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1 Introduction

The subject matter of this work is the two-variable diophantine equation
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for given positive integers k and

`, such that gcd (`, k2 + 1) = 1 (i.e., ` and k2 + 1 are relatively prime). The
main objective is to determine all positive integer pairs (x, y) which satisfy
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x, y ∈ Z
+, gcd(`, k2 + 1) = 1 and

with gcd (`, y) = 1 (i.e., ` and y are
relatively prime)
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(1)

This is done in Theorem 1, Section 4. As we will see, there are exacgtly N

distinct solutions to (1) where N is the number of positive divisors of the
integer k2 + 1. The N pairs (x, y), which are solutions to (1), are expressed
parametrically in terms of the positive divisors of k2 + 1. Also, note that
when ` = 1, equation (1) is symmetric with respect to the two variables x

and y. If (a, b) is a solution, then so is (b, a). The motivating force behind this
work is a recent article published in the journal Mathematics and Computer
Education (see [1]). The article, authored by Hasan Unal, is entitled “Proof
without words: an arctangent equality”. It consists of four illustrations, a
purely geometric proof of the equality,
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From the point of view of (1), the last equality says that the pair (3, 7) is a
solution of (1), in the case ` = 1 and k = 2.

According to Theorem 1, (3, 7) and (7, 3) are the only solutions to (1) for
` = 1 and k = 2.

This, then, is the other objective of this article. To generate more arct-
angent type of equalities. This is done in Section 5, where a listing of such
equalities is offered; an immediate consequence of Theorem 1.

In Section 2, we list two trigonometric preliminaries: the well known
identity for the tangent of the sum of two angles and a couple of basic facts
regarding arctangent function.

In Section 3, we state two well known results from number theory: Eu-
clid’s lemma; and the formula that gives the number of positive divisors of a
positive integer. We use these in the proof of Theorem 1.

2 Trigonometric preliminaries

(a) If θ1 and θ2 are two angles measured in radians, such that neither θ1

nor θ2, nor their sum θ1 + θ2 is of the form kπ +
π

2
, k and integer.
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Then,

tan(θ1 + θ2) =
tan θ1 + tan θ2
1− tan θ1θ2

(b) Let f be the arctangent function, f(x) = arctanx. Then,

(i) arctan 1 =
π

4

(ii)
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0 < c = tan θ < 1
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3 Number theory preliminaries

The following result is commonly known as Euclid’s lemma, and is of great
significance in number theory.

Result 1 (Euclid’s lemma): Let a, b, c be positive integers such that a is a
divisor of the product bc; and with a also being relatively prime to b. Then,
a is a divisor of c.

The next result provides a formula that gives the exact number of positive
divisors of a positive integer.

Result 2 (number of divisors formula) Let n ≥ 2 be a positive integer,
and let p1, . . . , pt in increasing order, be the distinct prime bases that appear
in the prime factorization of n, so that n = pe11 , . . . pett , with the exponents
e1, . . . , et being positive integers. Also, let N be the number of positive divisors
of n. Then,

(i) N =
t

Π
i=1

(ei + 1) . . . (e1 + 1) . . . (et + 1).

(ii) In particular, when e1 = . . . = et = 1 (i.e., when n is squarefree)

3



N = 2t

Both of these two results can be easily found in number theory books and
texts. For example, see reference [2].

4 Theorem 1 and its proof

Theorem 1. Let k and ` be fixed or given positive integers such that
gcd(`, k2 + 1) = 1. Consider the diophantine equation (1).

(a) There are exactly N distinct positive integer pairs (x, y) which are solu-
tions to equation (1) where N is the number of positive integer divisors
of the integer k2 + 1. Specifically, if (x, y) is a positive integer solution
of (1), then

x = k + ` ·

(

k2 + 1

d

)

and y = k` + d where d is a positive integer

divisor of k2 + 1.

(b) If k2+1 = p, a prime number, then equation (1) has exactly two distinct
positive integer solutions. These are

(x, y) = (k + `(k2 + 1), k`+ 1), (k + `, k`+ k2 + 1).

(c) If k2 + 1 = p1p2, a product of two distinct primes p1 and p2, equation
(1) has exactly four distinct positive integer solutions. These are,

(x, y) = (k + `(k2 + 1), k`+ 1), (k + `, k` + k2 + 1),

(k + `p2. k`+ p1), and (k + `p1, k`+ p2)

Proof. First note that parts (b) and (c) are immediate consequences of part
(a) and Result 2. We omit the details. We prove part (a)

(a) Let d be a positive integer divisor of k2+1. We will show that the pos-

itive integer pair, (xd, yd) =

(

k + ` ·

(

k2 + 1

d

)

, k`+ d

)

is a solution

to (1). First note that yd = k`+d, is relatively prime to `. Indeed, if yd
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and ` had a prime factor q in common then q would divide yd−k` = d;
and thus (since d is a divisor of k2 + 1) yd − k` = d, then q would
divide k2 + 1 contrary to the hypothesis that gcd(`, k2 + 1) = 1. Thus,
gcd(`, yd) = 1.

It is clear that since k, ` and d are positive integers, we have
xd > 1, yd > 1 and k ≥ 1. So,

(

0 <
1

xd

< 1, 0 <
`

yd
< 1, 0 <

1

k
≤ 1

)

. (2)

Let

θ1 = arctan

(

1

xd

)

, θ2 = arctan

(

1

yd

)

, θ = arctan

(

1

k

)

. (3)

Then, by (2), (3) and part (b) of the trigonometric preliminaries, we
have
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4
, 0 < θ2 <

π

4
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4

and 0 < θ1 + θ2 <
π

2
, tan θ1 =
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xd

, tan θ2 =
`

yd
, tan θ =

1

k



















(4)

From (4) and part (a) of trigonometric preliminaries, it follows that

tan(θ1 + θ2) =

1

xd

+ `
yd

1− 1

xd

·
`
yd

;

tan(θ1 + θ2) =
yd + `xd

xdyd − `
;

tan(θ1 + θ2) =
d · (yd + `xd)

dxdyd − d`
.

(5)

By (5) and the expressions for xd and yd (see beginning of the proof)
we get
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tan(θ1 + θ2) =
d2 + k`d+ k`d+ `2 · (k2 + 1)

[dk + `(k2 + 1)](k`+ d)− d`
;

tan(θ1 + θ2) =
d2 + 2k`d+ `2 · (k2 + 1)

d`k2 + k`2(k2 + 1) + kd2 + `dk2 + d`− d`
;

tan(θ1 + θ2) =
d2 + 2k`d+ `2 · (k2 + 1)

k · [2dk`+ d2 + `2(k2 + 1)]
=

1

k
= tan θ;

tan(θ1 + θ2) = tan θ

(6)

By (6) and part (b) of the trigonometric preliminaries, it follows that
θ1 + θ2 = θ, which combined with (3), clearly establishes that the pair
(xd, yd) is a solution to (1).

Now, the converse. Suppose that (x, y) is a positive integer solution to
(1).

Then

(

0 <
1

x
≤ 1, 0 <

`

y
≤ `, 0 <

1

k
≤ 1

)

(7)

Using (7), the trigonometric preliminaries, parts (a) and (b) and by
taking tangent of both sides of (1), we obtain,

1

x
+ `

y

1− 1

x
`
y

=
1

k

or equivalently

(Note that since 0 <
1

k
≤ 1. The equal sides of (1) can be utmost equal

to
π

4
)

xy − ` = k(y + x`);

y · (x− k) = ` · (1 + kx)
(8)
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Equation (8) shows that y is a divisor of the product `(1+kx). But, by
(1), we know that gcd(`, y) = 1. Thus, by Result 1 (Euclid’s lemma),
it follows that y must divide 1 + kx; and so,







1 + kx = y · v

v a positive integer







(9)

By (9) and (8) we have that,

x = ` · v + k (10)

From (9) and (10) we further get

1 + k(`v + k) = yv;

or equivalently

k2 + 1 = (y − `k) · v (11)

Since v is a positive integer, equation (11) shows that (y − `k) is a
positive integer divisor of k2 + 1. Let y − `k = d, d a positive divisor
of k2 + 1. Then y = `k + d and by (11) and (10) we also get

x = k + ` ·

(

k2 + 1

d

)

,

which proves that the solution (x, y) has the required form.

Finally, we see by inspection that the N (number of positive divisors
of k2 + 1) positive integer solutions to (1) are distinct since, obviously,
all the Ny-coordinates are distinct. The proof is complete.
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5 A listing of nine equalities

Let k and ` be positive integers such that gcd(`, k2 + 1) = 1. Applying
Theorem 1 with d = 1 and d = k2 + 1 produces two inequalities.

1. arctan

(

1

k + `(k2 + 1)

)

+ arctan

(

`

k`+ 1

)

= arctan
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2. arctan

(

1

k + `

)

+ arctan

(
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)

= arctan
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1

k

)

Next, applying Theorem 1 with k = ` = 1, produces the equality:
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For ` = 1 and k = 2:
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.

For ` = 1 and k = 3
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)
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)

6. arctan
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1

5
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(

1

3

)

For ` = 2 and k = 4:

7. arctan

(

1
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)

+ arctan
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2

9

)
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1

4

)

8. arctan
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1

6

)

+ arctan

(
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)

= arctan
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4

)

For ` = 1 and k = 6:
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= arctan
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