
The Road Coloring and Černy conjecture
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Abstract

A synchronizing word of a deterministic automaton is a word in the
alphabet of colors (considered as letters) of its edges that maps the au-
tomaton to a single state. A coloring of edges of a directed graph is
synchronizing if the coloring turns the graph into a deterministic finite
automaton possessing a synchronizing word.

The road coloring problem is the problem of synchronizing coloring of
a directed finite strongly connected graph with constant outdegree of all
its vertices if the greatest common divisor of lengths of all its cycles is
one. The problem was posed by Adler, Goodwyn and Weiss over 30 years
ago and evoked noticeable interest among the specialists in the theory of
graphs, deterministic automata and symbolic dynamics.

The positive solution of the road coloring problem is presented.
Some consequences on the length of the synchronizing word are dis-

cussed.

Keywords: road coloring problem, graph, deterministic finite automaton, syn-
chronization.

Introduction

The road coloring problem originates in [2] and was stated explicitly in [1] for
a strongly connected directed finite graph with constant outdegree of all its
vertices where the greatest common divisor (gcd) of lengths of all its cycles is
one. The edges of the graph are unlabelled. The task is to find a labelling of the
edges that turns the graph into a deterministic finite automaton possessing a
synchronizing word. So the road coloring problem is connected with the problem
of existence of synchronizing word for deterministic complete finite automaton.

The condition on gcd is necessary [1], [6]. It can be replaced by the equivalent
property that there does not exist a partition of the set of vertices on subsets
V1, V2, ..., Vk+1 = V1 (k > 1) such that every edge which begins in Vi has its

∗Email: trakht@macs.biu.ac.il
†http://www.cs.biu.ac.il/∼trakht

1



end in Vi+1 [6], [20]. The outdegree of the vertex can be considered also as the
size of an alphabet where the letters denote colors.

The road coloring problem is important in automata theory: a synchronizing
coloring makes the behavior of an automaton resistant against input errors since,
after detection of an error, a synchronizing word can reset the automaton back
to its original state, as if no error had occurred. The problem appeared first in
the context of symbolic dynamics and is important also in this area.

Together with the Černy conjecture [22], [24], the road coloring problem
belongs to the most fascinating problems in the theory of finite automata. The
problem was discussed even in ”Wikipedia” - the popular Internet Encyclopedia.
However, at the same time it was considered as a ”notorious open problem” [18],
[6] and ”unfeasible” [13]. For some positive results in this area see [4], [5], [11],
[12], [13], [15], [16], [20], [21].

The road coloring conjecture is settled in the affirmative: A finite strong
digraph with constant outdegree has a synchronizing coloring if and only if the
greatest common divisor of the lengths of its cycles is 1.

The concept of a stable pair of states [6], [16] of Culik, Karhumaki and Kari
with corresponding results and consequences is used below. The first version of
our paper had also used results from [11]. However, we are now able to simplify
the proof using idea from [3], [25] and [26].

A problem of the minimal length of synchronizing word, best known as
Černy’s conjecture, was raised independently by distinct authors. Jan Černy
found in 1964 [7] n-state complete DFA with shortest synchronizing word of
length (n − 1)2 for alphabet size q = 2. He conjectured that it is an upper
bound for the length of the shortest synchronizing word for any n-state complete
DFA. The best known upper bound is now equal to (n3 − n)/6 [10], [17]. The
conjecture holds true for a lot of automata, but in general the problem still
remains open. Moreover, the examples of automata with shortest synchronizing
word of length (n− 1)2 are infrequent. After the sequence found by Černy and
example of Černy, Piricka and Rosenauerova [8] of 1971 for q = 2, the next such
example was found by Kari [16] only in 2001 for n = 6 and q = 2. Roman [23]
had found an analogous example for n = 5 and q = 3 in 2004. There are no
examples of automata for the time being such that the length of the shortest
synchronizing word is greater than (n− 1)2.

We use a new efficient algorithm for finding a synchronizing word. The
known algorithm of Eppstein [9] finds a synchronizing word for n-state DFA in
O(n3 + n2q) time. The actual running time of our algorithm (O(n2q)) on a lot
of examples proved to be less than in the case of O(n3q) time complexity (the
worst case). It gives a chance to extend noticeably the class of considered DFA.

The program had studied all automata with strongly connected transition
graph of size n ≤ 10 for q = 2, of size n ≤ 8 for q ≤ 3 and of size n ≤ 7
for q ≤ 4. All known together with some new examples of DFA with shortest
synchronizing word of length (n−1)2 from this class of automata were obtained.
So all examples of DFA with shortest synchronizing word of length (n− 1)2 in
this area are known for today. The size of the alphabet of the examples is two or
three. The contradictory examples for the Černy conjecture do not exist in this
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class of automata. Moreover, the program does not find examples of DFA with
reset word of length (n− 1)2 for n > 4 as well as for q > 3. No such examples
exist also for alphabet of size four if n ≤ 7 and of size three if n ≤ 8.

All examples on the Černy border (n−1)2 except one have loops and therefore
by some recoloring have shortest synchronizing word of length not greater than
n − 1. It supports the conjecture that by some coloring every synchronizing
automaton has synchronizing word of length less than (n− 1)2.

Preliminaries

A finite directed strongly connected graph with constant outdegree of all its
vertices where the gcd of lengths of all its cycles is one will be called AGW
graph as aroused by Adler, Goodwyn and Weiss.

The bold letters will denote the vertices of a graph (the states of an automa-
ton).

If there exists a path in an automaton from the state p to the state q and the
edges of the path are consecutively labelled by σ1, ..., σk, then for s = σ1...σk ∈
Σ+ let us write q = ps and p � r.

Let Ps be the map of the subset P of states of an automaton by help of
s ∈ Σ+ and let Ps−1 be the maximal set of states Q such that Qs ⊆ P . For the
transition graph Γ of an automaton let Γs denote the map of the set of states
of the automaton.

|P | - the size of the subset P of states from an automaton (of vertices from
a graph).

A word s ∈ Σ+ is called a synchronizing (or2-reset) word of the automaton
with transition graph Γ if |Γs| = 1.

A coloring of a directed finite graph is synchronizing if the coloring turns the
graph into a deterministic finite automaton possessing a synchronizing word.

A pair of distinct states p,q of an automaton (of vertices of the transition
graph) will be called synchronizing if ps = qs for some s ∈ Σ+. In the opposite
case, if for any s ps 6= qs, we call the pair deadlock.

A synchronizing pair of states p, q of an automaton is called stable if for
any word u the pair pu,qu is also synchronizing [6], [16].

We call the set of all outgoing edges of a vertex a bunch if all these edges
are incoming edges of only one vertex.

The subset of states (of vertices of the transition graph Γ) of maximal size
such that every pair of states from the set is deadlock will be called an F -clique.

A state [a vertex] r is called sink of an automaton [of a graph] if p � r for
all states p.

The direct product Γ2 of two copies of the graph Γ over the alphabet Σ
consists of vertices (p, r) and edges (p, r) → (pσ, rσ) labelled by σ. Here p, r ∈
Γ, σ ∈ Σ.
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1 Some properties of F -clique

The road coloring problem was formulated for AGW graphs [1] and only such
graphs are considered below. We exclude from the consideration also the prim-
itive cases of graphs with loops and of only one color [1], [20].

Let us recall that a binary relation ρ on the set of the states of an automaton
is called congruence if ρ is equivalence and for any word u from p ρ q follows
pu ρ qu. Let us formulate an important result from [16] in the following form:

Theorem 1 [16] Let us consider a coloring of AGW graph Γ. Stability of
states is a binary relation on the set of states of the obtained automaton; denote
this relation by ρ. Then ρ is a congruence relation, Γ/ρ presents an AGW graph
and synchronizing coloring of Γ/ρ implies synchronizing recoloring of Γ.

Lemma 1 Let F be F -clique via some coloring of AGW graph Γ. For any
word s the set Fs is also an F -clique and any state [vertex] p belongs to some
F -clique.

Proof. Any pair p, q from an F -clique F is a deadlock. To be deadlock is a
stable binary relation, therefore for any word s the pair ps, qs from Fs also is
a deadlock. So all pairs from Fs are deadlocks.

For any r from a strongly connected graph Γ, there exists a word u such
that r = pu for p from the F -clique F , whence r belongs to the F -clique Fu.

Lemma 2 Let A and B (|A| > 1) be distinct F -cliques via some coloring
without stable pairs of the AGW graph Γ. Then |A|−|A∩B| = |B|−|A∩B| > 1.

Proof. Let us assume the contrary: |A| − |A ∩ B| = 1. By the definition of
F -clique, |A| = |B| and |B| − |A ∩B| = 1, too.

The pair of states p ∈ A\B and q ∈ B \A is not stable. Therefore for some
word s the pair (ps,qs) is a deadlock. Any pair of states from the F -clique A
and from the F -clique B as well as from F -cliques As and Bs is a deadlock. So
any pair of states from the set (A ∪B)s is a deadlock.

One has |(A ∪ B)s| = |A|+ 1 > |A| in spite of maximality of the size of F -
clique A among the sets of states such that every pair of its states is deadlock.

Lemma 3 Let some vertex of AGW graph Γ have two incoming bunches. Then
any coloring of Γ has a stable couple.

Proof. If a vertex p has two incoming bunches from vertices q and r, then the
couple q, r is stable for any coloring because qα = rα = p for any letter (color)
α ∈ Σ.

2 The spanning subgraph of cycles and trees
with maximal number of edges in the cycles

Définition 1 Let us call a subgraph S of the AGW graph Γ a spanning sub-
graph of Γ if to S belong all vertices of Γ and exactly one outgoing edge of every
vertex.
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A maximal subtree of the spanning subgraph S with root on a cycle from S
and having no common edges with cycles from S is called a tree of S.

The length of path from a vertex p through the edges of the tree of the span-
ning set S to the root of the tree is called the level of p in S.

Remark 1 Any spanning subgraph S consists of disjoint cycles and trees with
roots on cycles; any tree and cycle of S is defined identically, the level of the
vertex from cycle is zero, the vertices of trees except root have positive level, the
vertex of maximal positive level has no incoming edge from S.

Lemma 4 Let L be a set of vertices of level l from some tree of the spanning
subgraph S of AGW graph Γ and let all edges of S have a color α by some
coloring of Γ. Then for any F -clique F of the coloring holds |F ∩ L| ≤ 1.

Proof. Some power of α synchronizes all states of given level of the tree and
maps them into the root. Any couple of states from an F -clique could not be
synchronized and therefore could not belong to L.

Lemma 5 Let AGW graph Γ have a spanning subgraph R of only disjoint
cycles (without trees). Then Γ also has another spanning subgraph with exactly
one vertex of maximal positive level.

Proof. The spanning subgraph R has only cycles and therefore the levels of all
vertices are equal to zero. In view of gcd =1 in the strongly connected graph Γ,
not all edges belong to a bunch. Therefore there exist two edges u = p → q 6∈ R
and v = p → s ∈ R with common first vertex p but such that q 6= s. Let us
replace the edge v = p → s from R by u. Then only the vertex s has maximal
level L > 0 in the new spanning subgraph.

Lemma 6 Let any vertex of an AGW graph Γ have no two incoming bunches.
Then Γ has a spanning subgraph such that all its vertices of maximal positive
level belong to one non-trivial tree.

Proof. Let us consider a spanning subgraph R with a maximal number of vertices
[edges] in its cycles. In view of Lemma 5, suppose that R has non-trivial trees
and let L > 0 be the maximal value of the level of a vertex.

Further consideration is necessary only if at least two vertices of level L
belong to distinct trees of R with distinct roots.

Let us consider a tree T from R with vertex p of maximal level L and edge
b̄ from vertex b to the tree root r ∈ T on the path of length L from p. Let
the root r belong to the cycle H of R with the edge c̄ = c → r ∈ H. There
exists also an edge ā = a → p that does not belong to R because Γ is strongly
connected and p has no incoming edge from R.
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Let us consider the path from p to r of maximal length L in T . Our aim is
to extend the maximal level of the vertex on the extension of the tree T much
more than the maximal level of vertex of other trees from R. We plan to use
the following three changes:

1) replace the edge w̄ from R with first vertex a by the edge ā = a → p,
2) replace the edge b̄ from R by some other outgoing edge of the vertex b,
3) replace the edge c̄ from R by some other outgoing edge of the vertex c.
If one of the ways does not succeed let us go to the next assuming the

situation in which the previous way fails and excluding the successfully studied
cases. So we diminish the considered domain. We can use sometimes two
changes together. Let us begin with

1) Suppose first a 6∈ H. If a belongs to a path in T from p to r then a new
cycle with part of the path and edge a → p is added to R extending the number
of vertices in its cycles in spite of the choice of R. In opposite case the level of
a in the new spanning subgraph is L + 1 and the vertex r is a root of the new
tree containing all vertices of maximal level (in particular, the vertex a or its
ancestors in R).

So let us assume a ∈ H and suppose w̄ = a → d ∈ H. In this case the
vertices p, r and a belong to a cycle H1 with new edge ā of a new spanning
subgraph R1. So we have the cycle H1 ∈ R1 instead of H ∈ R. If the length of
path from r to a in H is r1 then H1 has length L+ r1 +1. A path to r from the
vertex d of the cycle H remains in R1. Suppose its length is r2. So the length
of the cycle H is r1 + r2 + 1. The length of the cycle H1 is not greater than the
length of H because the spanning subgraph R has maximal number of edges in
its cycles. So r1 + r2 + 1 ≥ L + r1 + 1, whence r2 ≥ L. If r2 > L, then the
length r2 of the path from d to r in a tree of R1 (and the level of d) is greater
than L and the level of d (or of some other ancestor of r in a tree from R1) is
the desired unique maximal level.

So assume for further consideration L = r2 and a ∈ H. Analogously, for
any vertex of maximal level L with root in the cycle H and incoming edge from
a vertex a1 the proof can be reduced to the case a1 ∈ H and L = r2 for the
corresponding new value of r2.

2) Suppose the set of outgoing edges of the vertex b is not a bunch. So one
can replace in R the edge b̄ from the vertex b by an edge v̄ from b to a vertex
v 6= r.

The vertex v could not belong to T because in this case a new cycle is added
to R and therefore a new spanning subgraph has a number of vertices in the
cycles greater than in R.

If the vertex v belongs to another tree of R but not to cycle, then T is a
part of a new tree T1 with a new root of a new spanning subgraph R1 and the
path from p to the new root is extended. So only the tree T1 has states of new
maximal level.

If v belongs to some cycle H2 6= H from R, then together with replacing b̄
by v̄, we replace also the edge w̄ by ā. So we extend the path from p to the new
root v at least by the edge ā = a → p and by almost all edges of H. Therefore
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the new maximal level L1 > L has either the vertex d or its ancestors from the
old spanning subgraph R.

Now there remains only the case when v belongs to the cycle H. The vertex
p also has level L in new tree T1 with root v. The only difference between T
and T1 (just as between R and R1) is the root and the incoming edge of the
root. The new spanning subgraph R1 has also a maximal number of vertices in
cycles just as R. Let r3 be the length of the path from d to the new root v ∈ H.

For the spanning subgraph R1, one can obtain L = r3 just as it was done on
the step 1) for R. From v 6= r follows r3 6= r2, though L = r3 and L = r2.

So for further consideration suppose that the set of outgoing edges of the
vertex b is a bunch to r.

3) The set of outgoing edges of the vertex c is not a bunch to r because r
has another bunch from b.

Let us replace in R the edge c̄ by an edge ū = c → u such that u 6= r.
The vertex u could not belong to the tree T because in this case the cycle H is
replaced by a cycle with all vertices from H and some vertices of T whence its
length is greater than |H|. Therefore the new spanning subgraph has a number
of vertices in its cycles greater than in spanning subgraph R in spite of the
choice of R.

So remains the case u 6∈ T . Then the tree T is a part of a new tree with a
new root and the path from p to the new root is extended at least by a part of
H from the former root r. The new level of p therefore is maximal and greater
than the level of any vertex in some another tree.

Thus anyway there exists a spanning subgraph with vertices of maximal level
in one non-trivial tree.

Theorem 2 Any AGW graph Γ has a coloring with stable couple.

Proof. By Lemma 3, in the case of vertex with two incoming bunches Γ has a
coloring with stable couples. In opposite case, by Lemma 6, Γ has a spanning
subgraph R such that the vertices of maximal positive level L belong to one
tree of R.

Let us give to the edges of R the color α and denote by C the set of all
vertices from the cycles of R. Then let us color the remaining edges of Γ by
other colors arbitrarily.

By Lemma 1, in a strongly connected graph Γ for every word s and F -clique
F of size |F | > 1, the set Fs also is an F -clique of the same size and for any
state p there exists an F -clique F such that p ∈ F .

In particular, some F has non-empty intersection with the set N of vertices
of maximal level L. The set N belongs to one tree, whence by Lemma 4 this
intersection has only one vertex. The word αL−1 maps F on an F -clique F1 of
size |F |. One has |F1 \C| = 1 because the sequence of edges of color α from any
tree of R leads to the root of the tree, the root belongs to a cycle colored by α
from C and only for the set N with vertices of maximal level holds NαL−1 6⊆ C.
So |NαL−1 ∩ F1| = |F1 \ C| = 1 and |C ∩ F1| = |F1| − 1.

Let the integer m be a common multiple of the lengths of all considered cycles
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from C colored by α. So for any p from C as well as from F1∩C holds pαm = p.
Therefore for an F -clique F2 = F1α

m holds F2 ⊆ C and C ∩ F1 = F1 ∩ F2.
Thus two F -cliques F1 and F2 of size |F1| > 1 have |F1|−1 common vertices.

So |F1 \ (F1 ∩F2)| = 1. Consequently, in view of Lemma 2, there exists a stable
couple in the considered coloring.

Theorem 3 Every AGW graph Γ has synchronizing coloring.

The proof follows from Theorems 2 and 1.

3 Some auxiliary properties

Lemma 7 Suppose p 6∈ Γs. Then p 6∈ Γus for any word u.

Proof follows from Γu ⊆ Γ.

Lemma 8 Suppose p 6∈ Γs for a word s and a state p of transition graph Γ of
DFA.

Then there exist two minimal integer k and r such that psk = psk+r. The
pair of states p,psr has 2-reset word sk and for every i < k the pair of states
psi,psr+i has 2-reset word sk−i. The word sk is a 2-reset word for at least k
different pairs of states.
In the case r = 1, the word sk maps the set of states p,ps, ...,psk on psk.

Proof. The sequence ps,ps2, ...,pst, ... is finite and belongs to Γs. Therefore
such k and r exist. Two states psi and psr+i are mapped by the power sk−i

on psk = psk+r as well as the states p and psr are mapped by the power sk on
psk. All states psi are distinct for i ≤ k, whence the word sk unites at least k
distinct pairs of states.

In the case r = 1, psk = psjsk for any j. All states psi are distinct for
0 ≥ i ≤ k, whence the word sk unites in this case at least k + 1 distinct states.

Lemma 9 Suppose rα = tα for a letter α and two distinct states r, t of transi-
tion graph Γ of DFA and let the states r and rα be consecutive states of a cycle
C of Γ.

Then there exists a word s of length of the cycle C such that rs = r and
|Γs| < |Γ|. For some state p ∈ Γ \Γs there exists a minimal integer k such that
psk = psk+1. The pair of states p,psk has 2-reset word sk and for every i < k
the pair of states psi,psk has 2-reset word sk−i. The word sk unites at least
k + 1 distinct states.

Proof. A word s with first letter α can be obtained from consecutive letters on
the edges of the cycle C. Therefore |s| is equal to the length of the cycle and
rs = r. |Γs| < |Γ| follows from rα = tα.

From rs = r 6= t and rα = tα follows that ts = r 6= t, whence r = tsi 6= t
for any integer i. In the case t ∈ Γ \ Γs suppose p = t, and so the state p is
defined.
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In opposite case the state t has by mapping s some preimage ts−1 and in
view of tsi 6= t for all i there exists an integer k (only one) such that the state
ts−k belongs to Γ \ Γs. Now suppose p = ts−k. One has psk = psk+1 = r for
p from Γ \ Γs.

So the pair of states p,psk has 2-reset word sk and for every i < k the pair
of states psi,psk has 2-reset word sk−i. The states psi for i ≤ k and p are
distinct because k is unique. The word sk maps all these states on the state r.

Lemma 10 Let Γ be strongly connected graph of synchronizing automaton with
transition semigroup S. Suppose Γa = Γb for reset words a and b. Then a = b.
Any reset word is an idempotent.

Proof. The elements a and b from S induce equal mappings on the set of states
of Γ. S can be embedded into the semigroup of all functions on the set of states
under composition. Therefore a = b in S. Γa = Γa2, whence a = a2 for any
reset word a and the element a ∈ S is an idempotent.

4 Synchronizing Algorithms

The following help construction was supposed by Eppstein [9]. Let us keep for
any pair of states r,p the first letter α of the minimal 2-reset word w of the pair
together with the length of the word w. The second letter of w is the first letter
of the analogical word of the pair of states rα,pα. Therefore the 2-reset word w
of minimal length can be restored on this way. The time and space complexity
of this preprocessing is O(n2) [9] for n-state automaton.

4.1 Checking synchronizability

A help algorithm with O(n2q) time complexity in the worst case verifies whether
or not a given n-state DFA of alphabet size q is synchronizing. The algorithm
follows [9]. Our modification of the algorithm finds first all SCC of the graph
(the first-depth search is a linear) and then checks the minimal SCC Γs of sink
states of the graph (if exists). If there is no sink state then the automaton is
not synchronizing. Exactly one sink state implies synchronizability. The time
and space complexity of the algorithm in both these cases are linear.

Let us consider the graph Γs with at least two sink states. The next step is
the consideration of Γ2

s. We unite any pair of states (p, r) and (r,p), all states
(r, r) are united in one state (0, 0). Then let us mark sink state (0, 0) and all
ancestors of (0, 0) using the first-depth search on the reverse of the obtained
graph G. The graph Γ is synchronizing if any node of G will be marked.

4.2 An efficient algorithm for reset word

An efficient semigroup algorithm, essential improvement of the algorithm [9],
based on the properties of transition semigroup and inspired mostly by results
from the previous section plays a central role in the program.
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We consider the square Γ2 and the reverse graph I of Γ. The graph I is not
deterministic for synchronizing graph Γ. Suppose that the graph Γ is synchro-
nizing, all sink states are found on the stage of checking of the synchronizability,
the graph Γ2 and the reverse graph I were build.

Let us find by help of the reverse graph I for any pair of states r,p from Γ2

the first letter of the minimal 2-reset word w of the pair and the length of w [9].
So for any pair r,p can be restored a 2-reset word w of minimal length.

Let us order the set of states (r,p) according to the length of the word w.
The ordering can be made linear in the size of the set in the following way:

Let us find first the number ci of all states (r,p) with given length i of
minimal 2-reset word for any i, then adjust the intervals of size ci for to place
the pairs and then allocate in every interval the pairs with common length. It
needs O(n2) time.

We use also a complementary idea for to reorder the pairs of states. If a
word w unites at least two states let us find the number of states united by
powers of w and use this value for complementary order.

The important part of the preprocessing supposed by Eppstein was the com-
puting of the mapping Γw of the graph Γ induced by the minimal 2-reset word
w of the pair of states r,p. This stage begins from the shortest words w and
therefore is linear for any considered pair of states r,p. Nevertheless, the time
complexity of the stage is O(n3). For to avoid the extremes of this step, our
algorithm stops on linear number of pairs. The obtained set G of 2-reset words
is considered as a set of generators of some subsemigroup from A and will be
marked together with corresponding pairs of states. The time complexity of this
step is therefore O(n2). Let us reorder G in the complementary order and use
the mapping of the graph induced by powers of generators.
Let Γi be consecutive images of the graph Γ = Γ0 such that for wi ∈ A holds
Γiwi+1 = Γi+1 and |Γi| > |Γi+1|. Let Ai be a semigroup generated by the set
w1, ... wi. Let us check pairs of states corresponding to the words from G. If
the pair belongs to Γi then the corresponding minimal reset word wi+1 together
with its powers may be used for to find the image Γi+1.

In the case no minimal 2-reset word of a pair from Γi was marked, let us
consider the products of marked words. If some product unites a pairs of states
of Γi, then let us use the mapping, mark the product of words and the pair of
states. Let us notice that on this step are considered not all marked pairs. The
number of considered products must be linear in the size of Γ. The product of
two mappings can be found in linear time. Therefore the time complexity of
this stage is O(nk) for the defect k of the mapping of Γi.

If two considered stages still do not find a reset word, then the new generator
must be added to considered subsemigroup Ai. Let us take a pair of states r,p
from Γi with reset word wi. Suppose wi = uivi such that the word vi was
marked. Then the mapping wi can be found in n|ui| time. Let us notice that
only on this step the time complexity may by greater than quadratic.

Lemma 11 Let Γi be consecutive images of the graph Γ = Γ0 such that for vi

from semigroup A Γivi+1 = Γi+1, |Γi| > |Γi+1| and |Γs| = 1 for some integer s.
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Let Ai be a semigroup generated by the set w1, ... wi such that wi = uivi is a
reset word for some pair of states from Γi−1 and vi is a marked element of the
subsemigroup Ai−1.

Then the considered algorithm has max(O(|Γ|2q), O(|Γ||u1...us|) time com-
plexity.

Proof. The time complexity of the step of the building of Γ2 is O(|Γ|2q). So
O(|Γ|2q) is a lower bound for the complexity of the considered algorithm.

Let the set w1, ... wi generate Ai. The creation of the mapping wi needs
|Γ||ui|+ 1 steps because for the marked element vi the mapping is known.

The element will be marked and used only if it is either a generator from
Ai or a product of two marked elements. With a marked semigroup element
will be associated the mapping of Γ defined by the element. The finding of the
mapping of the product of two elements with known images is linear in the size
of the graph.

We repeat the process with the obtained image Γi. The defect of the mapping
is growing on every step. After not over than |Γ|−1 steps Γ will be synchronized.

As for complexity of the algorithm, let us notice that the length of the
synchronizing word found by the algorithm was less than n2 in all considered
cases. The stage of adding of new generators was used only in a small number
of cases, only some percents of considered automata. The number of generators
of the semigroup A is usually small. For instance, for Černy graphs there are
only two generators. Therefore the time complexity of the algorithm is O(n2q)
in majority of cases and the algorithm can be considered as subquadratic.

4.3 An algorithm for reset word of minimal length

A straightforward algorithm for finding synchronizing word of minimal length
is used by the program on its last stage. The algorithm is not polynomial in the
most worst case (the finding of the synchronizing word of minimal length is NP-
hard [9], [19]). The size of the transition semigroup is in general not polynomial
in the size of the transition graph. The program for search of minimal reset
word uses this algorithm relatively rare.

We find mappings of the graph of the automaton induced by the letters of
the alphabet of the labels. Mappings with the same set of states are identified.
It essentially simplifies the process. Distinct mappings are saved. For this aim,
any two mappings must to be compared, so we have O(s(s − 1)/2) steps for s
mappings.
The mappings correspond to semigroup elements. With any mapping let us
connect a previous mapping and the letter that creates the mapping. On this
way, the path on the graph of the automaton can be constructed. The time
complexity of the considered procedure is O(nqs2) with O(ns) space complexity.

Proposition 1 The algorithm finds a list of all words (elements of transition
semigroup) of length k where k is growing. The first synchronizing word of the
list has minimal length.
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5 Experimental data

The considered synchronization algorithms were used in a program for search
of automata with minimal reset word of relatively great length. The program
has investigated all complete DFA for n ≤ 10, q = 2 and for n ≤ 7, q ≤ 4.
An automaton with k states outside sink SCC A of the transition graph can
be mapped on A by word of length not greater than k(k− 1)/2. Therefore only
automata with strongly connected transition graphs need investigation. The
graphs with synchronizing proper subgraph obtained by moving off letters from
the alphabet are omitted too. In particular, there are no synchronizing 3-state
automata for q ≥ 3 such that by removing any letter the obtained automata are
not synchronizing. Therefore such automata are not studied and in the table
below for n = 3 appears zero.

The known n-state automata with minimal reset word of length (n−1)2 are
presented by sequence of Černy [7] (here n=28):
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by automata supposed by Černy, Piricka and Rosenauerova [8], by Kari [16]
and Roman [23].
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Our program has found five new following examples on the border (n− 1)2.
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The corresponding reset words of minimal length are: abcacabca, acbaaacba,
baab, acba, bacb. All considered algorithms have found the same reset word
for every example. The size of the transition semigroup found by the package
TESTAS is 148, 180, 24, 27 and 27 correspondingly.

There are no contradictory examples for the Černy conjecture in considered
class of automata. Moreover, there are no new examples of automata with reset
word of length (n − 1)2 for n > 4 and q > 3 in this class. And what is more,
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the examples with minimal length of reset word disappear even for values near
the Černy bound (n− 1)2 with growth of the size of the automaton and of the
size of the alphabet. The following table displays this noteworthy trend for
the maximum of lengths of minimal reset words of length less than (n − 1)2.
By ∗ are denoted here non-isomorphic automata having minimal reset words of
length (n− 1)2 that do not belong to Černy sequence.

size of the automaton n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
(n− 1)2 4 9 16 25 36 49 64 81

max length, 2 letters 3 ∗ 8 ∗ 15 23 ∗ 32 44 58 74
max length, 3 letters 0 ∗ ∗ 8 ∗ ∗ 15 ∗ 23 31 <=44 - -
max length, 4 letters 0 8 15 22 30 - - -

The gap between (n−1)2 and the maximum of considered length of the minimal
reset word grows with n and q. This gap supports the following funny

Conjecture The set of n-state DFA with minimal reset word of length not
less than (n − 1)2 contains only the sequence of Černy and the eight automata
mentioned above, three of size 3, three of size 4, one of size 5 and one of size 6.

and also
Conjecture Any AGW graph has coloring with minimal reset word of length

less than (n− 1)2.
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