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Abstract

Collection of PL-mappings admitting a relative abelian, cyclic,
quaternionic, bicyclic, and quaternionic-cyclic structures are con-
structed.

Introduction

A map with a target in an Euclidean space is assumed PL, if a smoothness
conditions do not mentioned. A generic PL-map is a PL-map, such that each
pair of hyperplanes spanned by the images of corresponding pair of simplexes
are transversal. A critical point is a point, such that the restriction of the
map on an arbitrary neighborhood of this point is not an embedding. We do
not assume extra conditions for a generic PL-map in critical points.

Let us consider the groups Z/ 2[5! this group was defined in the introduc-
tion of [A2] as a subgroup of the group Z/2 [ £(257!), and the corresponding
cobordism groups of immersions (see [A2, Diagram (21)]). In [A2, Diagram
(20)] subgroups I x I, B, ;, Jo x Jo, QX Z/4 of the groups Z/2*, 2 < s < 5,
are defined and the following definitions were considered: abelian structure
(Definition 5), E, ; structure (Definition 14), J, x J,-structure (bicyclic
structure) (Definition 16), and quaternionic—cyclic structure (Definition 23)
for corresponding framed immersions. These notions are used in Theorems
8, Lemmas 15 and 17, Theorem 25 to prove the Main Theorem in section 5.

The definitions of abelian, E, ;-structure, J, X J—structure, and
quaternionic—cyclic structure of Z/2[*~framed immersions, s > 2, are in-
troduced to weaken the condition of a reduction of classifying mappings of



the self-intersection Z/2[*framed immersions of the considered framed im-
mersion, see [A2, Definitions 4, 13, 13, 22| correspondingly. Analogously, for
the notion of quaternionic reduction see Definitions 19 in [A1]. In the present
part of the paper these notions were not considered, the analogous relative
notions were considered, and I will recall them.

The definitions of abelian, cyclic, and quaternionic structure of framed
immersions admit relative analogs for formal PL-mappings with singulari-
ties of the standard projective (see [A2, Definition 10]), standard Z/4-lens
(see [A1, Definition 25]). The definitions of E,_ ; structure and J, x J,-
structure of framed immersions also admit relative analogs for formal PL-
mappings with singularities of the standard skeleton of the corresponding
Eilenberg-Mac Lane spaces (see [A2, Definition 29, 31]). The definitions
of quaternionic—cyclic structure also admit relative analogs, this analogous
definition is formulated for PL-mappings with singularities of the standard
skeleton of the corresponding Eilenberg-Mac Lane space (see [A2,Definition
36]).

The existence of (a relative) abelian structure is formulated in Lemma 7
of [A2], for convenience this lemma is reformulated below as Lemma [Il (In
the statement of this lemma below we re-denote the integer &’ by k.)

Lemma 1. For the dimensional restrictions
n—k=-1 (mod4), k>4, n=0 (mod?2) (1)

there exists a formal (equivariant) mapping d® : RP"* x RP"F — R" x R",
which admits an abelian structure (in the sense of [A2, Definition 10]).

The existence of (a relative) cyclic structure is formulated in Lemma 32
of [A1], this lemma is reformulated below as Lemma

Lemma 2. A. For the dimensional restrictions
n—k=1 (mod2),n—3k—10>0, n=0 (mod2) (2)

there exists a generic PL-mapping d : RP"% — R™ (with singularities) with a
marked closed component of the self-intersection, for which the formal exten-
sion d@ admits a cyclic structure (in the sense of Definition [A1, Definition

24]).

B. For the dimensional restrictions
k>5 mn—k=0 (mod4) (3)

there exists a formal mapping d® with formal self-intersection along a

marked closed component N,, which admits a cyclic structure (in the sense
of [A1, Definition 24]).



Remark. Lemma 2 for the proof of the main result of [A1] is not used.

The existence of (a relative) quaternionic structure is claimed in [Al,
Lemma 33| and is reformulated below. this lemma is reformulated below as
Lemma [ (in this lemma we re-denote the mapping ¢ by d).

Lemma 3. Forn=4k+ (2°—1),n=2—1,0>7, 0 = [5}], then there
exists a generic PL-mapping d, : S"~% /i — R™ with singularities admitting
a quaternionic structure in the sense of [A1, Definition 25].

The existence of a relative E,;—structure in the sense of [A2, Definition
29| is formulated in [A2, Proposition 30].

The existence of a relative J, X J «—structure in the sense of [A2, Definition
31] is formulated in [A2, Proposition 32].

The existence of a relative Q x Z/4-structure in the sense of [A2, Defini-
tion 36| is formulated in [A2, Lemma 37].

In this part of the paper we shall prove all the results formulated above
from a unified point of view. The possibility of such an approach in the case
of cyclic structure was discovered by Prof. A.V.Chernavsky at the end of
the last century, and by Dr. S.A.Melikhov (2005) in the case of quaternionic
structure. Preliminary results for cyclic and E, ;-structure in the case of
weaker restrictions on the codimension of the immersion, are given in the
papers [Akhl], [Akh2]|.

Let us formulate a number of remarks, which seem to be of interest.

1. It is not, in general, possible to formulate the notion of abelian
structure (and analogous notions considered above) in terms of the reduc-
tion of a classifying mapping to the classifying subspace of a corresponding
abelian subgroup. For example, in the case n = 62 there is, as proved
in [M], an obstruction to the reduction of the classifying mapping for the
self-intersection manifold of an immersion f : M"™ ! ¢ R" into classifying
subspace K (I, x I, 1) € K(Z/2,1) of the abelian subgroup.

2. For the construction of cyclic and quaternionic structure for im-
mersions (relative cyclic and quaternionic structures for PL-mappings with
singularities) only double self-intersection points of immersions (of PL-
mappings) are considered. Alternatively, in the paper [E| (this paper, as was
noted in [A1],[A2], is the foundation of our construction) self-intersection
points of an arbitrary multiplicity were considered. In particular, it is inter-
esting to define and to study a quaternionic structure, related with quadruple
points manifolds of skew-framed immersions.

3. The construction of quaternionic structure in Lemma [3]does not require
the Massey embedding S%/Q C R* [M], see also [Me]. Such an embedding
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was known earlier to W.Hantzsche [He|. By means of such an approach, it
might be possible to weaken the dimensional restrictions in Lemma [3 For
example, the Massey embedding allows to generalize Lemma [3] for maps in
the range % (for maps M™ — R", ™ < %) This means that one may consider
an extra two quadratic extensions of the quaternionic group as the structure
group of framing of immersions.

Note that in [Al] the cases n = 15, n = 31 and n = 63 were not con-
sidered. Additional arguments, in particular, might yield a proof of the last
cases in the Adams Theorem on Hopf invariants, and clarify the remaining
case in dimension 126 not covered by the Hill-Hopkins-Ravenel Theorem on
Kervaire invariants.

1 Auxiliary mappings

Crpositest Bcriomoratesibibie orobpaxkenus. B Jlemme [I] BciomoraresbHOe
oTobpazkenue cq i orobpaxkenue dy; B Jlemme BCIIOMOTATe/IbHbIE
orobpazkenust ¢, ¢ i orobpaxkenust d; B Jlemme [3] BcromorarenbHbie
0TOOPaXKeHus 1, C1 it oToOpazkeHusd d; .

We start by construction of auxiliary mappings. In Lemma [Tl this is axil-
lary mapping ¢, for the mapping dy; in Lemma 2] there are axillary mappings
¢, ¢ for the mapping d; in Lemma [3] there are axillary mappings ¢y, ¢; for the
mapping d;.

The transformation in Lemma [ to the required formal (equivariant)
mapping d® from the mapping c is given by an approximation, which is
constructed in Lemma [0

To proof the mentioned lemmas and propositions we introduce on the
singular set of auxiliary mappings the coordinate system called angle-
momentum. By means of this coordinate system in LemmasBl6l The config-
uration space in Lemma [0 is defined as finite-dimensional resolution spaces
for the singularity of the mapping c¢. In Lemma [6] the resolution spaces is
much simpler, because the mapping under investigation is close to stable.

Construction of an axillary mapping ¢, : RP"* — R" in Lemma [I]

Denote by Jy the standard (n — k)—dimensional sphere of codimension k in
R™, which is represented as the join of

—k+1
L= (@

copies of the circle S'. We denote the standard embedding of .J, into R™ by
1y - Jo C R". (5)
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A mapping pf, : S"% — J is obtained as a result of taking the join of r
copies of the standard double covering S — RP!. The standard antipodal
action Iy x S"* — S"* (here and below for notations of the group I etc.
see the first part of the section 2 in [A1l]) commutes with the mapping p.
Hence, there results a mapping with ramification p) : RP"* — J;. The
required mapping ¢y : RP"* — R" is defined by means of the following
composition: ¢y, o py.

Construction of axillary mappings c: RP" % — R", ¢: S"%/i — R" in
Lemma

The mapping p’ : S"* — J is well defined as the join of r (see (@) copies
of the standard 4-sheeted coverings S' — S'/i. The standard action I, x
Sk — S~k commutes with the mapping p’. Thus, the map p: S"*/i — J
is well defined and the map p : RP"~* — .J is well defined as the composition
pom: RP"* — J of the standard double covering 7 : RP"* — S"* /i with
the map p.

The required mapping c is defined by the formula

iyop:RP"™* » JC R (6)
The required mapping ¢ is defined by the formula
iyop:S"F/i = R™ (7)
Construction of axillary mappings ¢ : S* 242" /i — R, &
Sn2k /i — R

Let a positive integer parameter k£ and a positive integer n are given as in
Lemma Bl Let us denote by J; a (n — 2k + 27~ !)~dimensional polyhedron
(the equation n—2k+27"1 = -1 4.2 is satisfied), this polyhedron is defined
as the join of

n+1
20+1

+]_:7"1 (8)

copies of the standard quaternionic lens space S* 71 /Q. Below we shall used
the following notation n, = 2° — 1, as in [Al] and m, = 27 — 2, as in [A2]).
By the Hirsch Theorem an embedding iq : S™/Q C R" 3 is well defined.

Assuming n = 4k + 2% — 1, £ > 7 the embedding J; C R", as the join of
r1 copies of the embedding iq, is well defined; let us denote this embedding
by iy :J1 C R™ (comp. with the mapping in [Lemma 35, A2|.



The mapping p} : S"~2+ne-1=1 ], is well defined as the join of r; copies
of the standard coverings S™ — S" /Q. The action Q x Sn~Z+no-1-1
Sn=2ktne—1-1 is well defined as the standard diagonal action, given by (23)-
(25) in [A1], this action commutes with the mapping p/.

Thus, the map p; : S~ 2k+7e-1-1/Q — J; is well defined and the map

pL =P om SV T 9)

as the composition of the standard double covering m : " 2k+ne-1-1/j
Sn=2ktno—1=1/Q) with the map p.

Define the required mapping c¢; as the composition 75 o p;
Sn=2htne—1=1/j  Gn=2tno—1=1/Q — J; C R". Consider the submanifold
i: S /i ¢ Sno2Ano1i-l/i this submanifold is in general position with
respect to strata of the manifold S"~2*ne-1=1/j the strata are determined
by the join structure. Define the mapping

ﬁl = ﬁl O T 01: Sn_Qk/i C Sn_2k+n071_1/i — Jl. (10)
Define the required mapping ¢; as the composition

¢ S i ¢ grmkmetl L R (11)

2 Configuration spaces and singularities

Subspaces and factorspaces of the 2-configuration space for RP"*,
related with the axillary mapping ¢ in Lemma [I]

In [A1, Section 3 (46)] the space T, its double covering I, and the structural
mapping nr : I' = K(D, 1) were defined. The space I' is a manifold with
boundary. Denote the interior of this manifold by I';. The restriction of the
structural map nr on I'; will be denoted by nr, : ['; — K(D, 1).

Denote by K, C I', the polyhedron of double-point singularities of the
map p : RP"* — J, this polyhedron is defined by the formula {[(z,y)] €
o, p(x) = p(y), x # y} (see [Formula (39),A1]). This polyhedron is equipped
with a structural mapping

Nk, : Ko — K(D, 1), (12)

which is induced by the restriction of the structural mapping np, (see [Al]
and below) to the subspace K.

Consider the manifold, which is defined by the compactification of the
open manifold I'; by means of diagonal component X4,, (the blowing up



of the diagonal is not considered). Denote the closure of CI(K,) of the
polyhedron K, in this manifold with singularities by K. Denote by Qaiqg
the space Cl(K,) \ K,. Obviously, Qgiay C K. Let us call this subspace the
boundary of the polyhedron K.

The restriction of the structure mapping ng, on a regular deleted neigh-
borhood UQuiago 1s given by the composition of the mapping 7uq.,,. :
UQdiago — K(I,1) and the mapping ir,p : K(I;,1) — K(D,1). Homo-
topy classes of the mappings 74iay and nyq,,,,, are related by the equation:

Ndiag © PT0Jdiag = PL,,1; © NUQgiago

Note that the structural mapping of 1. does not extended from K, to the
component g,y of the boundary. The mapping Kgiag : Quiag — K (Ig,1) is
well defined. Denote by U(Qgiag)o C K asmall regular deleted neighborhood
of Qdiag~

Subspaces and factorspaces of the 2-configuration space for RP"*,
related with the axillary mappings ¢, ¢ in Lemma

The space I', the subspace I, C T, its double coverings I, T, were defined
above. The structural mapping nr, : I'c — K(D, 1) also were defined.
Denote by

2, c T, (13)

the polyhedron of double-points singularities of the map p : RP"™* — J,
this polyhedron is defined by the formula {[(z,y)] € T's,p(x) = p(y),z # y}.
This polyhedron is equipped with a structural mapping s, : ¥, — K(D, 1),
which is induced by the restriction of the structural mapping nr, on the
subspace ..

The standard free involution i : RP"~% — RP"* is well defined. This
involution permutes points in each fiber of the standard double covering
RP"~* — S"=k /i, The space I', admits an involution (with fixed points)

Tio : Ty — T, (14)

which is defined as the restriction of an involution i x i : RP"* x RP"*,
constructed by the involution i on each factor, on the subspace I'y C RP™* x
RP"*. On the quotient I, /T =T, of 'y by the another involution 7', which
permutes the coordinates, the factorinvolution Tj, : I'y — I, is well defined.

Let us denote by Y4ntidiag C I's a subspace, called the antidiagonal, which
is formed by all antipodal pairs {[(z,y)] € T : x,y € RP"* x £ y.i(z) = y}.



It is easy to verify that the antidiagonal X ,,tidieg C I's is the set of fixed points
for the involution Tie.

The subpolyhedron ¥, C I, of multiple-points of the map p is represented
by a union X, = Ygntidiag U Ko, where K, is an open subpolyhedron contains
all points of ¥, outside the antidiagonal. The subpolyhedron K, C 'k, is
invariant under the involution Tj,.

Define the restriction of the involution Ti,|k, by Tk,. The considered
restriction is a free involution. Denote the factorspace K,/Tk, by K,. The
restriction of the structure mapping np, : I's — K(D,1) on K, denote by
NK, -

Denote the closure of CI(K,) of the polyhedron K, (respectively, the
closure of the polyhedron C1 (Ko) polyhedron K, ©)) by K (respectively, by
i),

Denote by Qgiqg the space Ol 4iqg MK . Obviously, Quiqg C K. We shall call
this subspace the component of the boundary of the polyhedron K. Similarly,
we denote by Qdiag the component of the boundary of the polyhedron K.

Note that the mapping nx is not expendable to boundary component
Qdiag- The mapping Kgiag : Qaiag — K (Ig,1) is well defined. Let us denote
by U(Qdiag)o C Ko a small regular deleted neighborhood of Qgiey. The
projection projuiag : U(Qdiag)e — Qaiag Of the regular deleted neighborhood
to Qaiag- The restriction of the structural mapping 7k, to the neighborhood
U(Qdiag)o 1s represented by a composition of the map ny(Quu,)o * U(Qdiag)o —
K (Ip,1) and the maps i, p : K(I,1) — K(D, 1). Homotopy classes of maps
N5 Quiag AN NM(Quiay). SatisEy the equation:

nd’iag o projdiag - prvld o nUQdiago'

Let us investigate the polyhedron of singularities of an axillary mapping
¢. define the following commutative diagram of subgroups:

beb
Ve N
I, c I, ¢ D Cc H. (15)
\ N
L.

In this diagram, the inclusion D C H is a central quadratic extension of
D by the element i (of the order 4), for which i? coincides with the generator
—1 of the subgroup I; C D. The abelian groups H,,H,_ ;, H.,H; are the
subgroups in H, this groups are the quadratic extensions of the corresponding
subgroups I, I, x L,, I.,I; by means of the element i. Note that the groups
H, ; and E, ; (see above [formula (84), A2]) are isomorphic.
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The difference between the considered groups H,; and E,_; are the fol-
lowing: the representation of H, ; — ZPl (see below [Example 16, Al])
and B, ; — Z/2P (see [Diagram (85), A2|) are different. The kernel of the
epimomorphism

H, ; — 72/2 = 7/2, (16)

where Z/28) — 7/2 corresponds to the subgroup [(19),A2] of the index 2,
contains an element i € Hy C H, ; of the order 4 (comp. with Diagram
([I8) below, in which H; = H. N H,_ ;). The kernel of the homomorphism
E,.; — Z/2B — Z/2 coincides with the subgroup I, ; C H,_;, which is an
elementary 2-group.

The induced automorphism X : Z/2B8 — 7 /28! of the group H,,;,
re-denoted by

X[Q] : Hb><i) - beb’ (17>

is defined by the formula 2 (i) = i, where i € H;-is the generator.
The following natural mapping 7, : K, — K(H, 1), which corresponds
to the mapping of canonical 2-sheeted covering, is well-defined:

K, K, K(I,1) — K(H,1)
! L= ! (18)
K, 5 K, K(D,1) — K(H,1).

Horizontal maps between the spaces of the diagrams we re-denote for
brevity by 7,7,n,n, respectively.

Subspaces and factorspaces of the 2-configuration space for S" 2% /i,
related with the axillary mapping ¢,

The space I'y, its double covering I'y, and the structural map nr, - I —
K(H,1) was defined in [Al, Section 4, (62) and below]|. The space I'; is a
manifold with boundary. Denote the interior of this manifold by I'y,. The
restriction of the structural map np, to I';, will be denoted by np,, : ['\oc —
K(H,1).

Denote by X1, C I'y e the polyhedron of double-points singularities of
the map p : S"~2¢ — J;, this polyhedron is obtained by the blowing up of the
polyhedron {[(z,y)] € T'1o,p(x) = p(y), x # y}. This polyhedron is equipped
with a structural mapping

(spo @ 210 — K(H, 1), (19)
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which is induced by the restriction of the structural mapping (r,, on the
subspace X1,.

The subpolyhedron ¥;, C I'j, of multiple-points of the map p; is repre-
sented by a union X, = Yantidiag U K10, Where Ky, is an open subpolyhedron,
this subpolyhedron contains all points of ¥;, outside the antidiagonal. Let
us denote the restriction of the structural mapping (r,, : I''o — K(H, 1) on
I'k,, and on K, by (r,, and by (k,, respectively.

Denote the closure of Cl(Kj,) of the polyhedron Kj, in I'; (respectively,
the closure of the polyhedron Cl(K,) polyhedron K, in I'y) by K (respec-
tively, by K 1). Denote by Qantidgiag the space Lqpsidiag N K1, denote by Qgiag
the space Ol giqy N Kq. Obviously, Quiag C K1, Qantidiag C K1. We shall call
these subspaces the components of the boundary of the polyhedron Kj.

Note that the structural mapping of (k,, is extended from K;, to the
component Quntidiag of the boundary. Denote this extension by (g, ., diag
Qantidiag — K(H,1). The mapping (qg,,,.u., 15 the composition Canidiag :
Qantidiag — K(Q, 1) and the inclusion iqu : K(Q,1) C K(H,1).

Note that the mapping (x, is not expendable to boundary component
Qdiag- The mapping Cuiag : Quaiag — K (Is, 1) is well defined. Let us denote
by U(Qdiag)e C Kio a small regular deleted neighborhood of Qi The
projection projuiag : U(Qdiag)o — Qdiag Of the regular deleted neighborhood
to Quaiqg to the central manifold is well defined.

The restriction of the structural mapping (x,, to the neighborhood
U(Qdiag)o 1s represented by a composition of the map (uqQ,.,. : UQdiago —
K(H,.;,1) and the maps ig . m: K(H,.;,1) - K(H,1).

bxb>
Homotopy classes of maps (giag and (rq,,,,, are related by the equation:

Cdiag O Projdiag = prXb’Ia o CUQdiago-

3 Resolution spaces for singularities

Resolution spaces for polyhedra K, and K,

We construct a space RK,, which we call the resolution space of the polyhe-
dron K,. In [A2] the group (I x ib>X[2]Z7 equipped with the homomorphism
ol (1, x ib)x[z]Z — D, and the subgroup I, x I, C (I, x ib)x(z)Z are well
defined.

Consider the following diagrams:
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RK, K,

¢4 (20)

K((Iy x 1)@ Z, 1),

RQdiago ﬂ) UQdiago
(b \( . x/ ndiago (21)
K(Ib X Ib, 1),

where RQdiago = (pr> -1 (UQdiago) .

Lemma 4. There exists the space RK,, which is included into the commu-
tative diagram 20)). The following diagram (1)) determines the boundary
conditions.

Resolution spaces for polyhedra ¥ and K

Define a space RY,, which is called the resolution space for the polyhedron
Yo, which is given by the formula (I3)).
The space RY, contains two components, which is denoted by R,

RE o
RY, URK,,;, = RY,. (22)
The space RY, is a closed polyhedron, for which the structured mapping
o RE, — K(I,,1) (23)
is well-defined. The mapping (23)) is included into the following commutative

diagram:

Y, & Ry,

1 7o 1 ¢a (24)
KD,1) > K(I,1).

The space RK,;, is a 2-sheeted covering space of the covering Rr,; :
RKbeo - RKbeo'
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r Rry ¢ N 7 N
K, & RK, ;. L RK, ;. 7 K,
b i L by (25)
KLy Jya Z,1)  C  K(Hyy fo0 Z,1).

The group H,; fw], which is used in Diagram (25]) is defined analogously
to the group (E,. ;) fxm Z, [Formula (68), A2], using the automorphism (in-
volution) ([IT]). A ) A
Denote (p7) "N (UQuiago) by BQuiago- The following inclusion RQuiago C
RK, bxciro 15 Well-defined.
Let us denote by RQgiqgo the boundary of the corresponding 2-sheeted
covering space over RQdmgo. The following diagram is well-defined.

RQdiago L U@diago
(ﬁbxb i ﬁdiago i (26)
K(bebePJ Z,1) - K(Hy, 1).

To prove the main result of the section we will use the following lemma.

Lemma 5. There exists a space RY,, which is satisfies the equation (22]).

The component RY., is equipped by the mapping 23), which is included
into the commutative diagram (24]).

The component RK,;, s the total space of a regular 2-sheeted covering
over the space Rf(bxl}o such that the commutative diagram ([28) is well-defined.
Moreover, the commutative diagram (26]), which determines boundary condi-
tions, is well-defined.

Resolution space for the polyhedron 3;

We shall define a space R, which we call resolution space of the polyhedron
Y1. The space kY, contains two components, which is denoted by RXq,
RKw, o, as follows:

RYq U RKw, ;o = RY1. (27)

Let us consider the following diagrams:
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RYQURKH, o -5 i

e (28)

K(Q? 1) U K(bebv 1)7

RQdiag & Qdiag
¢1 \1 \/ Cdiag (29)
K<bel}7 1),

in Wthh RQdiag = (prl)_l(Qdiag)'

The following lemma is analogous to Lemma

Lemma 6. There exists a space RKy, which is satisfies the equation (21),
an which is included in the commutative diagram 28)). Moreover, the com-
mutative diagrams [29)) determines boundary conditions.

4 JlokazareabCcTBO JleMMBbI

5 Proof of Lemma

Let us recall that the polyhedron J is PL homeomorphic to the standard
sphere S"~*. Consider the embedding (B)). Decomposes this embedding into
the following composition of the standard embeddings: i; : J C J x R¥=® C
R™"5, 4y : R"5 C R*L, 43 : R Cc R™.

Consider the mapping ¢ : S %/i — R", which is given by the formula
([@). Let us represents this mapping by the composition of the mapping
¢ 1 S"k/i — JxR¥3, the inclusion iy : J x R¥=> C R"7! and the standard
inclusion i3 : R"~! C R™.

Define the mapping é; : S"*/i — R"~® as a result by a special C'-small
PL—deformation of the mapping ¢.

Denote by Uj; C R"° the regular neighborhood of the embedded sphere
J C JxRF35 C R 5. Denote by projy : Us; — J the orthogonal projection
of a smallest neighborhood onto the central sphere J. The PL-deformation
¢y — ¢ is defined as a vertical deformation with respect to the orthogonal
projection proj;.

Consider the mapping ¢; = po ¢, : RP"F — §7=%/i — R and define
a mapping ¢, : RP"~¥ — R"~® as the result of an additional C''-small defor-
mation ¢; — ¢}, which is vertical with respect to the projection proj;, and
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which has the caliber €, much smaller then the caliber € of the deformation
é/l — Cq.

Let us denote the self-intersection polyhedron of the mapping ¢, and the
open subplolyhedron the of regular self-intersection points of this map by

N c N'. (30)

By dimensional reasons, the mapping ¢} has no self-intersection points of the
multiplicity 3 and more. Because the codimension codim(¥(c})) = k — 5,
using the condition ([2) we get: 2codim(N') > n — k.

Because the deformation ¢; — ¢] is vertical, the polyhedron N! is a
subpolyhedron in the polyhedron ;. Denote by

bio € VY (31)
an open polyhedron, which is defined by the inverse image of the subpolyhe-
dron ([42) (see below) by the standard inclusion N/ C 3.

Because ¢ << £, the subpolyhedron (31]) is equipped by the involution,
which is induced from the involution (I4]) by the standard inclusion. This
involution is a free involution, because the polyhedron (B1]) does not intersects
the antidiagonal. Let us denote by NI:XBO the quotient of the polyhedron V. l;xl}o
with respect to this involution. The associated 2-sheeted covering denote by

E;Xi)o - Nlﬁxi)o' (32)
The following commutative diagrams are well defined:
Né ) U<N(;iago)
\L 77:; \L n:jiago (33)
KD,1) > K({I,.,1),
NI:XBO 2 U<Nclliago)
i/ ﬁ(la i/ ﬁéliago (34>

K1) > K(H,;1).

Below we shall define the required mapping d : RP"* — R" as the result
of a special deformation iy o ¢j — d. The deformation iy o ¢ — d, gener-
ally speaking, is not a vertical deformation with respect to the orthogonal
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projection proj; o (R™ — R™7°). Let us denote by N, an open polyhedron
of self-intersection points of the mapping d. The following subpolyhedra are
well defined: N, ;, C N, Nb Properties of the mapping d is described in
the following lemma.

xbo*

Lemma 7. There exists a C°—small PL-deformation izoc; + d, d : RP"% —
R™ 1, such that for the polyhedron N, is decomposed into the union of two
subpolyhedra:

N,=N,UN, (35)

Xi)o’

where N, is closed.
The restriction of the structure mapping 1, on the closed subpolyhedron
N, admits a reduction, given by a mapping pig : Ny — K (I, 1):

Ta = iq0 fig: Ny = K(I,,1) € K(D, 1). (36)

The restriction of the structured map n,.;, to the component N, 18

xbo

a 2-sheeted covering mapping over a mapping .. : NbxbO — K(H,1).
The mapping 7., admits a reduction by a mapping [l ;. : Nbxi)o —

HbXb fx[Q] Z 1

ﬁbxl}o = @)[2} © ﬂbxl}o : Nbxbo — K<Hb><b 2] Z’ 1) - K<H’ 1)7 (37>

X

where ®2) : bxbf Z,1) — K(H,1) is a natural mapping (see an anal-
ogous [Dmgmm (85), AQ/)

A sketch of the proof of Lemma

The deformation iy o ) — d will be defined, such that the polyhedron (35])
admits a resolution mapping;:

taUt,, : NoUN, ;, — RK,URK,

xbo xbo*

The following properties are well-defined: The mapping ¢, induces the fol-
lowing mapping i, = ¢ 0t, : N, — K(I,, 1), which is the required mapping.
The mapping ¢, induces the following mapping 14, ;o = @pviotpxio © Npxio —
K(,.; fx[g] Z,1). This mapping is a 2-sheeted mapping over the second re-
quired mapping . ;. : Nbxbo — K( bxbf . An outline of the proof
of Statement A of Lemma [2is presented. Statement B of Lemma [2]is proved

analogously.
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6 Coordinate system angle-momentum on the
spaces of singularities and construction of the
resolution spaces

The complex stratification of polyhedra J, >, >, by means of the
coordinate system angle - momentum

Let us order lens spaces, which form the join, by the integers from 1 up to
r and let us denote by J(kq,...,ks) C J the subjoin, formed by a selected
set of circles (one-dimensional lens spaces) S!/i with indexes 1 < ky < -+- <
ks <r,0 > s > r. The stratification above is induced from the standard
stratification of the open faces of the standard r-dimensional simplex " under
the natural projection J — ¢". The preimages of vertexes of a simplex are
the lens spaces J(j) C J, J(j) ~ S'/i, 1 < j < r, generating the join.

Define the space J¥) as a subspace of J, obtained by the union of all
subspaces J(ky,...,ks) C J.

Thus, the following stratification

J(T) C---C J(l) C J(O)’ (38)

of the space J is well-defined. For the considered stratum a number r — s
of missed coordinates to the full set of coordinates is called the deep of the
stratum.

Let us introduce the following denotation:

Jil — j@ \ JU+. (39)

Denote the maximum open cell of the space p~(J(ky,..., ks)) by
U(k:l, ..., ks) C S"*/i. This open cell is called an elementary stratum of
the depth (r — s). A point at an elementary stratum U (ky, ..., k,) C S" 7% /i
is defined by a set of coordinates (ig,,...,Zk,,\), where &, € St is a co-
ordinate on the 1-sphere (circle), covering lens space with the number k;,
A = (g, ..., lg,) is a barycentric coordinate on the corresponding (s — 1)-
dimensional simplex of the join. Thus if the two sets of coordinates are
identified under the transformation of the cyclic I,-covering by means of the

generator, which is common to the entire set of coordinates, then these sets

define the same point on S"~*/i. Points on elementary stratum U(kl, oo k)
belong in the union of simplexes with vertexes belong to the lens spaces of the
join with corresponding coordinates. Each elementary strata U(ky, ..., ks) is

a base space of the double covering U(ky, ..., ks) — U(kl, ..., ks), which
is induced from the double covering RP"~% — S"=*/i by the inclusion

A~

Ulky, ... k) C S/

16



The polyhedron ¥, is split into the union of open subsets (elementary
strata), these elementary strata are defined as the connected components of
the inverse images of elementary strata (39). Denote these elementary strata
by

Kr=ol(ky, .. k), 1<s<r (40)

Let us describe an elementary stratum K"=*(ky, ..., k,) by means of the
coordinate system. To simplify the notation let us consider the case s = r.
Suppose that for a pair of points (21, x3), defining a point on K(1,... r),
the following pair of points (i1, %) on the covering space S"* is fixed, and
the pair (Z1,Z2) is mapped to the pair (z1, x2) by means of the projection
of S"* — RP" % Accordingly to the construction above, we denote by
(Z14,%24), © = 1,...,7 a set of spherical coordinates of each point. Each
such coordinate with the number ¢ defines a point on 1-dimensional sphere
(circle) S} with the same number i, which covers the corresponding circle
J(i) C J of the join. Note that the pair of coordinates with the common
number determines the pair of points in a common layer of the standard
cyclic I,-covering St — S1/i.

The collection of coordinates (% ;, &2;) are considered up to independent
changes to the antipodal. In addition, the points in the pair (z1,x2) does
not admit a natural order and the lift of the point in K to a pair of points
(Z1,Z5) on the sphere S"~*, is well determined up to 8 different possibilities.
(The order of the group D is equal to 8.)

An analogous construction holds for points on deeper elementary strata
KU=sl(ky, .. k), 1< s <.

The coordinate description of elementary strata of the polyhedra
K, C¥,

Let x € K[’"_S](kl, ..., ks) be a point on an elementary stratum. Consider
the sets of spherical coordinates 1 ; u T2, k1 < ¢ < k, of the point z. For
each ¢ the following cases: a pair of i-th coordinates coincides; antipodal,
the second coordinate is obtained from first by the transformation by means
of the generator (or by the minus generator) of the cyclic cover. Associate
to an ordered pair of coordinates @y, and Zoy,, 1 < ¢ < s the residue
Uk, = Tk, (Tar,)" "t of a value +1, —1, +i or —i, respectively. It is easy
to check that the collection of residues {wg,} is changed by the following
transformation. When the collection of coordinates of a point is changed
to the antipodal collection, say, the collection of coordinates of the point x5
is changed to the antipodal collection, the set of values of residues of the
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new pair (Z1,Zy) on the spherical covering is obtained from the initial set of
residues by changing of the signs:

{(fl,kivfi‘?,ki)} = {(_j?Lki’i‘Q,k?i)}? {'Ukz} = {_vki}7

{(fl,kivfi‘?,ki)} = {(:i‘l,ki7 _'i‘ka?i)}? {'Ukz} = {_vki}'

The residues of the renumbered pair of points change by the inversion:

{<j1,ki7j27k¢)} = {<j27k¢7 jl,ki)}v {vkz} = {ﬁkz}v

where v — ¥ means the complex conjugation. Obviously, the set of residues
does not change, if we choose another point on the same elementary stratum
of the space K.

Elementary strata of the space K(ki,...,k;), in accordance with sets of
residues, are divided into 3 types: I, I, ;, I;. If among the set of residues are
only residues {+1i, —i} (respectively, only residues {+1, —1}), we shall speak
about the elementary stratum of the type I, (respectively of the type I, ;). If
among the residues are residues from the both set {+i, —i} and {+1, —1}, we
shall speak about elementary stratum of the type I;. It is easy to verify that
the restriction of the structure mapping 1 : Ko, — K (D, 1) on an elementary
stratum of the type I, I, ;, I, is represented by the composition of a map in
the space K(I,,1) (respectively in the space K(I,,;,1) or K(I4, 1)) with the
map i, : K(I,,1) - K(D,1) (respectively, with the map 7,.; : K(I,.;,1) —
K(D,1) or ig : K(I5,1) - K(D,1)). For the first two types of strata the
reduction of the structural mapping (up to homotopy) is not well defined, but
is defined only up to a composition with the conjugation in the subgroups
Ia’ beb'

The polyhedron 33, contains the polyhedron K, and 3, \ K, consists of
antidiagonal elementary strata. For an arbitrary elementary antidiagonal
stratum K (kq,...,ks) the residue of the each angle coordinate is equal to
+i. A antidiagonal stratum is an elementary stratum of the type I,. The
polyhedron ¥ is derived from ¥, by the joining of all diagonal strata (on
each diagonal strata the residue of an arbitrary angle coordinate is equal
+1), which is in the boundary of the polyhedron. It is easy to verify that
¥\ X, contains all elementary diagonal strata of the deep greater, or equal,
then 1.

Define the following open subpolyhedra

K. C K, C X, (41)

Kbxbo - KO C 207 (42)
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K4 C K, C X, (43)

as the unions of all elementary strata of the corresponding type.
The following polyhedron

f(bxbo - f(o (44)

is defined as the base of 2-sheeted covering over the polyhedron ([42). The
description of (42) by means of the coordinates is obvious and is omitted.

Description of the structural map 7, : ¥, - K(D, 1), by means of
the coordinate system

Let © = [(z1,22)] be a marked a point on K,, on a maximal elementary
stratum. Consider closed path A : S! — K,, with the initial and ending
points in this marked point, intersecting the singular strata of the depth
1 in a general position in a finite set of points. Let (&,&9) be the two
spherical preimages of the point x. Define another pair (&, @) of spherical
preimages of x, which will be called coordinates, obtained in result of the
natural transformation of the coordinates (&1, %) along the path .

At regular points of the path A the family of pairs of spherical preimages
in the one-parameter family is changing continuously, that uniquely iden-
tifies the inverse images of the end point of the path by the initial data.
When crossing the path with the strata of depth 1, the corresponding pair of
spherical coordinates with the number [ is discontinuous. Since all the other
coordinates remain regular, the extension of regular coordinates along the
path at a critical moment time is uniquely determined. For a given point x
on elementary stratum of the depth 0 of the spaces K, the choice of at least
one pair of spherical coordinates is uniquely determines the choice of spheri-
cal coordinates with the rest numbers. Consequently, the continuation of the
spherical coordinates along a path is uniquely defined in a neighborhood of
a singular point of the path.

The transformation of the ordered pair (&1, Z2) to the ordered pair (/, &)
defines an element the group D. This element does not depend on the choice
of the path [ in the class of equivalent paths, modulo homotopy relation in
the group 71 (2, ). Thus, the homomorphism 7 (X,, z) — D is well defined
and the induced map

Mo : Yo — K(D, 1) (45)

coincides with structural mapping, which was determined earlier. It is easy
to verify that the restriction of the structural mapping 7, on the connected
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components of a single elementary stratum K,(1,...,7) is homotopic to a
map with the image in the subspeces K(I,,1), K(I,.;,1), K(I4,1), which
corresponds to the type and subtype elementary stratum.

Coordinate description of the canonical covering over an elemen-
tary stratum

Consider an elementary stratum K=(k;,... k) C K™ of the depth
(r — s). Denote by

7 KUk, k) — K(Z/2,1) (46)

the classifying map, that is responsible for the permutation of a pair of points
around a closed path on this elementary stratum. This mapping is called the
classified mapping for the corresponding 2-sheeted covering.

The mapping 7 coincides with the composition

K"k, k) = K(D,1) = K(Z/2,1),

where K(D, 1) -2+ K(Z/2,1) be the map of the classifying spaces, which is
induced by the epimorphism D — Z/2 with kernel I. C D . The canonical
2-sheeted covering, which is associated with the mapping 7 let us denote by

KUl (ky, o k) = KU (ky, o k). (47)
With the mapping (6] the following equivariant mapping is associated:
7 KUl (ky, . k) = S, (48)

where the involution in the image is the standard antipodal involution. This
mapping is a 2-sheeted covering over the mapping (46]).

For an elementary strata of the type I, ; with the mapping (48] the
following equivariant mapping is associated:

7o K=l (ky, .. k) — S, (49)

where the mapping KU'=*(ky, ..., k,) € K(H, ;,1), @J) is a 2-sheeted cov-
ering over the mapping (48]).

Lemma 8. The restriction of the map (A8)) to the canonical 2-sheeted cov-
ering over an elementary strata of an arbitrary type is homotopic to the
following composition

7 K=l (ky, ... k) — St C 5. (50)
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The restriction of the equivariant map ([A9) to the canonical 2-sheeted covering
over an elementary strata of the type H, ; is homotopic to the following
composition

7o K= ky, k) = ST 5%, (51)

where ST C S* is the equivariant embedding of the standard 1-dimensional
skeleton of the classifying space.

Proof of Lemma [

Let us prove the lemma by means of explicit formulas for the mappings
BO) GI). An arbitrary point [(z1,22)] € KU—4(ky, ... k), or [(z1,22)] €
KU=si(ky, ... k) is determined by the equivalence class of the collection of
angle coordinates and the momentum coordinate. The structure mapping
Mo, Thxio 15 determined by a transformation of angle coordinates. Let us
define the mappings (B0), (&1 by the corresponding transformation of the
marked pair of the angle coordinates. Below the prescribed pair of the angle
coordinates for an elementary stratum of each arbitrary type is defined.

Assume that a point [(&1, #5)] € KI'=*(ky, ..., k,) is belong to the stratum
of the type H, ;. Because the residue of the prescribed pair of the angle
coordinates is well-defined, a non-ordered pair of the angle coordinates with
the residue —1 it is convenient to denote by [(#1,—, &2 )], a pair of the angle
coordinates with the residue +1 denote by [(#1 .+, T2.+)].

The each coordinate Z; _, @3, &1 4, T2+ determines the corresponding
point on S'. It is not difficult to check, that T1+ = Toy, T1- = —To_.
Therefore the mapping (21, Z2) — (:Eiii:17+, f££i2,+) transforms the points
of an ordered pair into the antipodal points on S'. The changing of a pair
of the angle coordinates to an equivalent pair, which keeps the order of the
points of the pair, does not change the equivariant mapping. The changing
of the order of points in the pair transforms the equivariant mapping to the
antipodal mapping. The constructed equivariant mapping is the required
equivariant mapping (B0) for the stratum of the type H, ;.

Assume a point [(x1,25)] € KI'=%(ky, ... k,) belongs to an elementary
stratum of the type I, (including the case, when a stratum is antidiagonal).
The mapping (B0) is determined by a transformation of the prescribed pair
of the angle coordinates with the residue +i, which we denote (and the
same time introduce an order of the pair) as (& 44,i%14i). The mapping
(z1,12) = (27 44, —77 ;) transforms the points of the ordered pair into an
antipodal points on S'. This mapping is the required mapping (B0) for the
elementary stratum of the type I,.
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Assume a point (x1,75) € KI~l(k;,... k) belongs to an elementary
stratum of the type I;. The mapping (B0) is determined by a transformation
of the prescribed pair of the angle coordinates with the residue +i, which we
denote by [(#1 41,1i%143)]. The mapping (z1,29) — (F1.41)%, —F144)? trans-
forms the points of the ordered pair into an antipodal points on S!. This
mapping is the required mapping (B50) for the elementary stratum of the type
I;. Let us denote that the constructed mapping (50) on each elementary stra-
tum of the type I; is homotopic to the constant mapping.

Lemma [§ is proved.

Prescribed coordinate system and marked pair of the angle coor-
dinates on an elementary stratum of the polyhedron K, ;
Let wus recall that the space [A(bel}o is the wunion of closures

CUKT=*(ky, ... k), 0 < s < r of elementary strata of the stratification
(0] (closures are considered in the space Ko) The collection of coordinates
is fixed by an ordering of the spherical preimages (27, 23) of the marked
point. On each elementary stratum & of the type H,; let us fix the pre-
scribed coordinate system (&) as follows. (In the case an equivalent class
of the prescribed coordinate system of an elementary stratum depends no of
an order of the preimages.)

Let us call a coordinate system a prescribed coordinate system if,

—assuming the number of the angle coordinates is odd, the product of
residues is equal to +1;

—agssume that the number of the angle coordinate is even, the number of
residues +1 is greater then the number of residues —1, if the the numbers of
residues +1 and —1 coincide, the residue with the smallest number is equal
to +1.

The angle coordinate of the prescribed system with the residue +1 of the
smallest number is called the marked coordinate on K'=54(ky, ... k).

Prescribed coordinate system and marked pair of the angle coor-
dinates on an elementary stratum of the polyhedron Ki_,

Let wus recall that the space f(Iao is the wunion of -closures
CUKI=U(ky,... k), 0 < s < r of elementary strata of the stratifi-
cation ([A0) (closures are considered in the space K,). On each elementary
stratum « of the type I, residues are +i, or —i. Let us define the prescribed
coordinate system €2(«) as follows.

Let us call a coordinate system is the prescribed coordinate system if,
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—assuming the number of the angle coordinates is odd, the product of
residues is equal to +i;

—assume that the number of the angle coordinate is even, the number of
residues +i is greater then the number of residues —i, if the the numbers of
residues +i and —i coincide, the residue with the smallest number is equal
to +i.

The angle coordinate of the prescribed system with the residue +i of the
smallest number is called the marked coordinate on K== (k. ... k,).

Prescribed coordinate system and marked pair of the angle coor-
dinates on an elementary stratum of the polyhedron Ki,

On each elementary stratum o« of the type I; residues are
{+i,—1,+1,—1}.{+i,—i}. Let us fix the prescribed coordinate system
Q(«) as follows.

Let us call a coordinate system is the prescribed coordinate system if,

—assuming the number of the angle coordinates with imaginary residues
is odd, the product of imaginary residues is equal to +i;

—assume that the number of the angle coordinate with imaginary residues
is even, the number of residues +i is greater then the number of residues —i,
if the the numbers of residues +i and —i coincide, the imaginary residue with
the smallest number is equal to +i.

The angle coordinate of the prescribed system with the residue +i of the
smallest number is called the marked coordinate on K== (k. ... k,).

Let us recall that the space Ky, is the union of closures
CUKI=(ky, ... k), 0 < s < r of elementary strata of the stratification
(@0) On each elementary stratum let us fix the coordinate system as follows.

Assume the number of the angle coordinates is odd. Let us call a co-
ordinate system is the prescribed coordinate system, if the sum of residues
of angle coordinates are equal to +i. Assume that the number of the angle
coordinate is even. Let us fixes the prescribed coordinate system arbitrarily,
namely, such that the residue of the pair of coordinates with the smallest
number is equal to +i.

Admissible pair of neighbor strata

Let $ be an elementary stratum (a connected component of the space
Kr=sid(ky, ... k), let a be an elementary stratum, o C CI(3) C
CUK (k1,...,ks)), B # a. In this case we shall write a < (.
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For an arbitrary 8 ¢ KI'==(k,, ..., k,) of the type I, (correspondingly,
of the type 1), let us consider an arbitrary «, a < [ of the same type.
Analogously, for an arbitrary 8 C KU'=%4(k; ... k) of the type H,_;, let us

consider an arbitrary &, & < B of the same type.

Let us consider the prescribed coordinate system Q(3) on § and take
the restriction of this coordinate system to «. Assume that the considered
restriction system is prescribed on a. Then we shall call that the pair («, )
is admissible. In the case a and [ are of different types, we shall call that
the pair (a, 3) is admissible.

Assume that a pair (o, ) is not admissible. Take a point b € § C
K(ky,...,ks) and a point a € «, which is closet to b on CI(K(ky, ..., ks)).
The restriction of the prescribed coordinate system ()|, is transformed to
the prescribed system Q(«)|, by one of the following transformation, which
is listed below for the strata of the each type.

A non-admissibility of a pair of strata («, ) of the type I, means that
the transformation of Q(3)|, into («)|, is one of the following:

(21, %) = (72, 71), (52)
(@1, 23) = (=, —1), (53)
(21, 73) = (=1, 22), (54)
(1, 252) > (21, —2). (55)

A non-admissibility of a pair of strata (a, 3) of the type I; means that
the transformation of ()|, into Q(«)|, is one of the following:

(@1, @2) = (22, 21), (56)
(21, B3) = (=, —2), (57)
(@1, @2) = (=22, 21), (58)
(@1, 43) = (22, —171). (59)

A non-admissibility of a pair of strata (&, B) of the type H, ; means that

the transformation of Q(f)|, into Q(&)|, is one of the following:

(@1, @2) = (=22, 21), (60)
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(@1, 22) = (22, —21), (61)

(21, Xg) — (=21, Xa), (62)
(21, @) > (21, —a), (63)
(21, @) > (—idy, i77), (64)
(21, 2a) — (12, —ix7), (65)
(21, 2a) — (—i2y, ixs), (66)
(21, 23) — (ix7, —i2s). (67)

The space Y,

Let a, 8 be elementary strata of ¥,. Assume that a < § and define the
elementary e-cone of a smallest stratum « into $ as an open neighborhood,
which is defined as the open cone of a small height £, ¢ << 1, over the interior
of the closure of the union of all lower-dimensional e-cones, which are inside
Cl(B). The structure of an elementary e-cone corresponds to the Euclidean
structure in the r-simplex, given by the corresponding momenta coordinates.
The elementary cone of the strata « in § denote by Con’(«, B;¢) C S.

For each non-admissible pair of strata a < [ consider an elementary
e—cone Con(a, 5;¢) and define:

— the reduced e—cone, which is denoted by Con®(«, 5;¢) C SX,; the up-
reduced (correspondingly, the down-deduced) e—cone, which is denoted by
Con®(a, B;e) C B C X, (correspondingly, by Con®*(a, B;€) C BX,);

— the thickened reduced (e, £1)—cone, where

g1 << e << 1, (68)

which is denoted by Con®(«a,f;e,e1) C 3o; the thickened up-reduced
(€,e1)—cone (correspondingly, the thickened down-reduced (e,e;)-cone),
which is denoted by Con®'(a,B;e,61) C B8 C X, (correspondingly, by
Con®(a, B;e,e1) C %,).

Let Con(ay, B;€) be an arbitrary elementary cone, which is distinguished
from Con(a, §;¢), and

a<a; <f, (69)
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moreover, the pair a < 3 is non-admissible. Define Con®'(a, 3;¢) as the
difference

Con(a, B;¢) \ Cl(U;Con(ay, B;€)), (70)

where «; satisfies the condition (€9) and the pair o; < [ is admissible.
Assume that instead of (69)) the following equation is satisfied:

a; < a < p. (71)
Define Con®*(a, 3;€) as the difference
Con(a, B;¢) \ Cl(U;Con(ay, 5;¢)), (72)

where «; satisfies the condition (7)) and the pair o;; < /3 is admissible. Define
Con®(a, f;¢) as the difference

Con(a, B;¢) \ Cl(U;Con(ay, 5;€)), (73)

where «; satisfies the condition (7I)), or the condition (6J), and the pair
o; < [ is admissible.
Denote by

Z%(e)o C %o (74)
the disjoint union
UOC'<5 COTLQ(Q, 67 E)a (75)

where the pair a < /3 is non-admissible.
Consider the following CW-complex:

Y, = (8 \ Z2%(£)s) N Sy C S, (76)

where Z9(¢), is defined by the formula (74)), ¥, is defined by the formula
1). Consider the CW-complex:

Yi= (5 \ Z2%(e)s) N Ky C 5, (77)
where Ky, is defined by the formula (#3]). Consider the CW-complex:
Yo = (B0 \ Z%(€)0) N K5 C T, (78)

where K, ;. is defined by the formula ([@2)). It is not difficult to check, that
the formulas (60)-(67) are invariant with respect to the covering (44)), and
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that the CW-complex (78) is thyself the covering space of the corresponding
2-sheeted covering, denote this covering by Y, ; — be i

Consider the mapping 7, : £, — K (D, 1), which is defined by the formula
@H). Consider the restriction of this mapping to the subspace ([76]) and denote
this restriction by

N : Yy — K(D,1). (79)

Analogously, denote
Nao : Yqg — K(D, 1). (80)

Analogously, denote
Moo * Yoxi — K (D, 1), (81)
Mo * Yoy = K(H, 1) (82)

(see the diagram ([I3])).

Lemma 9. —1. The mapping ([{9) admits a reduction, which is given by the
mapping

fao : Yy — K(I, 1), (83)

Z.Ia,D O tago = Mao-
—2. The mapping (8Q0) admits a reduction, which is given by the mapping

Mdo - Yd — K(Id, 1), (84)

11, D © hdo = Tdo-
~3. The mapping B1) admits a reduction, which is given by the mapping

Moo * }/;)Xi) — K<Ib><bv 1>7 (85>

i1, ;D O Hypsio = Myxho- 1he mapping (8D)) is a 2-sheeted covering over the
mapping

/:bel'yo : }A/;)xi) — K(beiﬂ 1)' (86>
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Proof of Lemma

Let us prove Statement 1, proofs of the last statements are analogous. Define
auxiliary spaces Y, (correspondingly Y,¥) by the same formula that the space
([76)), except that in the formula (75) the union is taken over all up-reduced
(correspondingly, down-deruced) elementary e—cones, which are defined by
the formula ([73]) (correspondingly, by the formula (72])) instead of the formula
(). For each space Y, Y+ the analogous statement is satisfied by the
construction. Consider the triad

(Za\ Yai Za \ Y], S0 \ V). (87)

This triad is represented by CW-complexes (see below the formula (@T)).
The required mapping (83) is defined as the gluing the two mapping on
Y. \ Y., ¥, \ Y3, which are coincided on the small space of the triad (&7).

Lemma [9 is proved.

Define the CW-complex
CZ%()s D Z%e)o, (88)

as the cell closure of the space (74]): in the CW-complex (88]) all open strata
of the subspace ([(4)) are replaced by the corresponding closure, except points
on the diagonal, and the attaching mapping are continuously extended. The
following mapping, which is a resolution, is well defined:

R:CZ%(c) — . (89)

The restriction of the mapping R on the subspace (74)) is an embedding.

Let us complete coordinates of points on an elementary cone with deleted
subcones ([70) by all other angle- and momentum- coordinates, which are
degenerated on [, the additional coordinates belong to the corresponding
orthogonal face (auxiliary coordinates) to the subsimplex of (principal) mo-
menta coordinates inside the standard r-simplex. Let us define the coor-
dinates such that the auxiliary coordinates on [ itself is trivial, and each
auxiliary coordinate belong to the interval (0,e;). Denote this thickness by
Con®(a, f;e,e1) and let us call it the reduced (e, e1)—cone. The union of all
reduced (e, e1)-cones

Ua<5 COTL@(()(’ﬁ;&‘,gl)’ (9())

where the pair @ < (3 is not exception, denote by Z9(e,e1). Take 5 << &4
and denote by

Z9(eg,e1) C X (91)
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the subspace in ¥, which is defined as the union of all reduced (e, £1)—cones

(@0). Denote by
CZ2(e,e1) D Z2(e, 1) (92)

the CW-complex, which is defined as the union of the space (9I)).
The following resolution mapping

R., : CZ%(e,e1) = %o (93)

is well-defined. The restriction of the mapping R., on the subspace (@I]) is
an embedding.
Denote by

Z9(e,e1,82), € >>e1>> 69 (94)

the space, which is the union of all eo-interiors of strata of the space (@1I). De-
fine Y5 (g, €1, e9) as the space X, with the deleted subpolyhedron Z& (e, e1, €3).
Define the space Y, by the formula:

Y, =lim(e, e1,e9)Yo(g,61,62), €,61,60 — 0, (95)
—

where the limit is taken over the inclusions Y;(g,e1,e2) C Y5(&, &1, &2), which
are satisfies the condition € > &, &1 > &1, g9 > &5 and the inequalities (G]).

Lemma 10. —1. The limit (O8) preserves the homotopy type of the spaces.
~2. The CW-complex CZS(g,e1) is a deformation retract of the subspace
Z8(g), which is defined by the formula (83).

—3. Onpedeneno xkanonuveckoe HaAxpvimMUe ﬁf(s,sl) — CZP(g,e1),
Komopoe uHdYUUPoSaHo IKGUSAPUAHMHLM 0MOOPAACEHUEM 0MOOPANCENUEM
fo ﬁ? — P, 2de P~ 3-mepnoe kiemounoe npocmpancmeso co 6060010t
unsoaroyuet: Tp.

—4. The restriction of the canonical 2-sheeted covering, which is defined
in —8 over the closure of the subspace Z2 N K, j, (Kbxbo is defined m @2))

15 equipped by a free involution with the quotient CZ (e, 51) —) CZ (e,e1),

which is induced by the following equivariant mapping Fo . Zo — P, where
P—is a 3-dimenstonal cell complex with the involution T.

Proof of Lemma

Statement —1 is evident.
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Prove Statement —2. Consider the inclusion ZP(e) C Z2(e,e1). Using
the induction over the deep of strata by the standard arguments we prove
that the considered subspace is deformation retract Statement 2 is proved.

Let us prove Statement 3. Denote by CzS® c €z8 the }aolyhedron
which consists of strata of the deep s and greater, denote C'Z, o \CZs Ols+1)
by CZS¥ . The polyhedron CZ5" is a disjoint union of strata, which are
differences of corresponding closures of reduced cones ([73)).

Define the following 3-dimensional polyhedron P, equipped with a free
involution 7Tp. Consider the disjoint union of the elementary strata of the
polyhedron ¥, and denote this union by U, Over each component EES]
of £ the canonical 2-sheeted covering which is classified by a mappings
into the circle is conmdered in Lemma [8. Denote the equivariant classified
mapping by Fp : USZZ — Sl

For each non-admissible pair of elementary strata o, 3 C ), o < 5 with
the coverings [a], [3] we associated the standard 3-sphere S 3 5> equipped with
the standard action S' x S3 ; — S5 5. Let us glue to the sphere S ;5 the
two cylinders S}, x [0,1], S x [1, 0] along the components of the boundaries
Sa x {0}, S§ x {1} to the two antipodal fibers of the Hopf bundle, which is
denoted by (Sl us 1) C 53 . Denote the result by P, 5. The components
of the boundary Sj x {1}, Sl x {0} of the CW-complex P, 5 corresponds to
elementary strata of the space 3.

Consider the following CW-complex (non-connected) which is defined as
the disjoint union of the CW-complexes {P, s}. Let us standardly identifies
the circles S}, x {0} U S} x {1}, which corresponds to the common elementary
stratum. The result is a 3-dimensional CW-complex which is denoted by P.
This is required space, this space is equipped with the standard antipodal
involution which is denoted by Tp.

Define the following 1-dimensional CW-complex ) C P (non-connected),
which is invariant with respect to the involution T, this space is given by
the union of circles {S!}, the components of this space corresponds to the
elementary strata of the space 3,. The components @) are equipped with a
natural stratification which is denoted by QY. The stratification is defined
as deeps of strata.

Define the space C'Z®U, the components of this space corresponds to
differences of reduced cones in closures of elementary strata of £l of the
deep i. The following equivariant mapping F CZ —> P is well-defined,
the image of this mapping belongs to Q C P This equivariant mapping is
defined by the formula FI[D] : (HgCl(C'on (o, B;€)) — P. Below we shall
write "‘mapping"’ instead of "‘equivariant mapping"’ for short.

Proof of Statement 3 is given by the induction. Define P(*) as the subspace

30



in P, which is the union of {P, s}, Where the deep of each strata is not
less then then s. Over the polyhedron P*) the canonical 2-sheeted covering
P — PG is well-defined and thls covering is equipped by the free involution
which will be denoted by T . Let us prove that the mapplng F( st

extended from C’ZQ(SH) to P+ into a mapping F ) from CZ ) to P©). )

Assume that the mapping FG+1 L TZ°CY Ly et s well defined,
moreover this mapping satifies the followmg condition. Let us mark for each
reduced elementary cone of the deep not less then s+1 the standard r—s—1-
dimensional torus which is determined by the momentum coordinate near the
vertex of the cone. It is required that in a neighborhood of this marked torus
the mapping W(SH) coincides to the standard mapping into the circle, which
is constructed in Lemma [§], correspondingly to the type of the strata, which
contains the elementary cone.

Let us construct the mapping F® : Z©6) — P() which satisfies the anal-
ogous conditions as the mapFlng FG+1) - Consider an arbitrary elementary
stratum S of the deep s in S The prove is given by an induction over the
decrease of the deep j of strata oy, where the pair a; < ( is non-admissible.
Namely, consider in U;Con® (v, B;¢) the union of all reduced cones of the
deep more them j. Then we continue the mapping over this union to each
elementary cone, which is constructed from the stratum a; of the deep j.
The key obvious observation is the following.

Observation (H)

Consider a triple of strata a; < 3, as < 8, as < a1, assuming that the
first two pairs are non-admissible, the deep of [ is equal to s, the deep of
aq is equal to 7, the deep of s is more then j. Then the pair ay < «y is
admissible.

Using the denotations introduced above consider the reduced cone
Con®(a, B;¢), where o < (3 is non-admissible, and consider inside this cone
all smallest elementary cones «;, such that the pairs a; < «, a; < 3 are non-
admissible. Recall that the deep of « is equal to j, the deep of § is equal to
s, j < s. Let us fixes § > 0, § << e. Consider an open domain Q(«, f;¢, ),
which is defined as the result of the elimination from the cone ( of all ele-
mentary € — d—cones of all strata «; of the deep more then j, such that the
pair «; < [ is non-admissible, and also the pair oy < [ is non-admissible.

Define the mapping F,,, 5 : Q(a, B;¢,6) — S2 o5, Which is called the stan-
dard. Consider a regular equivariant gfnelghborhood of the strata & is the
subspace Q(«, §;¢,d) and denote this neighborhood by W («).
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Consider the difference o \ U;Con®(a;, a;€), where the pair o < « is
admissible, and denote this difference by a®. Because the cone Con®(«, §; ¢)
in an up-reduced cone, by the Observation (H) an arbitrary cone C'(«, 1) C
a1, @ < a1 < 3, where the pair a; < « is non-admissible, has no intersection
with Con®(ay, a; €).

Define the mapping F,, 5 on W(a), which is in the boundary of a®,
as the composition of the equivariant projection on & with the mapping
F,a — S. C P. Define the mappmg F,, 5 on a part of W(a), which is in

the boundary of W(a) C Con” (o, B;€,6) C B, as the composition of the
equivariant inclusion on 3 with the mapping Fz3 — Sﬁ C P. The mapping
F,pon Qa,B;e,6)\ W(a) is defined analogously as above.

Define the mapping F, 5 on W(a) by the linear approximation of the
prescribed boundary conditions, which are considered as the pair of complex-
valued mappings into the Whitney sum of the complex line bundles. The
standard mapping F,, 5 : . Con’ (a, B;e) — S3 o is well-defined. The standard

mapping F,, s is continuously extended into the closure Cl1(Q)(a, B;¢,d).
Denote this extension by CF, 5 : CI(Q)(«, B;¢,8) — P.

It is claimed:

~1. The mapping C'F,, 3 corresponds to the mapping, which is defined

on previous steps of the construction on a deeper cone WQ (v, o €), such
a cone is included into the stratum «, moreover the pair a; < « is non-
admissible.

—2. The restriction of the mapping CF, s on the domain Q(ay, 3;¢,9)
inside each deeper cone is agree with the mapping C'F,, 5, where a; < o < f3.

Prove -1, using Observation (H). Because the pair a; < « is non-
admissible, the elementary cone Con(ay, 3;¢) has no intersection with €.
The boundary condition over a® of the mapping CF, 3 proves the State-
ment 1.

Prove -2, using Observation (H). By the construction the mapping C'F,, s
is induced by the mapping Fj everywhere on Q(a, 8;¢,6) U Con(ay, B;e —
g). The mapping Fj is induced by the same mapping on the considered
intersection. Statement 2 is proved.

Statement 3 is proved. Statement 4 is evident. Lemma [10]is proved.

The canonical covering over K;, C 3,

Consider the subspace Ky, C X,, which is defined by the formula (43)). The
following lemma precises Lemma [I0] Statement 3.

Lemma 11. The canonical covering over the subspace Kqo, C X, is induced
by an equivariant mapping FC% Kgo — Py, where Py, is a 4-dimensional
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CW-complex, equipped with a free involution Tp,, .

Proof of Lemma [I1]

Consider the subspace Yy, C K40, which is defined by the formula (76). The
canonical covering over this subspace is trivial (see the formula (84])). By
Lemma [I0, Statement 3, the canonical covering over the subspace Ko \ Yo
is classified by a mapping into 3-dimensional CW-complex. Lemma [I1] is
proved.

Definition of spaces R, RKbxbo in Lemma

Define the subspace
RY, C Y., (96)

which consists of strata of the type I, (c. with (7@)).
Define the space

RKbXBo - va (97>

which consists of strata of the type I, ; (c. with (78))). The space (@7) is a

2-sheeted covering space, denote the base of the covering by RK b
Definitions of the mappings, which are included into the diagram (25]), in
particular, the mappings pr, pr, are evident.

Resolution mapping ¢, : RY, — K(I,,1) and Proof of Lemma

Counsider the restriction
770|Ya : Y;1_>K(D71)a (98)

(recall that RY, =Y,) of the structured mapping to the subpolyhedron (96]).
By the construction of the reduction mapping

oy, Yy — K(I,,1), (99)

of the mapping (98] is well defined: 7,|y, = i1, © ¢y,. Lemma [Hlis proved.
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Last step of the proof of Lemma [7; the deformation iy 0| — d

Denote the standard orthogonal projection R™ — R"~> by F. Assuming the
dimensional restriction (2)), using Lemma[fand Lemma[I0 Statement.3, let us
define a vertical lift of the mapping F: iy0iy0c, v d : J — R", 4y : R"7k=5 C
R™ (see denotations in Lemma ([7), such that the self-intersection polyhedron
N(d) is contained into the polyhedron Y5, see. (@5]). Self-intersection points
of the mapping d are divided into two closed subpolyhedra correspondingly
with the required formula (B5]). The required mappings /i, ., fa are induced
from the mappings, which are constructed in Lemma Bl Lemma [7lis proved.

Proof of Lemma

Assuming the dimensional restriction (3) let us consider an axillary map-
ping () and the mapping F oc: RP"* — J c R*5. Consider the formal
(equivariant) mappings (F o ¢)®, ¢ which are defined as the formal ex-
tensions of the corresponding mappings. The polyhedrons of the (formal)
self-intersection of the formal mappings (F o i; o )® and ¢® coincide. The
equivariant deformation of the formal (equivariant) mapping (F o7, 0)® into
the formal (equivariant) mapping d®, which is vertical along F'® is defined
as in Lemma [7]

Let us prove two conditions in the statement of [Lemma 27, Al]. Condi-
tion 1 is, obviously, well proved, namely, the restriction of the mapping 7, to
the marked component N, admits a cyclic reduction, given by .

Let us prove Condition 2 in [Lemma 27, A1], which is formulated for the
component NV, ; . For the convenience let us write-down this condition:

0= (Pr1; 0 M)+([Noi]) € Hnon(K(Ta, 1); Z/2). (100)

Assume that the polyhedron N, ;. is closed (let us remain that in this
case the lower index o in omitted) and the mapping 1 admits a reduction

Moxb - Nbxb - K(bein 1)' (101)
In this case the formula (I00) is satisfied, because the composition
Mpxiy * Nbxb - K(Id’ 1)

is the composition of a mapping N, ; — K (14, 1) with the standard 2-sheeted
covering

Nbxb — Nbxb — K(beiﬂ 1) — K<Id7 1>7

where the mapping K(I,.;,1) — K(I4 1) is induced by the homomorphism
I.; — 1; with the kernel I, C I, ;.
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Assume that the polyhedron N, ;, is not closed, and the mapping 7,
admits a reduction (I0Il) with the prescribed boundary conditions. The
formula (I00) is rewritten as follows:

0= (pIaId © ﬁbxbo,o)*([oNbxbo]) S Hn—Qk(K(Id’ 1); Z/Q) (102)

The difference between the formulas (I02) and (I00) is following: if the
polyhedron N,_;_ is non-closed, then the polyhedron N, ;_ is also non-closed.
Therefore the polyhedron N, ;. have to be compactified into a closed by a
gluing of the cone of the canonical 2-sheeted cover N, ; — N, ;, over the
boundary. The result is a closed polyhedron, which is denoted in the formula
([I02) by N, ;.- The polyhedron N,_;, is the covering space of the 2-sheeted
covering N, ;. — C'N,, ., which corresponds to the subgroup I; C I, ; of the
index 2. Therefore, as in the previous case, the cycle pr. 1,070 : CNyyjo —
K(I4,1) is a boundary.

Let us consider a general case: the polyhedron N, ;  is non-closed and
the mapping 7, admits a reduction

Moo * Nbxbo — K(bel}/[

X

7,1)
2]

with prescribed boundary conditions.
By the assumption the following mapping
ﬁbxl}o : Nbxbo - K(bei) Z7 1)

A2

is well-defined. Consider the 2-sheeted covering over the structure mapping,
which we denote by

oo : CNyi — K(Hy x Z,1).

xbo
Let us recall, that respectively to the diagram (I8]), the 2-sheeted covering
mapping 7,.;, over 1,.;, is totally defined by the subgroup of the index 2:

H,xZcH,; | Z (103)

x[2

The formula (TI02)) is equivalent to the following condition: the homology
class

(PHx2.H, © i)« (O Nyi0]) € Hoon (K (Hy, 1): 2) (104)

1S even.
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By the representation H,_; ffcm Z — 7./2B) the universal 4-bundle over
KH,,; fX[Q] Z,1) is well-defined, denote this bundle by 7, ;. The bundle

ﬁbeo(%bxw (105>
over Nbxi)o is well-defined.
Denote by
NN, C N,.;, (106)

the 3-dimensional subpolyhedron, generally speaking, with boundary, as a

homology Euler class of the Whitney sum of "_Qf_?’ copies of the bundle

(I05). The condition ([I04]) is equivalent to the following: the homology class

(PHx 2,84 © Tyio)« (CNN]) € Hy(K (Hy, 1); Z) (107)

is even.

Consider the mapping NN, — K(bebfx[g] Z,1) — K(Z,1). Without
loss of the generality, the inverse image by this mapping of the marked point
of S = K(Z,1) is a closed 2-dimensional subpolyhedron, denoted by

LL c NN.,. (108)

This polyhedron is PL-homeomorphic to an oriented surface, which is
equipped with a mapping

fiLL — K(H, 1), (109)
Let us use the following isomorphism: Hy(K(H,;,1);Z) =Z/2.

Let us prove that there exists a closed oriented 3-manifold NN, its sub-
manifold as in the formula (I08) and a mapping

F:NN—>KH,,; | Z1), (110)

X2

for which the following two conditions are satisfied:

—1. The image of the fundamental class by the mapping (I09)) determines
the generator of the group Hyo(K(H,,;,1);Z).

—2. The image of the fundamental class by the mapping

F:NN— KMHyxZ,1) = K(Hy, 1) = K(Z/4,1)

is an even (or the trivial) element in the group H3(Hy;Z).
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Let us consider 2-torus ﬁ, which is the the 2-skeleton of the standard
cell decomposition of the space (RP>® x RP>)/T} D (RP! x RP')/T; = LL,
where T; : RP* x RP>* — RP* x RP* is the diagonal involution, which
is defined by the standard involution i : RP>* — RP>°. We may visualized
the space K(Hy, 1) as the space (RP* x RP*)/T; \ diag(RP>). By this
construction the involution ¥1Z : K(Hgy,1) — K(Hy, 1), which corresponds
to the automorphism (I7) is defined by the formula: = x y — y X x.

Define the (orientation preserving) involution x : LL — I//I, which per-
mutes the factors and reverses the diagonal. Define the mapping f [ LL —
K(H,,;,1) (I09), which transforms the diagonal generator i € H;(LL;Z) to
the element ab € E,; (this element is represented by the sum of the diag-
onal loop with the generic loop of the first factor). Obviously, the mapping
f commutes up to homotopies with the involutions ¥, x!? in the source and
target spaces of the mapping f . Let us call the considered property Gluing
Condition. -

Let us define the manifold NNV as an oriented 3-manifold by the cylinder
of the involution x : LL — LL. The mapping (II0) is well-defined by a
fibered family over S! of mappings of 2-tori in the space K(H,,;,1) (the
source and the target space of (II0) is the total spaces of fibrations over
S1). By Gluing Condition the mapping (I10) is well-defined. This mapping
satisfies Condition 1.

Let us check Condition 2. Consider the following composition:

pa,z20 F i NN = K(Hy x Z,1) — K(Hy, 1) — K(Z/2,1),  (111)

where the mapping pu,z/2 : K(Hg,1) — K(Z/2,1) is induced by the epi-
morphism Hy; — Z/2 with the kernel I; C Hy. It is well-known, that the
cellular mapping py, 7/» transforms the standard 3-skeleton S®/i C K (Hy, 1)
into the standard 3-skeleton RP? C K(Z/2,1) with degree 2.

Assuming Condition 2 is not satisfied and the mapping (II0) determines
the generic homology class, then the mapping (I11]) is not homotopic to zero.
Assume that the mapping (I11)) is cellular. Then the image of this mapping
coincides with the standard 3-skeleton RP?® C K(Z/2,1) and the degree of
the mapping (I11J) is equal to 2 modulo 4.

The mapping (1)) is a 2-sheeted covering over the mapping

NN - KH,; | Z1)— K(Z/2xZ,1) = K(Z/2,1). (112)
X2

By the construction, the mapping (I12]) is homotopic to a mapping into
the standard 2-skeleton RP? C K(Z/2,1). This implies that image of the
fundamental class by the mapping (I12), and by the mapping (I11]) is the
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trivial homology class. This prove that the degree of the mapping (I11]) is
equal to 0 modulo 4. The mapping F satisfies Condition 2.

To prove Condition (I07) we may assume that the image of the funda-
mental class by the mapping (I09) is the trivial homology class. Therefore
it is sufficiently to prove Condition (I07), assuming, that the surface LL is
empty. In this case the mapping 7, ;. admits a reduction into the subspace
KH,,;,1) c KH,; fX[Q] Z,1). Condition (I07) is reformulated analogously
to Condition (I02]), which was proved above. Condition 2 from [Lemma 27,
Al] is proved. Lemma A is proved.

7 Proof of Lemma [1. Sketches of proofs of
Lemma [3, Proposition 28 [A2], Proposition 31
[A2] and Lemma 35 [A2)]

To prove Lemma [l is sufficiently to repeat a part of Lemma 2] B., which is re-
lated with a subpolyhedron RK,;, in the polyhedron of the self-intersection.
Lemmas 30, 32 from [A2] are proved analogously to 2l Lemma 35 from [A2]
is proved analogously to Lemma [Bl A detailed proof of the lemmas requires
to make the paper greater.

A sketch of the proof of Lemma [3

The proof is analogous to the proof of the main result of the paper [Akhl].
Let us consider an auxiallary mapping p; : S"~2Ftne-1+1/i — J, given by
the formula (), define by C,, the cylinder of this mapping. The projections
1 Cp — [0,1], my : Cp, — Jy are well defined, denote the Cartesian
product of this mappings by F : Cp,, — J; x [0, 1].

Amnasoruuno paceMoTpun orobpazkenue py : S"~2 /i — J;, onpenenennoe
no dopmyite (I0) u obosuauum depes Cj, HUIMHIP ITOr0 OTOOPAKEHHUSI.
Ompenenensr orobpaxkenns upoekmumit 7; : Cp — [0,1], 7y « C5 — Jy
U JIEKAPTOBO IIPOM3BEJIEHUE STUX OTOOparkKeHuii, Koropoe 0003HAYUM Uepes
Ey - Cp, — Ji x [0,1]. Onpezeneno sioxenne 1 : Cp, C C,,. Cremyiomue
JIHarpaMMbl KOMMY TaTHBHBI:

Cﬁl — Cpl

iﬁ'[ ,/71'[ (113)
1
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Cp — Cpl
i, ﬁ'J / Wi (114)
Ji

Consider the inclusion I : J; x [0, 1] C R™ x [0, 1] and define the mapping
I;0F :Cs = R"x [0,1], I;0 Fy : C,, — R™ x [0, 1]. Consider the mapping
fi - Cs, — R™ x [0,1] which was defined by a small generic alteration of
the mapping [; o F,. The mapping fl will be taken to be coincided on the
bottom of the cylinder J; C Cj, with the embedding I; : J; C R™ x {0}.
Moreover, the composition pjg 1) o fi: C5, — [0,1] to be coincided with f,
where p; : R™ x [0,1] — [0, 1] is the projection on the second factor. The
mapping f : Cp, — R x [0,1] is also defined such that f; = f; o ry.

Denote by @Q; C C,, the polyhedron of self-intersection points of the
mapping f;, defined as the closure of the corresponded spaces by the formula:

Ql = Cl{x c Cpl : Ely € Cplvx 7£ y7f<x) = f<y>}

Because n — 4k = n,, dim(@l) =Ngy1 + 1.

Denote by Q; C Cj, the polyhedron of self-intersection points of the
mapping fl, this polyhedron is defined as the closure of the corresponded
subspaces by the formula

él = Cl{ﬂ? S Cﬁl : Ely € Cﬁmx # Y, fl(x> = fl(y)}

Because n — 4k = n,, we get dim(Q,) = n, + 1.

Consider the stratification J[_Q] C Jlm C Jy of the join. Denote by @, the
intersection Q N J;. Denote by Q s, the intersection Q1N J;. The polyhedron
Q s, has the codimension n,;. Because the codimension of le] C Ji is equal
to ng41 + 1, the polyhedron @;, C Ji is outside a regular neighborhood of
the stratum le]. The polyhedron Q 5, has the codimension n,. Because the
codimension of Jlm C J; is equal to n, + 1, the polyhedron Q 5 C Jpis
outside a regular neighborhood of the stratum Jlm. Define the polyhedron
Q 7 (€) as the set of points from Q s, which are mapped with respect to the
projection 7y into a small positive € € I.

Define the involution Té : Q — Q which permutes points of self-
intersection on the canonical covering. The involution T 5 keeps the values

of the mapping 7;. The polyhedron C:Q 7,(€) is invariant with respect to the
involution Ti5. Denote by T5(e) the restriction of the considered involution

on the polyhedron @, (¢), this restriction is a free involution.
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Define the mapping d; : S" /i — R" x {e} = R" as the restriction
of the mapping f; on S"2%/i x {e}. A quotient Q, (€)/T5(e) is a poly-
hedron of self-intersection points of the mapping d;. Consider the poly-
hedron of self-intersection of the mapping d; and its subpolyhedron N;.By
the construction, if the positive parameter ¢ is small enough, the structured
mapping ¢ : N7 — K(E, 1) admits a reduction to a mapping into the sub-
space K(Q,1) U K(E, 1) € K(E,1), the considered reduction is well de-
fined as the composition of the mapping ¢; : Ny — RK; with the mapping
¢1: RK; — K(Q,1) U K(Ey, 1) (see the diagram (27)).

Let us prove that the mapping ¢; satisfies the boundary conditions from
diagram (29) in Lemma For ¢ > 8 the number r; of the factors of the
join Ji, which is calculated by the formula (§)), is greater then n,. Because
dim(N;) = n,_1—1, the boundary of the polyhedron /Ny contains no strata of
a deep greater then % Therefore the coordinate system in each component
N of the type Hy is agree with boundary conditions. Lemma [3 is proved.

E,. ;—structure of formal mappings with holonomic singularities

Consider the polyhedron X, ; fx S, which is a skeleton of the Eilenberg-
Mac Lane space K(I,; fxm Z),1), correspondingly to [Formula (181), A2.
Consider the mapping i, [ S1OPX,, Xivi fx St 5 D1 x S  R”, where
the mapping ¢x, ; is defined by the [Formula (186), A2|, and the mapping
(embedding) i, ; g1 is defined by the [Formula (190), A2]. We shall consider
this mapping as a mapping with a holonomic singularity in the sense of
[Definition 9, A2]. Denote this formal mapping by (d 0, d(f2o>' Let us restrict
this formal mapping (df,md(ﬁ)o) on the subpolyhedron X, ; C Xbxbfx St

and denote this restriction by (dp, déz)).

Lemma 12. There exists a C°-small PL-deformation of the formal holo-
nomic pair of mappings (d p, d(fz)o) to a pair of mappings (d, d(f2)) with holo-
nomic singularity, such that the polyhedron Ny, of formal self-intersection

of the mapping (df, d(f)) is decomposed into the union of two subpolyhedra:

Nfo = vabeb UNLB]O’ (115)

where vaEsz, 18 closed.

The restriction of the structure mapping Co on the subpolyhedron Ny g .
admits a reduction, which is given by the mapping G = Nym, , —
K(beb fx[3] Z7 1)'
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The polyhedron Ny, contains a subpolyhedron No C Ny,, which is de-
composes into two components:

N, = Nbeb U N[g}o,

where the components are defined as the corresponding components in the
formula (II5). The restriction of the structured map (, on the subpolyhedron
Nigjo admits a reduction, which is gien by the mapping

<b><6><Z/2o : N[3}° - K«beb X Z/Q) / Z, 1)7

X

and which is satisfies the boundary condition, given by a mapping into the
subspace K(I,.; x Z/2,1). (In this formula the extension of the group
I, X Z/2 (and analogous extensions below) are corresponding to the in-
clusion X, ; C Xbxbfx St.)

The mapping CbXbXZ/2o 1s a compressed by the canonical 2-sheeted covering

Nigo — N[g}o, and 1s a 2-sheeted covering mapping over the mapping

Coinyn t Nigo = K((By i x Z/2) / Z,1),

X

which s satisfies the boundary condition, given by a mapping into the sub-
space K((Ey.; X Z/2) fx Z,1). In the previous formula the automorphism
(involution) X : By, X Z/2 — E,; X Z/2 is the identity on the subgroup
E, ; CE, ;xZ/2, and is mapped the generatort € Z/2 into the element t4t,
where tq is the generator of the subgroup 1, C E, ;. Define the automorphism
XLy X Z)2 = 1, X Z]2 by the restriction of X on the subgroup.

Let us formulated and proof a lemma, which is required to check [Formula
(211), A2|. For an arbitrary pair of integers (s, $2), s1 =1 (mod 2), s =1
(mod 2), s = s; + 53 = n — “="=, consider the homology class [(210), A2].
This homology class is defined as the image of the fundamental class of the
manifold X (s, s2), which is naturally embedded into X, ;.

Denote the restriction of (d,d®) on X (s1,s2) by (d(s1,s2),d? (51, s2)).
Consider a polyhedron of the formal self-intersection of the mapping
(d(s1,82),d? (s1, 89)), which is represented by a disjoin union of the two
subpolyhedra. The canonical covering over the first polyhedron is a closed
subpolyhedron into Ng the canonical covering over the second polyhe-

bxb’ _
dron is the closure of an open subpolyhedron in C'Np3,, denote this closure

by CNX(s1,52).
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Denote the fundamental class of the polyhedron CNX(sy,ss) by
[CNX(s1,s2)] € H,_ n=me (K (L, 1)) (we have used the isomorphism
[(42),A2]).

Let us prove the formulas [(211),A2| analogously to Lemma [2A, in which
the formula (I00) is proved (Condition 1 from [Lemma 26, A1]).

Proposition 13. An arbitrary homology class [CN X (s1, s2)] is trivial.

Proof of Proposition I3

Denote by N X (s1,s2), an open polyhedron, which is the base of 2-sheeted
covering space NX(s1,$2).. The polyhedron N X (sq,s2), is equipped with
the structure mapping

C(s1,82)0 : NX(51,52)0 = K((I,; X Z/Q)/Z, 1),

and the regular neighborhood of the boundary is mapped by the considered
structure mapping into the subspace

K(I,; x 2/2,1) C K((I,; % Z/z)/z, 1). (116)

X

The manifold X (s, s5) is a 2-sheeted covering over the manifold X (s, s5).
Therefore, an open polyhedron, which is a base of the 2-sheeted covering with
the covering space N X (s1, $2), is well-defined. Let us denote this polyhedron
by ﬁ(sl, S2)o- The polyhedron ﬁ(sl, S9)o 18 equipped with a structure
mapping

Gt NX(51,82)0 = K((E,,j X Z/Z)/Z, 1),
X

a regular neighborhood of the boundary is mapped by this mapping into the
subspace

K(B,; x 2)2,1) C K((B,,; x Z/Q)/Z, 1). (117)

X

Assume, that the image of the structure mapping ((si,ss), is inside
the subspace (II16). Then the statement of the lemma is evident, because
CNX (s,s9) is a composition with a 2-sheeted covering over CN X (s, s3)
(comp. with the initial step of the proof of Lemma [2IA).

Let us consider a general case. We shall use the polyhedron NX (s1,52)o-
The universal bundle over the space K ((E,;xZ/2) fx Z,1) is a 8-dimensional
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bundle. It is sufficiently to prove the formula for the cycle, which is defined
as the intersection of the considered fundamental class with the Euler class
of the pull-back of a suitable Whitney sum of the universal bundle. Denote
the Euler class of the universal bundle by 7, ;.7 -

For an arbitrary pair of the positive integers (p1,p2), p1 = 1 (mod 2),
pe =1 (mod 2), p = p; +py = "TJFG, define the submanifold X X (py,ps) of
the dimension p, X X = RPP* x RPP2.

Define the embedding X X (p;,p2) C X(s1,$2), as the Cartesian prod-
uct of the coordinate embeddings RPP* C RP*', RPP? C RP®, which
satisfies the restriction s; — p; = sy — po = %. Define the formal
mapping (dd(p1, p2), dd® (py,p;)) as the restriction of the formal map-
ping (d(s1,s2),d?(s1,s2)) to the submanifold XX (p;,ps). Denote by
NX X (p1,p2)o an open polyhedron of the formal self-intersection of the map-
ping (dd(p1,p2), dd(p1, p2)®). The following 6-dimensional subpoluhedron

NXX<p17p2)O - NX<817 82)0

is well-defined, the fundamental class of this subpolyhedron is realized the

<Tbx86xZ/2,f)'
Let us prove that the homology class

homology Euler class of the bundle

[CNX X (p1,p2)] € He(T, 3, 1) (118)

is trivial. We shall distinguishes the exceptional case, when p; = 1, or p, = 1.
Consider non-exceptional case in which p; > 3, p» > 3. Let us prove that
the homology class (I18) is trivial.

The lens manifold (RPP* x RP??) /iy, is immersible into R"”. There-
fore the homology class of the boundary singularities of the polyhedron
6(m(p1,p2)o) in the group Hs(E,,; x Z/2,1) is trivial. Let us omit
below the marks o and C' in denotations.

Let us consider the 5-dimensional fundamental class [p~!(pt)] € Hs(E,, ;X

7./2,1) of the closed subpolyhedron p~t(pt), where p : m(pl,pg) — Stis
the projection, which is induced by the projection PR, ;x7/2,[ of the universal
space.

Assume that the homology class [p~!(pt)] is trivial. Then, without loss
of a generality, we may assume that the manifold p~!(pt) is empty and the
proof is reduced to the previous.

Assume that the homology class [p~!(pt)] is non-trivial. Let us prove that
the homology class [p~*(pt)]' is realized for a suitable mapping of a closed
6-dimensional manifold A, (4 : A — (E,.; X Z/2) fx Z,1), for which the

homology class, defined analogously to (II8), is trivial.
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Let us decompose the fundamental class [p~*(pt)] over the base of the
group Im(Hs(K(E,,; x Z/2,1);Z) — H5(K(E,,; x Z/2,1)). Consider the
following epimorphisms:

WbZEbXbXZ/Q%Eb XZ/Q,

™ beb X Z/2 _>Eb X Z/Q.

Assume that the image of the homology class [p~(pt)] in the group
Hs(K(E, x Z/2,1) x K(E; x Z/2,1)) by the homomorphism (m, X ), is
represented by the tensor product of a homology class of Hy(K(E, x Z/2,1)
to a homology class of Hs(K(E; x Z/2,1)). The proof in the last cases is
evident (or is is given after b is replaced by b.)

The condition Y. ([p~(pt)]) = [p~L(pt)] is satisfied, because the boundary

conditions on NX X (p1,ps). determines the trivial homology class. There-
fore, after the expansion of the element 7; ([p~"(pt)]) over the standard base
the generator of the factor Hz(K(Z/2,1);7Z) is not involved and ; , ([p~" (pt)])
is expressed by the generator of H3(K (Ep, 1)).

Analogous to the construction (II0)), without loss of a generality, we may
assume that the homology class (II8) is trivial. Therefore, without loss of a
generality, we may assume, that p~!(pt) = (), and we may repeat the previous
proof as in the case, when the image of the structure mapping is inside the
subspace (I17).

Is sufficiently to prove that in the exceptional case the homology class
(II8) is trivial. Let us decomposes the homology class (II8]) over the stan-
dard base of the group Hg(I,,;,1). The generators of the group are t3,634s
tvts s ts ply. In the exceptional case, evidently, that the generator ¢5,t5 ; is not
involved. To prove that the last generators ¢l ;, i5st; are not involved, let
us intersect the 6-dimensional polyhedron NX X (p1, p2), with 4-dimensional
Euler class of the universal bundle, which is the bull-back by =, or by ;,
correspondingly to the generators #yt; ;, t55¢;. The proof is analogous to the
previous proof, this proof is more simple, because the Euler class is repre-
sented by a 2-dimensional subpolyhedron in NX X (p1,p2).. Is sufficiently
to consider the only generators of Hy(K(E,,; X Z/2,1);Z) = E,.; x Z/2.
Lemma [13] is proved.
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