

Denote by

Z⊙(ε)◦ ⊂ Σ◦ (74)

the disjoint union

∪α≺β Con⊙(α, β; ε), (75)

where the pair α ≺ β is non-admissible.
Consider the following CW-complex:

Ya = (Σ◦ \ Z
⊙(ε)◦) ∩ Σa ⊂ Σ◦, (76)

where Z⊙(ε)◦ is defined by the formula (74), Σa◦ is defined by the formula
(41). Consider the CW-complex:

Yd = (Σ◦ \ Z
⊙(ε)◦) ∩Kd ⊂ Σ◦, (77)

where Kd◦ is defined by the formula (43). Consider the CW-complex:

Yb×ḃ = (Σ◦ \ Z
⊙(ε)◦) ∩Kb×ḃ ⊂ Σ◦, (78)

where Kb×ḃ◦ is defined by the formula (42). It is not difficult to check, that
the formulas (60)-(67) are invariant with respect to the covering (44), and
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that the CW-complex (78) is thyself the covering space of the corresponding
2-sheeted covering, denote this covering by Yb×ḃ → Ŷb×ḃ.

Consider the mapping η◦ : Σ◦ → K(D, 1), which is defined by the formula
(45). Consider the restriction of this mapping to the subspace (76) and denote
this restriction by

ηa : Ya → K(D, 1). (79)

Analogously, denote

ηd◦ : Yd → K(D, 1). (80)

Analogously, denote

ηb×ḃ◦ : Yb×ḃ → K(D, 1), (81)

η̂b×ḃ◦ : Ŷb×ḃ → K(H, 1) (82)

(see the diagram (15)).

Lemma 9. –1. The mapping (79) admits a reduction, which is given by the
mapping

µa◦ : Ya → K(Ia, 1), (83)

iIa,D ◦ µa◦ = ηa◦.
–2. The mapping (80) admits a reduction, which is given by the mapping

µd◦ : Yd → K(Id, 1), (84)

iId,D ◦ µd◦ = ηd◦.
–3. The mapping (81) admits a reduction, which is given by the mapping

µb×ḃ◦ : Yb×ḃ → K(Ib×ḃ, 1), (85)

iI
b×ḃ

,D ◦ µb×ḃ◦ = ηb×ḃ◦. The mapping (85) is a 2-sheeted covering over the
mapping

µ̂b×ḃ◦ : Ŷb×ḃ → K(Hb×ḃ, 1). (86)
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Proof of Lemma 9

Let us prove Statement 1, proofs of the last statements are analogous. Define
auxiliary spaces Y ↑

a (correspondingly Y ↓
a ) by the same formula that the space

(76), except that in the formula (75) the union is taken over all up-reduced
(correspondingly, down-deruced) elementary ε–cones, which are defined by
the formula (73) (correspondingly, by the formula (72)) instead of the formula
(70). For each space Y ↑

a , Y ↓
a the analogous statement is satisfied by the

construction. Consider the triad

(Σa \ Ya; Σa \ Y
↑
a ,Σa \ Y

↓
a ). (87)

This triad is represented by CW -complexes (see below the formula (91)).
The required mapping (83) is defined as the gluing the two mapping on
Σa \ Y

↑
a , Σa \ Y

↓
a ), which are coincided on the small space of the triad (87).

Lemma 9 is proved.

Define the CW-complex

CZ⊙(ε)◦ ⊃ Z⊙(ε)◦, (88)

as the cell closure of the space (74): in the CW-complex (88) all open strata
of the subspace (74) are replaced by the corresponding closure, except points
on the diagonal, and the attaching mapping are continuously extended. The
following mapping, which is a resolution, is well defined:

R : CZ⊙(ε)◦ → Σ◦. (89)

The restriction of the mapping R on the subspace (74) is an embedding.
Let us complete coordinates of points on an elementary cone with deleted

subcones (70) by all other angle- and momentum- coordinates, which are
degenerated on β, the additional coordinates belong to the corresponding
orthogonal face (auxiliary coordinates) to the subsimplex of (principal) mo-
menta coordinates inside the standard r-simplex. Let us define the coor-
dinates such that the auxiliary coordinates on β itself is trivial, and each
auxiliary coordinate belong to the interval (0, ε1). Denote this thickness by
Con⊙(α, β; ε, ε1) and let us call it the reduced (ε, ε1)–cone. The union of all
reduced (ε, ε1)–cones

∪α≺β Con⊙(α, β; ε, ε1), (90)

where the pair α ≺ β is not exception, denote by Z⊙
◦ (ε, ε1). Take ε2 << ε1

and denote by

Z⊙
◦ (ε, ε1) ⊂ Σ◦ (91)
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the subspace in Σ◦, which is defined as the union of all reduced (ε, ε1)–cones
(90). Denote by

CZ⊙
◦ (ε, ε1) ⊃ Z⊙

◦ (ε, ε1) (92)

the CW-complex, which is defined as the union of the space (91).
The following resolution mapping

Rε1 : CZ⊙
◦ (ε, ε1)→ Σ◦ (93)

is well-defined. The restriction of the mapping Rε1 on the subspace (91) is
an embedding.

Denote by

Z⊙
◦ (ε, ε1, ε2), ε >> ε1 >> ε2 (94)

the space, which is the union of all ε2–interiors of strata of the space (91). De-
fine Y◦(ε, ε1, ε2) as the space Σ◦ with the deleted subpolyhedron Z⊙

◦ (ε, ε1, ε2).
Define the space Y◦ by the formula:

Y◦ = lim
−→

(ε, ε1, ε2)Y◦(ε, ε1, ε2), ε, ε1, ε2 → 0, (95)

where the limit is taken over the inclusions Y◦(ε, ε1, ε2) ⊂ Y◦(ε̄, ε̄1, ε̄2), which
are satisfies the condition ε > ε̄, ε1 > ε̄1, ε2 > ε̄2 and the inequalities (68).

Lemma 10. –1. The limit (95) preserves the homotopy type of the spaces.
–2. The CW-complex CZ⊙

◦ (ε, ε1) is a deformation retract of the subspace
Z⊙

◦ (ε), which is defined by the formula (88).

–3. Определено каноническое накрытие CZ
⊙

◦ (ε, ε1) → CZ⊙
◦ (ε, ε1),

которое индуцировано эквивариантным отображением отображением

F̄⊙ : CZ
⊙

◦ → P̄ , где P̄– 3-мерное клеточное пространство со свободной
инволюцией TP .

–4. The restriction of the canonical 2-sheeted covering, which is defined
in –3 over the closure of the subspace Z⊙

◦ ∩Kb×ḃ◦ (Kb×ḃ◦ is defined in (42))

is equipped by a free involution with the quotient C̃Z
⊙

◦ (ε, ε1) → ĈZ
⊙

◦ (ε, ε1),

which is induced by the following equivariant mapping F̃⊙ : Z̃
⊙

◦ → P̃ , where
P̃– is a 3-dimensional cell complex with the involution TP̃ .

Proof of Lemma 10

Statement –1 is evident.
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Prove Statement –2. Consider the inclusion Z⊙
◦ (ε) ⊂ Z⊙

◦ (ε, ε1). Using
the induction over the deep of strata by the standard arguments we prove
that the considered subspace is deformation retract. Statement 2 is proved.

Let us prove Statement 3. Denote by CZ
⊙(s)
◦ ⊂ CZ

⊙(s)
◦ the polyhedron,

which consists of strata of the deep s and greater, denote CZ
⊙(s)
◦ \CZ

⊙(s+1)
◦

by CZ
⊙[s]
◦ . The polyhedron CZ

⊙[s]
◦ is a disjoint union of strata, which are

differences of corresponding closures of reduced cones (73).
Define the following 3-dimensional polyhedron P̄ , equipped with a free

involution TP . Consider the disjoint union of the elementary strata of the
polyhedron Σ◦ and denote this union by ∪sΣ

[s]. Over each component Σ
[s]
i

of Σ[s] the canonical 2-sheeted covering which is classified by a mappings
into the circle is considered in Lemma 8. Denote the equivariant classified
mapping by F̄P : ∪s,iΣ̄

[s]
i → S1

s,i.

For each non-admissible pair of elementary strata α, β ⊂ Σ(s), α ≺ β with
the coverings [ᾱ], [β̄] we associated the standard 3-sphere S3

α,β, equipped with
the standard action S1 × S3

α,β → S3
α,β. Let us glue to the sphere S3

α,β the
two cylinders S1

α × [0, 1], S1
β × [1, 0] along the components of the boundaries

S1
α × {0}, S

1
β × {1} to the two antipodal fibers of the Hopf bundle, which is

denoted by (S1
α ∪ S1

β) ⊂ S3
α,β. Denote the result by P̄α,β. The components

of the boundary S1
β × {1}, S

1
α × {0} of the CW-complex P̄α,β corresponds to

elementary strata of the space Σ◦.
Consider the following CW-complex (non-connected) which is defined as

the disjoint union of the CW-complexes {P̄α,β}. Let us standardly identifies
the circles S1

α×{0}∪S
1
β×{1}, which corresponds to the common elementary

stratum. The result is a 3-dimensional CW-complex which is denoted by P̄ .
This is required space, this space is equipped with the standard antipodal
involution which is denoted by TP .

Define the following 1-dimensional CW-complex Q̄ ⊂ P̄ (non-connected),
which is invariant with respect to the involution TP , this space is given by
the union of circles {S1

α}, the components of this space corresponds to the
elementary strata of the space Σ̄◦. The components Q̄ are equipped with a
natural stratification which is denoted by Q̄[i]. The stratification is defined
as deeps of strata.

Define the space CZ⊙[i], the components of this space corresponds to
differences of reduced cones in closures of elementary strata of Σ[i] of the

deep i. The following equivariant mapping F̄
[i]
P : CZ

⊙[i]
→ P̄ is well-defined,

the image of this mapping belongs to Q̄ ⊂ P̄ . This equivariant mapping is

defined by the formula F̄
[i]
P : ∪α≺βCl(Con

⊙
(α, β; ε)) → P̄ . Below we shall

write "‘mapping"’ instead of "‘equivariant mapping"’ for short.
Proof of Statement 3 is given by the induction. Define P (s) as the subspace
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in P̄ , which is the union of {P̄α,β}, where the deep of each strata is not
less then then s. Over the polyhedron P (s) the canonical 2-sheeted covering
P̄ (s) → P (s) is well-defined and this covering is equipped by the free involution
which will be denoted by T

(s)
P . Let us prove that the mapping F̄

(s+1)
P is

extended from CZ
⊙(s+1)

to P̄ (s+1) into a mapping F̄
(s)
P from CZ

⊙(s)
to P̄ (s).

Assume that the mapping F̄ (s+1) : CZ
⊙(s+1)

→ P̄ (s+1) is well defined,
moreover this mapping satifies the following condition. Let us mark for each
reduced elementary cone of the deep not less then s+1 the standard r−s−1–
dimensional torus which is determined by the momentum coordinate near the
vertex of the cone. It is required that in a neighborhood of this marked torus

the mapping CF
(s+1)

coincides to the standard mapping into the circle, which
is constructed in Lemma 8, correspondingly to the type of the strata, which
contains the elementary cone.

Let us construct the mapping F̄ (s) : Z⊙(s) → P̄ (s), which satisfies the anal-
ogous conditions as the mapping F̄ (s+1). Consider an arbitrary elementary
stratum β of the deep s in Σ

[s]
◦ . The prove is given by an induction over the

decrease of the deep j of strata α1, where the pair α1 ≺ β is non-admissible.
Namely, consider in ∪iCon⊙(αi, β; ε) the union of all reduced cones of the
deep more them j. Then we continue the mapping over this union to each
elementary cone, which is constructed from the stratum α1 of the deep j.
The key obvious observation is the following.

Observation (H)

Consider a triple of strata α1 ≺ β, α2 ≺ β, α2 ≺ α1, assuming that the
first two pairs are non-admissible, the deep of β is equal to s, the deep of
α1 is equal to j, the deep of α2 is more then j. Then the pair α2 ≺ α1 is
admissible.

Using the denotations introduced above consider the reduced cone
Con⊙(α, β; ε), where α ≺ β is non-admissible, and consider inside this cone
all smallest elementary cones αi, such that the pairs αi ≺ α, αi ≺ β are non-
admissible. Recall that the deep of α is equal to j, the deep of β is equal to
s, j < s. Let us fixes δ > 0, δ << ε. Consider an open domain Ω(α, β; ε, δ),
which is defined as the result of the elimination from the cone β of all ele-
mentary ε − δ–cones of all strata αi of the deep more then j, such that the
pair αi ≺ β is non-admissible, and also the pair α1 ≺ β is non-admissible.

Define the mapping F̄α1,β : Ω(α, β; ε, δ)→ S3
α,β, which is called the stan-

dard. Consider a regular equivariant δ
4
–neighborhood of the strata ᾱ is the

subspace Ω̄(α, β; ε, δ) and denote this neighborhood by W̄ (α).
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Consider the difference α \ ∪iCon⊙(αi, α; ε), where the pair αi ≺ α is
admissible, and denote this difference by α⊙. Because the cone Con⊙(α, β; ε)
in an up-reduced cone, by the Observation (H) an arbitrary cone C(α, α1) ⊂
α1, α ≺ α1 ≺ β, where the pair α1 ≺ α is non-admissible, has no intersection
with Con⊙(αi, α; ε).

Define the mapping F̄α1,β on W̄ (α), which is in the boundary of ᾱ⊙,
as the composition of the equivariant projection on ᾱ with the mapping
F̄αᾱ → S1

α ⊂ P̄ . Define the mapping F̄α1,β on a part of W̄ (α), which is in

the boundary of W̄ (α) ⊂ Con
⊙
(α, β; ε, δ) ⊂ β̄, as the composition of the

equivariant inclusion on β̄ with the mapping F̄ββ̄ → S1
β ⊂ P̄ . The mapping

F̄α,β on Ω(α, β; ε, δ) \ W̄ (α) is defined analogously as above.
Define the mapping F̄α,β on W̄ (α) by the linear approximation of the

prescribed boundary conditions, which are considered as the pair of complex-
valued mappings into the Whitney sum of the complex line bundles. The

standard mapping F̄α,β : Con
⊙
(α, β; ε)→ S3

α,β is well-defined. The standard

mapping F̄α1,β is continuously extended into the closure Cl(Ω)(α, β; ε, δ).
Denote this extension by CFα,β : Cl(Ω)(α, β; ε, δ)→ P̄ .

It is claimed:
–1. The mapping CF α1,β corresponds to the mapping, which is defined

on previous steps of the construction on a deeper cone Con
⊙
(α1, α; ε), such

a cone is included into the stratum α, moreover the pair α1 ≺ α is non-
admissible.

–2. The restriction of the mapping C̄Fα,β on the domain Ω(α1, β; ε, δ)
inside each deeper cone is agree with the mapping CF α1,β, where α1 ≺ α ≺ β.

Prove –1, using Observation (H). Because the pair α1 ≺ α is non-
admissible, the elementary cone Con(α1, β; ε) has no intersection with Ω.
The boundary condition over α⊙ of the mapping CF α,β proves the State-
ment 1.

Prove –2, using Observation (H). By the construction the mapping CF α1,β

is induced by the mapping F̄β everywhere on Ω(α, β; ε, δ) ∪ Con(α1, β; ε −
δ
2
). The mapping F̄β is induced by the same mapping on the considered

intersection. Statement 2 is proved.
Statement 3 is proved. Statement 4 is evident. Lemma 10 is proved.

The canonical covering over Kd◦ ⊂ Σ◦

Consider the subspace Kd◦ ⊂ Σ◦, which is defined by the formula (43). The
following lemma precises Lemma 10, Statement 3.

Lemma 11. The canonical covering over the subspace Kd◦ ⊂ Σ◦ is induced
by an equivariant mapping F̄⊙

d◦ : Kd◦ → P̄d◦, where P̄d◦ is a 4–dimensional
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CW-complex, equipped with a free involution TPd◦
.

Proof of Lemma 11

Consider the subspace Yd◦ ⊂ Kd◦, which is defined by the formula (76). The
canonical covering over this subspace is trivial (see the formula (84)). By
Lemma 10, Statement 3, the canonical covering over the subspace Kd◦ \ Yd◦

is classified by a mapping into 3-dimensional CW-complex. Lemma 11 is
proved.

Definition of spaces RΣa, RK̂b×ḃ◦ in Lemma 5

Define the subspace

RΣa ⊂ Y◦, (96)

which consists of strata of the type Ia (c. with (76)).
Define the space

RKb×ḃ◦ ⊂ Y◦, (97)

which consists of strata of the type Ib×ḃ (c. with (78)). The space (97) is a

2-sheeted covering space, denote the base of the covering by RK̂b×ḃ.
Definitions of the mappings, which are included into the diagram (25), in

particular, the mappings pr, pr̂, are evident.

Resolution mapping φa : RΣa → K(Ia, 1) and Proof of Lemma 5

Consider the restriction

η◦|Ya
: Ya → K(D, 1), (98)

(recall that RΣa = Ya) of the structured mapping to the subpolyhedron (96).
By the construction of the reduction mapping

φYa
: Ya → K(Ia, 1), (99)

of the mapping (98) is well defined: η◦|Ya
= iIa ◦ φYa

. Lemma 5 is proved.
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Last step of the proof of Lemma 7; the deformation i2 ◦ c
′
1 7→ d

Denote the standard orthogonal projection Rn → Rn−5 by F . Assuming the
dimensional restriction (2), using Lemma 7 and Lemma 10 Statement.3, let us
define a vertical lift of the mapping F : i1◦i2◦c

′
1 7→ d : J → Rn, i1 : R

n−k−5 ⊂
Rn (see denotations in Lemma (7), such that the self-intersection polyhedron
N(d) is contained into the polyhedron Y◦, see. (95). Self-intersection points
of the mapping d are divided into two closed subpolyhedra correspondingly
with the required formula (35). The required mappings µ̂b×ḃ◦, µa are induced
from the mappings, which are constructed in Lemma 5. Lemma 7 is proved.

Proof of Lemma 2

Assuming the dimensional restriction (3) let us consider an axillary map-
ping (6) and the mapping F ◦ c : RPn−k → J ⊂ Rn−5. Consider the formal
(equivariant) mappings (F ◦ c)(2), c(2), which are defined as the formal ex-
tensions of the corresponding mappings. The polyhedrons of the (formal)
self-intersection of the formal mappings (F ◦ i1 ◦ )

(2) and c(2) coincide. The
equivariant deformation of the formal (equivariant) mapping (F ◦ i1 ◦)

(2) into
the formal (equivariant) mapping d(2), which is vertical along F (2) is defined
as in Lemma 7.

Let us prove two conditions in the statement of [Lemma 27, A1]. Condi-
tion 1 is, obviously, well proved, namely, the restriction of the mapping η◦ to
the marked component Na admits a cyclic reduction, given by µa.

Let us prove Condition 2 in [Lemma 27, A1], which is formulated for the
component Nb×ḃ◦. For the convenience let us write-down this condition:

0 = (pIc,Id ◦ η̄)∗([N̄b×ḃ]) ∈ Hn−2k(K(Id, 1);Z/2). (100)

Assume that the polyhedron Nb×ḃ◦ is closed (let us remain that in this
case the lower index ◦ in omitted) and the mapping η admits a reduction

ηb×ḃ : Nb×ḃ → K(Ib×ḃ, 1). (101)

In this case the formula (100) is satisfied, because the composition

η̄b×ḃ : N̄b×ḃ → K(Id, 1)

is the composition of a mapping Nb×ḃ → K(Id, 1) with the standard 2-sheeted
covering

N̄b×ḃ → Nb×ḃ → K(Ib×ḃ, 1)→ K(Id, 1),

where the mapping K(Ib×ḃ, 1) → K(Id, 1) is induced by the homomorphism
Ib×ḃ → Id with the kernel Ib ⊂ Ib×ḃ.
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Assume that the polyhedron Nb×ḃ◦ is not closed, and the mapping η◦
admits a reduction (101) with the prescribed boundary conditions. The
formula (100) is rewritten as follows:

0 = (pIc,Id ◦ η̄b×ḃ◦,◦)∗([CN̄b×ḃ◦]) ∈ Hn−2k(K(Id, 1);Z/2). (102)

The difference between the formulas (102) and (100) is following: if the
polyhedron Nb×ḃ◦ is non-closed, then the polyhedron N̄b×ḃ◦ is also non-closed.
Therefore the polyhedron N̄b×ḃ◦ have to be compactified into a closed by a
gluing of the cone of the canonical 2-sheeted cover N̄b×ḃ◦ → Nb×ḃ◦ over the
boundary. The result is a closed polyhedron, which is denoted in the formula
(102) by N̄b×ḃ◦. The polyhedron N̄b×ḃ◦ is the covering space of the 2-sheeted
covering N̄b×ḃ◦ → CNb×ḃ◦, which corresponds to the subgroup Iḃ ⊂ Ib×ḃ of the
index 2. Therefore, as in the previous case, the cycle pIc,Id ◦ η̄b×ḃ◦ : CN̄b×ḃ◦ →
K(Id, 1) is a boundary.

Let us consider a general case: the polyhedron Nb×ḃ◦ is non-closed and
the mapping η◦ admits a reduction

ηb×ḃ◦ : Nb×ḃ◦ → K(Ib×ḃ

∫

χ[2]

Z, 1)

with prescribed boundary conditions.
By the assumption the following mapping

η̂b×ḃ◦ : N̂b×ḃ◦ → K(Hb×ḃ

∫

χ[2]

Z, 1)

is well-defined. Consider the 2-sheeted covering over the structure mapping,
which we denote by

η̃b×ḃ◦ : CÑb×ḃ◦ → K(Hd × Z, 1).

Let us recall, that respectively to the diagram (18), the 2-sheeted covering
mapping η̃b×ḃ◦ over ηb×ḃ◦ is totally defined by the subgroup of the index 2:

Hd × Z ⊂ Hb×ḃ

∫

χ̂[2]

Z. (103)

The formula (102) is equivalent to the following condition: the homology
class

(pHd×Z,Hd
◦ η̃b×ḃ◦)∗([CÑb×ḃ◦]) ∈ Hn−2k(K(Hd, 1);Z) (104)

is even.
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By the representation Hb×ḃ

∫
χ̂[2] Z → Z/2[3] the universal 4-bundle over

K(Hb×ḃ

∫
χ̂[2] Z, 1) is well-defined, denote this bundle by τ̂b×ḃ. The bundle

η̂∗
b×ḃ◦

(τ̂b×ḃ) (105)

over N̂b×ḃ◦ is well-defined.
Denote by

N̂N ◦ ⊂ N̂b×ḃ◦ (106)

the 3-dimensional subpolyhedron, generally speaking, with boundary, as a
homology Euler class of the Whitney sum of n−2k−3

4
copies of the bundle

(105). The condition (104) is equivalent to the following: the homology class

(pHd×Z,Hd
◦ η̃b×ḃ◦)∗([CÑN ◦]) ∈ H3(K(Hd, 1);Z) (107)

is even.
Consider the mapping N̂N ◦ → K(Hb×ḃ

∫
χ[2] Z, 1) → K(Z, 1). Without

loss of the generality, the inverse image by this mapping of the marked point
of S1 = K(Z, 1) is a closed 2-dimensional subpolyhedron, denoted by

L̂L ⊂ N̂N ◦. (108)

This polyhedron is PL–homeomorphic to an oriented surface, which is
equipped with a mapping

f̂ : L̂L −→ K(Hb×ḃ, 1). (109)

Let us use the following isomorphism: H2(K(Hb×ḃ, 1);Z) = Z/2.

Let us prove that there exists a closed oriented 3-manifold N̂N , its sub-
manifold as in the formula (108) and a mapping

F̂ : N̂N → K(Hb×ḃ

∫

χ[2]

Z, 1), (110)

for which the following two conditions are satisfied:
–1. The image of the fundamental class by the mapping (109) determines

the generator of the group H2(K(Hb×ḃ, 1);Z).
–2. The image of the fundamental class by the mapping

F̃ : ÑN → K(Hd × Z, 1)→ K(Hd, 1) = K(Z/4, 1)

is an even (or the trivial) element in the group H3(Hd;Z).
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Let us consider 2-torus L̂L, which is the the 2-skeleton of the standard
cell decomposition of the space (RP∞ × RP∞)/Ti ⊃ (RP1 × RP1)/Ti = L̃L,
where Ti : RP∞ × RP∞ → RP∞ × RP∞ is the diagonal involution, which
is defined by the standard involution i : RP∞ → RP∞. We may visualized
the space K(Hd, 1) as the space (RP∞ × RP∞)/Ti \ diag(RP

∞). By this
construction the involution χ̂[2] : K(Hd, 1) → K(Hd, 1), which corresponds
to the automorphism (17) is defined by the formula: x× y 7→ y × x.

Define the (orientation preserving) involution χ̂ : L̂L → L̂L, which per-

mutes the factors and reverses the diagonal. Define the mapping f̂ : L̂L →
K(Hb×ḃ, 1) (109), which transforms the diagonal generator i ∈ H1(L̂L;Z) to
the element ab ∈ Eb×ḃ (this element is represented by the sum of the diag-
onal loop with the generic loop of the first factor). Obviously, the mapping
f̂ commutes up to homotopies with the involutions χ̂, χ̂[2] in the source and
target spaces of the mapping f̂ . Let us call the considered property Gluing
Condition.

Let us define the manifold N̂N as an oriented 3-manifold by the cylinder
of the involution χ̂ : L̂L → L̂L. The mapping (110) is well-defined by a
fibered family over S1 of mappings of 2-tori in the space K(Hb×ḃ, 1) (the
source and the target space of (110) is the total spaces of fibrations over
S1). By Gluing Condition the mapping (110) is well-defined. This mapping
satisfies Condition 1.

Let us check Condition 2. Consider the following composition:

pHd,Z/2 ◦ F̃ : ÑN → K(Hd × Z, 1)→ K(Hd, 1)→ K(Z/2, 1), (111)

where the mapping pHd,Z/2 : K(Hd, 1) → K(Z/2, 1) is induced by the epi-
morphism Hd → Z/2 with the kernel Id ⊂ Hd. It is well-known, that the
cellular mapping pHd,Z/2 transforms the standard 3-skeleton S3/i ⊂ K(Hd, 1)
into the standard 3-skeleton RP3 ⊂ K(Z/2, 1) with degree 2.

Assuming Condition 2 is not satisfied and the mapping (110) determines
the generic homology class, then the mapping (111) is not homotopic to zero.
Assume that the mapping (111) is cellular. Then the image of this mapping
coincides with the standard 3-skeleton RP3 ⊂ K(Z/2, 1) and the degree of
the mapping (111) is equal to 2 modulo 4.

The mapping (111) is a 2-sheeted covering over the mapping

N̂N → K(Hb×ḃ

∫

χ[2]

Z, 1)→ K(Z/2× Z, 1)→ K(Z/2, 1). (112)

By the construction, the mapping (112) is homotopic to a mapping into
the standard 2-skeleton RP2 ⊂ K(Z/2, 1). This implies that image of the
fundamental class by the mapping (112), and by the mapping (111) is the
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trivial homology class. This prove that the degree of the mapping (111) is
equal to 0 modulo 4. The mapping F̂ satisfies Condition 2.

To prove Condition (107) we may assume that the image of the funda-
mental class by the mapping (109) is the trivial homology class. Therefore
it is sufficiently to prove Condition (107), assuming, that the surface L̂L is
empty. In this case the mapping η̂b×ḃ◦ admits a reduction into the subspace
K(Hb×ḃ, 1) ⊂ K(Hb×ḃ

∫
χ[2] Z, 1). Condition (107) is reformulated analogously

to Condition (102), which was proved above. Condition 2 from [Lemma 27,
A1] is proved. Lemma 2A is proved.

7 Proof of Lemma 1. Sketches of proofs of

Lemma 3, Proposition 28 [A2], Proposition 31

[A2] and Lemma 35 [A2]

To prove Lemma 1 is sufficiently to repeat a part of Lemma 2 B., which is re-
lated with a subpolyhedron RKb×ḃ◦ in the polyhedron of the self-intersection.
Lemmas 30, 32 from [A2] are proved analogously to 2. Lemma 35 from [A2]
is proved analogously to Lemma 3. A detailed proof of the lemmas requires
to make the paper greater.

A sketch of the proof of Lemma 3

The proof is analogous to the proof of the main result of the paper [Akh1].
Let us consider an auxiallary mapping p1 : Sn−2k+nσ−1+1/i → J1, given by
the formula (9), define by Cp1 the cylinder of this mapping. The projections
πI : Cp1 → [0, 1], πJ : Cp1 → J1 are well defined, denote the Cartesian
product of this mappings by F1 : Cp1 → J1 × [0, 1].

Аналогично рассмотрим отображение p̃1 : S
n−2k/i→ J1, определенное

по формуле (10) и обозначим через Cp̃1 цилиндр этого отображения.
Определены отображения проекций π̃I : Cp̃1 → [0, 1], π̃J : Cp̃1 → J1

и декартово произведение этих отображений, которое обозначим через
F̃1 : Cp̃1 → J1 × [0, 1]. Определено вложение r1 : Cp̃1 ⊂ Cp1 . Cледующие
диаграммы коммутативны:

Cp̃1 −→ Cp1

↓ π̃I ւ πI

I
(113)
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Cp̃1 −→ Cp1

↓ π̃J ւ πJ

J1

(114)

Consider the inclusion IJ : J1× [0, 1] ⊂ Rn× [0, 1] and define the mapping
IJ ◦ F̃1 : Cp̃1 → Rn× [0, 1], IJ ◦F1 : Cp1 → Rn× [0, 1]. Consider the mapping
f̃1 : Cp̂1 → Rn × [0, 1] which was defined by a small generic alteration of
the mapping IJ ◦ F̃1. The mapping f̃1 will be taken to be coincided on the
bottom of the cylinder J1 ⊂ Cp̃1 with the embedding IJ : J1 ⊂ Rn × {0}.
Moreover, the composition p[0,1] ◦ f̃1 : Cp̃1 → [0, 1] to be coincided with p̃I ,
where pI : Rn × [0, 1] → [0, 1] is the projection on the second factor. The
mapping f : Cp1 → Rn × [0, 1] is also defined such that f̃1 = f1 ◦ r1.

Denote by Q̄1 ⊂ Cp1 the polyhedron of self-intersection points of the
mapping f1, defined as the closure of the corresponded spaces by the formula:

Q̄1 = Cl{x ∈ Cp1 : ∃y ∈ Cp1, x 6= y, f(x) = f(y)}.

Because n− 4k = nσ, dim( ¯̃Q1) = nσ+1 + 1.

Denote by ¯̃Q1 ⊂ Cp̃1 the polyhedron of self-intersection points of the
mapping f̃1, this polyhedron is defined as the closure of the corresponded
subspaces by the formula

¯̃Q1 = Cl{x ∈ Cp̃1 : ∃y ∈ Cp̃1, x 6= y, f̃1(x) = f̃1(y)}.

Because n− 4k = nσ, we get dim(Q̄1) = nσ + 1.

Consider the stratification J
[2]
1 ⊂ J

[1]
1 ⊂ J1 of the join. Denote by Q̄J1 the

intersection Q̄∩J1. Denote by ¯̃QJ1 the intersection ¯̃Q1∩J1. The polyhedron

Q̄J1 has the codimension nσ+1. Because the codimension of J
[2]
1 ⊂ J1 is equal

to nσ+1 + 1, the polyhedron Q̄J1 ⊂ J1 is outside a regular neighborhood of

the stratum J
[2]
1 . The polyhedron ¯̃QJ1 has the codimension nσ. Because the

codimension of J
[1]
1 ⊂ J1 is equal to nσ + 1, the polyhedron ¯̃QJ1 ⊂ J1 is

outside a regular neighborhood of the stratum J
[1]
1 . Define the polyhedron

¯̃QJ1(ε) as the set of points from ¯̃QJ1 which are mapped with respect to the
projection π̃I into a small positive ε ∈ I.

Define the involution T ¯̃Q
: ¯̃Q → ¯̃Q which permutes points of self-

intersection on the canonical covering. The involution T ¯̃Q
keeps the values

of the mapping π̃I . The polyhedron ¯̃QJ1(ε) is invariant with respect to the
involution T ¯̃Q

. Denote by T ¯̃Q
(ε) the restriction of the considered involution

on the polyhedron ¯̃QJ1(ε), this restriction is a free involution.
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Define the mapping d1 : Sn−2k/i → Rn × {ε} = Rn as the restriction

of the mapping f̃1 on Sn−2k/i × {ε}. A quotient ¯̃QJ1(ε)/T ¯̃Q
(ε) is a poly-

hedron of self-intersection points of the mapping d1. Consider the poly-
hedron of self-intersection of the mapping d1 and its subpolyhedron N1.By
the construction, if the positive parameter ε is small enough, the structured
mapping ζ : N1 → K(E, 1) admits a reduction to a mapping into the sub-
space K(Q, 1) ∪ K(Eb, 1) ⊂ K(E, 1), the considered reduction is well de-
fined as the composition of the mapping t1 : N1 → RK1 with the mapping
φ1 : RK1 → K(Q, 1) ∪K(Eb, 1) (see the diagram (27)).

Let us prove that the mapping t1 satisfies the boundary conditions from
diagram (29) in Lemma 6. For ℓ ≥ 8 the number r1 of the factors of the
join J1, which is calculated by the formula (8), is greater then nσ. Because
dim(N1) = nσ−1−1, the boundary of the polyhedron N1 contains no strata of
a deep greater then r1−1

2
. Therefore the coordinate system in each component

N1 of the type Hb is agree with boundary conditions. Lemma 3 is proved.

Eb×ḃ–structure of formal mappings with holonomic singularities

Consider the polyhedron Xb×ḃ

∫
χ
S1, which is a skeleton of the Eilenberg-

Mac Lane space K(Ib×ḃ

∫
χ[2] Z), 1), correspondingly to [Formula (181), A2].

Consider the mapping iJX
∫
χ
S1 ◦ϕX

b×ḃ
: Xb×ḃ

∫
χ
S1 → Dn−1×S1 ⊂ Rn, where

the mapping ϕX
b×ḃ

is defined by the [Formula (186), A2], and the mapping

(embedding) iJX
∫
χ
S1 is defined by the [Formula (190), A2]. We shall consider

this mapping as a mapping with a holonomic singularity in the sense of
[Definition 9, A2]. Denote this formal mapping by (d∫ ,0, d

(2)∫
,0
). Let us restrict

this formal mapping (d∫ ,0, d
(2)∫
,0
) on the subpolyhedron Xb×ḃ ⊂ Xb×ḃ

∫
χ
S1,

and denote this restriction by (d0, d
(2)
0 ).

Lemma 12. There exists a C0–small PL-deformation of the formal holo-
nomic pair of mappings (d∫ ,0, d

(2)∫
,0
) to a pair of mappings (d∫ , d

(2)∫ ) with holo-

nomic singularity, such that the polyhedron N∫
◦ of formal self-intersection

of the mapping (d∫ , d
(2)∫ ) is decomposed into the union of two subpolyhedra:

N∫
◦ = N∫

,E
b×ḃ
∪N∫

,[3]◦, (115)

where N∫
,E

b×ḃ
is closed.

The restriction of the structure mapping ζ◦ on the subpolyhedron N∫
,E

b×ḃ

admits a reduction, which is given by the mapping ζb×ḃ : N∫
,E

b×ḃ
→

K(Eb×ḃ

∫
χ[3] Z, 1).
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The polyhedron N∫
◦ contains a subpolyhedron N◦ ⊂ N∫

◦, which is de-
composes into two components:

N◦ = NE
b×ḃ
∪N[3]◦,

where the components are defined as the corresponding components in the
formula (115). The restriction of the structured map ζ◦ on the subpolyhedron
N[3]◦ admits a reduction, which is given by the mapping

ζb×ḃ×Z/2◦ : N[3]◦ → K((Ib×ḃ × Z/2)

∫

χ

Z, 1),

and which is satisfies the boundary condition, given by a mapping into the
subspace K(Ib×ḃ × Z/2, 1). (In this formula the extension of the group
Ib×ḃ × Z/2 (and analogous extensions below) are corresponding to the in-
clusion Xb×ḃ ⊂ Xb×ḃ

∫
χ
S1.)

The mapping ζb×ḃ×Z/2◦ is a compressed by the canonical 2-sheeted covering

N[3]◦ → N̂[3]◦, and is a 2-sheeted covering mapping over the mapping

ζ̂b×ḃ×Z/2◦ : N̂[3]◦ → K((Eb×ḃ × Z/2)

∫

χ̂

Z, 1),

which is satisfies the boundary condition, given by a mapping into the sub-
space K((Eb×ḃ × Z/2)

∫
χ̂
Z, 1). In the previous formula the automorphism

(involution) χ̂ : Eb×ḃ × Z/2 → Eb×ḃ × Z/2 is the identity on the subgroup
Eb×ḃ ⊂ Eb×ḃ×Z/2, and is mapped the generator t ∈ Z/2 into the element tdt,
where td is the generator of the subgroup Id ⊂ Eb×ḃ. Define the automorphism
χ : Ib×ḃ × Z/2→ Ib×ḃ × Z/2 by the restriction of χ̂ on the subgroup.

Let us formulated and proof a lemma, which is required to check [Formula
(211), A2]. For an arbitrary pair of integers (s1, s2), s1 = 1 (mod 2), s2 = 1
(mod 2), s = s1 + s2 = n − n−mσ

8
, consider the homology class [(210), A2].

This homology class is defined as the image of the fundamental class of the
manifold X(s1, s2), which is naturally embedded into Xb×ḃ.

Denote the restriction of (d, d(2)) on X(s1, s2) by (d(s1, s2), d
(2)(s1, s2)).

Consider a polyhedron of the formal self-intersection of the mapping
(d(s1, s2), d

(2)(s1, s2)), which is represented by a disjoin union of the two
subpolyhedra. The canonical covering over the first polyhedron is a closed
subpolyhedron into N̄E

b×ḃ
, the canonical covering over the second polyhe-

dron is the closure of an open subpolyhedron in CN̄[3]◦, denote this closure
by CNX(s1, s2).
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Denote the fundamental class of the polyhedron CNX(s1, s2) by
[CNX(s1, s2)] ∈ Hn−n−mσ

4
(K(Ib×ḃ, 1)) (we have used the isomorphism

[(42),A2]).
Let us prove the formulas [(211),A2] analogously to Lemma 2A, in which

the formula (100) is proved (Condition 1 from [Lemma 26, A1]).

Proposition 13. An arbitrary homology class [CNX(s1, s2)] is trivial.

Proof of Proposition 13

Denote by NX(s1, s2)◦ an open polyhedron, which is the base of 2-sheeted
covering space NX(s1, s2)◦. The polyhedron NX(s1, s2)◦ is equipped with
the structure mapping

ζ(s1, s2)◦ : NX(s1, s2)◦ → K((Ib×ḃ × Z/2)

∫

χ̂

Z, 1),

and the regular neighborhood of the boundary is mapped by the considered
structure mapping into the subspace

K(Ib×ḃ × Z/2, 1) ⊂ K((Ib×ḃ × Z/2)

∫

χ̂

Z, 1). (116)

The manifold X(s1, s2) is a 2-sheeted covering over the manifold X̂(s1, s2).
Therefore, an open polyhedron, which is a base of the 2-sheeted covering with
the covering space NX(s1, s2)◦ is well-defined. Let us denote this polyhedron

by N̂X(s1, s2)◦. The polyhedron N̂X(s1, s2)◦ is equipped with a structure
mapping

ζ̂◦ : N̂X(s1, s2)◦ → K((Eb×ḃ × Z/2)

∫

χ̂

Z, 1),

a regular neighborhood of the boundary is mapped by this mapping into the
subspace

K(Eb×ḃ × Z/2, 1) ⊂ K((Eb×ḃ × Z/2)

∫

χ̂

Z, 1). (117)

Assume, that the image of the structure mapping ζ(s1, s2)◦ is inside
the subspace (116). Then the statement of the lemma is evident, because
CNX(s1, s2) is a composition with a 2-sheeted covering over CNX(s1, s2)
(comp. with the initial step of the proof of Lemma 2A).

Let us consider a general case. We shall use the polyhedron N̂X(s1, s2)◦.
The universal bundle over the space K((Eb×ḃ×Z/2)

∫
χ̂
Z, 1) is a 8-dimensional
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bundle. It is sufficiently to prove the formula for the cycle, which is defined
as the intersection of the considered fundamental class with the Euler class
of the pull-back of a suitable Whitney sum of the universal bundle. Denote
the Euler class of the universal bundle by τ̂b×ḃ×Z/2,

∫ .

For an arbitrary pair of the positive integers (p1, p2), p1 = 1 (mod 2),
p2 = 1 (mod 2), p = p1 + p2 = n+6

2
, define the submanifold XX(p1, p2) of

the dimension p, XX = RPp1 × RPp2 .
Define the embedding XX(p1, p2) ⊂ X(s1, s2), as the Cartesian prod-

uct of the coordinate embeddings RPp1 ⊂ RPs1 , RPp2 ⊂ RPs2 , which
satisfies the restriction s1 − p1 = s2 − p2 = s−p

2
. Define the formal

mapping (dd(p1, p2), dd
(2)(p1, p2)) as the restriction of the formal map-

ping (d(s1, s2), d
(2)(s1, s2)) to the submanifold XX(p1, p2). Denote by

NXX(p1, p2)◦ an open polyhedron of the formal self-intersection of the map-
ping (dd(p1, p2), dd(p1, p2)

(2)). The following 6-dimensional subpoluhedron

NXX(p1, p2)◦ ⊂ NX(s1, s2)◦

is well-defined, the fundamental class of this subpolyhedron is realized the

homology Euler class of the bundle ζ∗◦(τ
s−p

8

b×ḃ×Z/2,
∫ ).

Let us prove that the homology class

[CNXX(p1, p2)] ∈ H6(Ib×ḃ, 1) (118)

is trivial. We shall distinguishes the exceptional case, when p1 = 1, or p2 = 1.
Consider non-exceptional case in which p1 ≥ 3, p2 ≥ 3. Let us prove that
the homology class (118) is trivial.

The lens manifold (RPp1 × RPp2)/idiag is immersible into Rn. There-
fore the homology class of the boundary singularities of the polyhedron

∂(N̂XX(p1, p2)◦) in the group H5(Eb×ḃ × Z/2, 1) is trivial. Let us omit
below the marks ◦ and C in denotations.

Let us consider the 5-dimensional fundamental class [p̂−1(pt)] ∈ H5(Eb×ḃ×

Z/2, 1) of the closed subpolyhedron p̂−1(pt), where p̂ : N̂XX(p1, p2)→ S1 is
the projection, which is induced by the projection pE

b×ḃ
×Z/2,

∫ of the universal
space.

Assume that the homology class [p̂−1(pt)] is trivial. Then, without loss
of a generality, we may assume that the manifold p̂−1(pt) is empty and the
proof is reduced to the previous.

Assume that the homology class [p̂−1(pt)] is non-trivial. Let us prove that
the homology class [p̂−1(pt)]! is realized for a suitable mapping of a closed
6-dimensional manifold A, ζA : A → (Eb×ḃ × Z/2)

∫
χ̂
Z, 1), for which the

homology class, defined analogously to (118), is trivial.
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Let us decompose the fundamental class [p̂−1(pt)] over the base of the
group Im(H5(K(Eb×ḃ × Z/2, 1);Z) → H5(K(Eb×ḃ × Z/2, 1)). Consider the
following epimorphisms:

πb : Eb×ḃ × Z/2→ Eb × Z/2,

πḃ : Eb×ḃ × Z/2→ Eḃ × Z/2.

Assume that the image of the homology class [p̂−1(pt)] in the group
H5(K(Eb × Z/2, 1) × K(Eḃ × Z/2, 1)) by the homomorphism (πb × πḃ)∗ is
represented by the tensor product of a homology class of H2(K(Eb×Z/2, 1)
to a homology class of H3(K(Eḃ × Z/2, 1)). The proof in the last cases is
evident (or is is given after b is replaced by ḃ.)

The condition χ̂∗([p̂
−1(pt)]) = [p̂−1(pt)] is satisfied, because the boundary

conditions on N̂XX(p1, p2)◦ determines the trivial homology class. There-
fore, after the expansion of the element πḃ,∗([p̂

−1(pt)]) over the standard base
the generator of the factor H3(K(Z/2, 1);Z) is not involved and πḃ,∗([p

−1(pt)])
is expressed by the generator of H3(K(Eb, 1)).

Analogous to the construction (110), without loss of a generality, we may
assume that the homology class (118) is trivial. Therefore, without loss of a
generality, we may assume, that p−1(pt) = ∅, and we may repeat the previous
proof as in the case, when the image of the structure mapping is inside the
subspace (117).

Is sufficiently to prove that in the exceptional case the homology class
(118) is trivial. Let us decomposes the homology class (118) over the stan-
dard base of the group H6(Ib×ḃ, 1). The generators of the group are t3,bt3,ḃ,
tbt5,ḃ, t5,btḃ. In the exceptional case, evidently, that the generator t3,bt3,ḃ is not
involved. To prove that the last generators tbt5,ḃ, t5,btḃ are not involved, let
us intersect the 6-dimensional polyhedron NXX(p1, p2)◦ with 4-dimensional
Euler class of the universal bundle, which is the bull-back by πb, or by πḃ,
correspondingly to the generators tbt5,ḃ, t5,btḃ. The proof is analogous to the
previous proof, this proof is more simple, because the Euler class is repre-
sented by a 2-dimensional subpolyhedron in NXX(p1, p2)◦. Is sufficiently
to consider the only generators of H1(K(Eb×ḃ × Z/2, 1);Z) = Eb×ḃ × Z/2.
Lemma 13 is proved.
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