The Diophantine Equation

$$
\arctan \left(\frac{1}{\mathrm{x}}\right)+\arctan \left(\frac{\ell}{\mathrm{y}}\right)=\arctan \left(\frac{1}{\mathrm{k}}\right)
$$

Konstantine Zelator
Mathematics, Statistics, and Computer Science
212 Ben Franklin Hall
Bloomsburg University of Pennsylvania
400 East 2nd Street
Bloomsburg, PA 17815
USA
and
P.O. Box 4280
Pittsburgh, PA 15203
kzelator@bloomu.edu
e-mails: konstantine_zelator@yahoo.com

March 30, 2012

1 Introduction

The subject matter of this work is the two-variable diophantine equation $\arctan \left(\frac{1}{x}\right)+\arctan \left(\frac{\ell}{y}\right)=\arctan \left(\frac{1}{k}\right)$ for given positive integers k and ℓ, such that $\operatorname{gcd}\left(\ell, k^{2}+1\right)=1$ (i.e., ℓ and $k^{2}+1$ are relatively prime). The main objective is to determine all positive integer pairs (x, y) which satisfy

$$
\left\{\begin{array}{l}
\arctan \left(\frac{1}{x}\right)+\arctan \left(\frac{\ell}{y}\right)=\arctan \left(\frac{1}{k}\right) \tag{1}\\
x, y \in \mathbb{Z}^{+}, \operatorname{gcd}\left(\ell, k^{2}+1\right)=1 \text { and } \\
\text { with gcd }(\ell, y)=1 \text { (i.e., } \ell \text { and } y \text { are } \\
\text { relatively prime) }
\end{array}\right\}
$$

This is done in Theorem 1, Section 4. As we will see, there are exacgtly N distinct solutions to (1) where N is the number of positive divisors of the integer $k^{2}+1$. The N pairs (x, y), which are solutions to (1), are expressed parametrically in terms of the positive divisors of $k^{2}+1$. Also, note that when $\ell=1$, equation (1) is symmetric with respect to the two variables x and y. If (a, b) is a solution, then so is (b, a). The motivating force behind this work is a recent article published in the journal Mathematics and Computer Education (see [1]). The article, authored by Hasan Unal, is entitled "Proof without words: an arctangent equality". It consists of four illustrations, a purely geometric proof of the equality,

$$
\arctan \left(\frac{1}{3}\right)+\arctan \left(\frac{1}{7}\right)=\arctan \left(\frac{1}{2}\right) .
$$

From the point of view of (1), the last equality says that the pair $(3,7)$ is a solution of (1), in the case $\ell=1$ and $k=2$.

According to Theorem $1,(3,7)$ and $(7,3)$ are the only solutions to (1) for $\ell=1$ and $k=2$.

This, then, is the other objective of this article. To generate more arctangent type of equalities. This is done in Section 5 , where a listing of such equalities is offered; an immediate consequence of Theorem 1.

In Section 2, we list two trigonometric preliminaries: the well known identity for the tangent of the sum of two angles and a couple of basic facts regarding arctangent function.

In Section 3, we state two well known results from number theory: Euclid's lemma; and the formula that gives the number of positive divisors of a positive integer. We use these in the proof of Theorem 1.

2 Trigonometric preliminaries

(a) If θ_{1} and θ_{2} are two angles measured in radians, such that neither θ_{1} nor θ_{2}, nor their sum $\theta_{1}+\theta_{2}$ is of the form $k \pi+\frac{\pi}{2}, k$ and integer.

Then,

$$
\tan \left(\theta_{1}+\theta_{2}\right)=\frac{\tan \theta_{1}+\tan \theta_{2}}{1-\tan \theta_{1} \theta_{2}}
$$

(b) Let f be the arctangent function, $f(x)=\arctan x$. Then,
(i) $\arctan 1=\frac{\pi}{4}$
(ii) $\left\{\begin{array}{l}0<\theta<\frac{\pi}{r} \\ \text { and } \quad \theta=\arctan c\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}0<\theta<\frac{\pi}{4} \\ 0<c=\tan \theta<1\end{array}\right\}$
(iii) $\left\{\begin{array}{ll}0<\theta<\frac{\pi}{2} & \\ \text { and } & \theta=\arctan c\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}0<\theta<\frac{\pi}{2} \\ 0<c=\tan \theta\end{array}\right\}$

3 Number theory preliminaries

The following result is commonly known as Euclid's lemma, and is of great significance in number theory.

Result 1 (Euclid's lemma): Let a, b, c be positive integers such that a is a divisor of the product bc; and with a also being relatively prime to b. Then, a is a divisor of c.

The next result provides a formula that gives the exact number of positive divisors of a positive integer.

Result 2 (number of divisors formula) Let $n \geq 2$ be a positive integer, and let p_{1}, \ldots, p_{t} in increasing order, be the distinct prime bases that appear in the prime factorization of n, so that $n=p_{1}^{e_{1}}, \ldots p_{t}^{e_{t}}$, with the exponents e_{1}, \ldots, e_{t} being positive integers. Also, let N be the number of positive divisors of n. Then,
(i) $N=\prod_{i=1}^{t}\left(e_{i}+1\right) \ldots\left(e_{1}+1\right) \ldots\left(e_{t}+1\right)$.
(ii) In particular, when $e_{1}=\ldots=e_{t}=1$ (i.e., when n is squarefree)

$$
N=2^{t}
$$

Both of these two results can be easily found in number theory books and texts. For example, see reference [2].

4 Theorem 1 and its proof

Theorem 1. Let k and ℓ be fixed or given positive integers such that $\operatorname{gcd}\left(\ell, k^{2}+1\right)=1$. Consider the diophantine equation (1).
(a) There are exactly N distinct positive integer pairs (x, y) which are solutions to equation (1) where N is the number of positive integer divisors of the integer $k^{2}+1$. Specifically, if (x, y) is a positive integer solution of (1), then
$x=k+\ell \cdot\left(\frac{k^{2}+1}{d}\right)$ and $y=k \ell+d$ where d is a positive integer divisor of $k^{2}+1$.
(b) If $k^{2}+1=p$, a prime number, then equation (1) has exactly two distinct positive integer solutions. These are

$$
(x, y)=\left(k+\ell\left(k^{2}+1\right), k \ell+1\right), \quad\left(k+\ell, k \ell+k^{2}+1\right) .
$$

(c) If $k^{2}+1=p_{1} p_{2}$, a product of two distinct primes p_{1} and p_{2}, equation (1) has exactly four distinct positive integer solutions. These are,

$$
\begin{array}{ll}
(x, y)=\left(k+\ell\left(k^{2}+1\right), k \ell+1\right), & \left(k+\ell, k \ell+k^{2}+1\right), \\
\left(k+\ell p_{2} . k \ell+p_{1}\right), \text { and } & \left(k+\ell p_{1}, k \ell+p_{2}\right)
\end{array}
$$

Proof. First note that parts (b) and (c) are immediate consequences of part (a) and Result 2. We omit the details. We prove part (a)
(a) Let d be a positive integer divisor of $k^{2}+1$. We will show that the positive integer pair, $\left(x_{d}, y_{d}\right)=\left(k+\ell \cdot\left(\frac{k^{2}+1}{d}\right), k \ell+d\right)$ is a solution to (1). First note that $y_{d}=k \ell+d$, is relatively prime to ℓ. Indeed, if y_{d}
and ℓ had a prime factor q in common then q would divide $y_{d}-k \ell=d$; and thus (since d is a divisor of $k^{2}+1$) $y_{d}-k \ell=d$, then q would divide $k^{2}+1$ contrary to the hypothesis that $\operatorname{gcd}\left(\ell, k^{2}+1\right)=1$. Thus, $\operatorname{gcd}\left(\ell, y_{d}\right)=1$.
It is clear that since k, ℓ and d are positive integers, we have $x_{d}>1, y_{d}>1$ and $k \geq 1$. So,

$$
\begin{equation*}
\left(0<\frac{1}{x_{d}}<1,0<\frac{\ell}{y_{d}}<1,0<\frac{1}{k} \leq 1\right) . \tag{2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\theta_{1}=\arctan \left(\frac{1}{x_{d}}\right), \theta_{2}=\arctan \left(\frac{1}{y_{d}}\right), \theta=\arctan \left(\frac{1}{k}\right) . \tag{3}
\end{equation*}
$$

Then, by (2), (3) and part (b) of the trigonometric preliminaries, we have

$$
\left\{\begin{array}{l}
0<\theta_{1}<\frac{\pi}{4}, 0<\theta_{2}<\frac{\pi}{4}, 0<\theta \leq \frac{\pi}{4} \tag{4}\\
\text { and } 0<\theta_{1}+\theta_{2}<\frac{\pi}{2}, \tan \theta_{1}=\frac{1}{x_{d}}, \tan \theta_{2}=\frac{\ell}{y_{d}}, \tan \theta=\frac{1}{k}
\end{array}\right\}
$$

From (4) and part (a) of trigonometric preliminaries, it follows that

$$
\begin{align*}
\tan \left(\theta_{1}+\theta_{2}\right) & =\frac{\frac{1}{x_{d}}+\frac{\ell}{y_{d}}}{1-\frac{1}{x_{d}} \cdot \frac{\ell}{y_{d}}} \\
\tan \left(\theta_{1}+\theta_{2}\right) & =\frac{y_{d}+\ell x_{d}}{x_{d} y_{d}-\ell} \tag{5}\\
\tan \left(\theta_{1}+\theta_{2}\right) & =\frac{d \cdot\left(y_{d}+\ell x_{d}\right)}{d x_{d} y_{d}-d \ell}
\end{align*}
$$

By (5) and the expressions for x_{d} and y_{d} (see beginning of the proof) we get

$$
\begin{align*}
\tan \left(\theta_{1}+\theta_{2}\right) & =\frac{d^{2}+k \ell d+k \ell d+\ell^{2} \cdot\left(k^{2}+1\right)}{\left[d k+\ell\left(k^{2}+1\right)\right](k \ell+d)-d \ell} \\
\tan \left(\theta_{1}+\theta_{2}\right) & =\frac{d^{2}+2 k \ell d+\ell^{2} \cdot\left(k^{2}+1\right)}{d \ell k^{2}+k \ell^{2}\left(k^{2}+1\right)+k d^{2}+\ell d k^{2}+d \ell-d \ell} ; \tag{6}\\
\tan \left(\theta_{1}+\theta_{2}\right) & =\frac{d^{2}+2 k \ell d+\ell^{2} \cdot\left(k^{2}+1\right)}{k \cdot\left[2 d k \ell+d^{2}+\ell^{2}\left(k^{2}+1\right)\right]}=\frac{1}{k}=\tan \theta ; \\
\tan \left(\theta_{1}+\theta_{2}\right) & =\tan \theta
\end{align*}
$$

By (6) and part (b) of the trigonometric preliminaries, it follows that $\theta_{1}+\theta_{2}=\theta$, which combined with (3), clearly establishes that the pair $\left(x_{d}, y_{d}\right)$ is a solution to (1).
Now, the converse. Suppose that (x, y) is a positive integer solution to (1).

Then

$$
\begin{equation*}
\left(0<\frac{1}{x} \leq 1, \quad 0<\frac{\ell}{y} \leq \ell, \quad 0<\frac{1}{k} \leq 1\right) \tag{7}
\end{equation*}
$$

Using (7), the trigonometric preliminaries, parts (a) and (b) and by taking tangent of both sides of (1), we obtain,

$$
\frac{\frac{1}{x}+\frac{\ell}{y}}{1-\frac{1}{x} \frac{\ell}{y}}=\frac{1}{k}
$$

or equivalently
(Note that since $0<\frac{1}{k} \leq 1$. The equal sides of (1) can be utmost equal to $\frac{\pi}{4}$)

$$
\begin{align*}
x y-\ell & =k(y+x \ell) \tag{8}\\
y \cdot(x-k) & =\ell \cdot(1+k x)
\end{align*}
$$

Equation (8) shows that y is a divisor of the product $\ell(1+k x)$. But, by (1), we know that $\operatorname{gcd}(\ell, y)=1$. Thus, by Result 1 (Euclid's lemma), it follows that y must divide $1+k x$; and so,

$$
\left\{\begin{array}{l}
1+k x=y \cdot v \tag{9}\\
v \text { a positive integer }
\end{array}\right\}
$$

By (9) and (8) we have that,

$$
\begin{equation*}
x=\ell \cdot v+k \tag{10}
\end{equation*}
$$

From (9) and (10) we further get

$$
1+k(\ell v+k)=y v
$$

or equivalently

$$
\begin{equation*}
k^{2}+1=(y-\ell k) \cdot v \tag{11}
\end{equation*}
$$

Since v is a positive integer, equation (11) shows that $(y-\ell k)$ is a positive integer divisor of $k^{2}+1$. Let $y-\ell k=d, d$ a positive divisor of $k^{2}+1$. Then $y=\ell k+d$ and by (11) and (10) we also get

$$
x=k+\ell \cdot\left(\frac{k^{2}+1}{d}\right),
$$

which proves that the solution (x, y) has the required form.
Finally, we see by inspection that the N (number of positive divisors of $k^{2}+1$) positive integer solutions to (1) are distinct since, obviously, all the $N y$-coordinates are distinct. The proof is complete.

5 A listing of nine equalities

Let k and ℓ be positive integers such that $\operatorname{gcd}\left(\ell, k^{2}+1\right)=1$. Applying Theorem 1 with $d=1$ and $d=k^{2}+1$ produces two inequalities.

1. $\arctan \left(\frac{1}{k+\ell\left(k^{2}+1\right)}\right)+\arctan \left(\frac{\ell}{k \ell+1}\right)=\arctan \left(\frac{1}{k}\right)$
2. $\arctan \left(\frac{1}{k+\ell}\right)+\arctan \left(\frac{\ell}{k \ell+k^{2}+1}\right)=\arctan \left(\frac{1}{k}\right)$

Next, applying Theorem 1 with $k=\ell=1$, produces the equality:
3. $\arctan \left(\frac{1}{3}\right)+\arctan \left(\frac{1}{2}\right)=\frac{\pi}{4}$

For $\ell=1$ and $k=2$:
4. $\arctan \left(\frac{1}{3}\right)+\arctan \left(\frac{1}{7}\right)=\arctan \left(\frac{1}{2}\right)$.

For $\ell=1$ and $k=3$
5. $\arctan \left(\frac{1}{11}\right)+\arctan \left(\frac{1}{4}\right)=\arctan \left(\frac{1}{3}\right)$
6. $\arctan \left(\frac{1}{8}\right)+\arctan \frac{1}{5}=\arctan \left(\frac{1}{3}\right)$

For $\ell=2$ and $k=4$:
7. $\arctan \left(\frac{1}{38}\right)+\arctan \left(\frac{2}{9}\right)=\arctan \left(\frac{1}{4}\right)$
8. $\arctan \left(\frac{1}{6}\right)+\arctan \left(\frac{2}{25}\right)=\arctan \left(\frac{1}{4}\right)$

For $\ell=1$ and $k=6$:
9. $\arctan \left(\frac{1}{43}\right)+\arctan \left(\frac{1}{7}\right)=\arctan \left(\frac{1}{6}\right)$

References

[1] Unal, Hasan, Proof without words: an arctangent equality, Mathematics and Computer Education, Fall 2011, Vol. 45, No. 3, p 197.

2] Rosen, Kenneth H., Elementary Number Theory and Its Applications, 5th edition, Pearson, Addison Wesley, 2005.

For Result 1 (Lemma 3.4 in the above book), see page 109.
For Result 2 (Theorem 7.9 in the above book), see page 252 .

