
Controllable quantum correlations of two-photon states generated using classically
driven three-level atoms

Himadri Shekhar Dhar1, Subhashish Banerjee2, Arpita Chatterjee1, Rupamanjari Ghosh1,3∗
1School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India

2Indian Institute of Technology Rajasthan, Jodhpur 342011, India
3School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, UP 203207, India

(Dated: 25 May 2012)

We investigate the dynamics of two-photon correlations generated by the interaction of a three-
level atom in the Ξ, Λ or V configuration, with two classical external driving fields, under the
rotating-wave approximation, in the presence of level decays. Using the example of a Rubidium
atom in each configuration, with field strengths validating the single-photon approximation, we
compute measurement based correlations, such as measurement induced disturbance (MID), quan-
tum discord (QD), and quantum work deficit (WD), and compare the results with that of quantum
entanglement (concurrence). Certain correlation properties observed are generic, model independent
and consistent with known results, e.g., MID is an upper bound on QD, QD and WD are monotonic,
and the generic correlation behavior is strongly affected by the purity of the photon states. We ob-
serve that the qualitative hierarchy, monotonicity and steady-state behavior of the correlations can
be controlled by the choice of parameters such as atomic decay constants and external driving field
strengths. We point out how particular configurations are better suited at generating monotonic
correlations in specific regimes and how the steady-state correlation behavior and hierarchy are
affected by the population dynamics of the density matrix for different parameters.

PACS numbers: 03.67.-a, 03.67.Mn, 03.67.Bg, 42.50.Dv

I. INTRODUCTION

The interaction of atomic systems and external elec-
tromagnetic fields is a principal source for the generation
and classification of quantum correlations [1]. The quan-
tum nature of these atom-photon systems and the abil-
ity to implement such systems in controlled experimen-
tal settings make them important tools in the study of
nonclassical features [2]. From the perspective of quan-
tum information theory (QIT), atomic systems are the
quintessential computational hardware needed for the fu-
ture implementation of quantum information protocols
[3, 4], and photons are the basic building blocks of quan-
tum communication [5] and cryptography [6]. Hence,
the generation and manipulation of nonclassical corre-
lations in complex atomic systems interacting with ra-
diation fields is one of the most challenging aspects of
future applications of QIT.

The various popular indicators of nonclassicality and
measures of quantum correlations are dependent on the
theoretical perspectives invoked for their quantifications
and are often not consistent when the interacting states
have sufficient amount of mixedness [7]. The main di-
chotomy in the definition of quantum correlations arises
from the question of what constitutes quantumness. The
extensively studied entanglement-separability [8] crite-
rion to define quantum correlations stems from the un-
derstanding that the main feature of quantumness arises
from the superposition principle [9]. Another feature to
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have received widespread attention in recent times is the
definition of nonclassicality or quantumness on the ba-
sis of measurement based correlations. Such definitions
take into account the fact that an important feature of
quantumness in nature arises from noncommutativity of
operators [10]. Any physical measurement on a quan-
tum system disturbs the noncommutative nature of the
system and thus effectively erases quantum correlations.
Information theoretic measures such as quantum discord
(QD) [11, 12], quantum work deficit (WD) [13] and mea-
surement induced disturbance (MID) [10] are based on
the unique role of measurement in quantum physics.

The nonclassical properties of three-level atomic sys-
tems have been well studied in quantum optics for
understanding quantum-coherence phenomena such as
electromagnetically-induced transparency (EIT) [14], las-
ing without inversion [15], and coherent trapping [16].
Three-level atoms interacting with low-strength driving
fields, similar to EIT systems, have been used to gener-
ate entangled two-mode photon states which can be suit-
ably manipulated to yield desired correlations [17]. The
knowledge of nonclassical correlations carried by emitted
photons in atomic systems may prove immensely useful
in designing future QIT systems for communications and
computation. Further, the use of generic quantum opti-
cal models, that can be experimentally implemented and
observed, can serve as an important tool to investigate,
verify and control nonclassical correlations and their fea-
tures.

In this paper, we investigate the nonclassical corre-
lation properties of the photon states emitted from a
three-level atomic system interacting with two classical
driving fields. The interactions generate two-mode sin-
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FIG. 1: (Color online) A three-level atom in the (a) Ξ, (b) Λ, and (c) V configuration. Γ1 and Γ2 are the decay constants of
the levels |2〉 and |3〉. ν1, ν2, and Ω1, Ω2 are the optical frequencies and the Rabi frequencies of the two near-resonant driving
fields. ω1 and ω2 are the two atomic transition frequencies. ∆1 and ∆2 are the field detunings, set to zero in this work.

gle photon states, arising from two controlled coherent
transitions connecting the three levels, under the single
photon approximation (SPA) [18]. The system can be
set up in three different configurations, Ξ, Λ and V. We
exhaustively study the correlation properties of the emit-
ted two-mode photons, and compare the dynamics of the
different measures of nonclassical correlations. We estab-
lish a qualitative relation between the two different the-
oretical classes of correlation measures, namely, entan-
glement and the measurement-based correlations such as
MID, QD and WD. The control parameters in the system
enable us to define specific regimes where certain correla-
tions are enhanced based on the nature of the output pho-
ton states. We also analyze certain interesting features of
the correlations generated by the interaction that throw
light into the hierarchy of the set of measures used. The
arrangement of the paper is as follows. We briefly dis-
cuss the different configurations of the three-level atom in
Sec. II. Then we have a short segment, in Sec. III, defining
the different correlation measures. In Sec. IV, we define
the theoretical model used and the working approxima-
tions considered in the analysis. In Sec. V, the numerical
results obtained from the theoretical model are analyzed.
We conclude in Sec. VI, with a summary of the results
obtained and its possible ramifications.

II. THE THREE-LEVEL ATOM

In this section, we briefly review our system. A three-
level atom can be used in three different configurations,
namely, Ξ, Λ and V [19, 20]. As a specific example, we
focus on a gas of Rubidium (Rb) atoms [21]. The en-
ergy levels 5S1/2, 5P3/2 and 5D5/2 of Rb can be suitably
used to generate each of the three configurations shown
in Fig. 1(a)-(c), as elaborated in the subsections below.
Level 5S1/2 is the ground state and does not decay. Level

5D5/2 is metastable, and we scale all rate/frequency val-
ues with the metastable level decay rate, which is about 1
MHz. The decay of levels 5D5/2 and 5P3/2 are at (scaled)
rates of ΓD = 1.0 and ΓP = 6.0, respectively [21]. The
conditions on the driving field Rabi frequencies Ωi shown
in Fig. 1 are explained later in Sec. IV. C.

A. The Ξ system

The cascade Ξ system (Fig. 1(a)) uses the allowed
dipole transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉, with two clas-
sical fields of Rabi frequencies Ω1 and Ω2 driving these
transitions, respectively. The field detunings are ∆1 and
∆2, set to zero throughout our analysis for near-resonant
fields. The transition |1〉 ↔ |3〉 is dipole forbidden. The
levels |1〉, |2〉 and |3〉 correspond to the atomic levels
5S1/2, 5P3/2 and 5D5/2 of the Rb atom, respectively.
Thus the decay rates of |3〉 and |2〉 are Γ2 ≡ ΓD = 1.0
and Γ1 ≡ ΓP = 6.0, respectively. Level P3/2 serves as
the shared level |2〉 during the interaction. The initial
atomic state is ground state (|1〉) populated and the lev-
els |2〉 and |3〉 are unpopulated. Ξ systems have been ex-
tensively used in coherent population trapping [22] and
also in experiments to achieve laser cooling in trapped
ions [23].

B. The Λ system

The Λ system configuration can be obtained by fold-
ing the Ξ, with levels 5S1/2, 5P3/2 and 5D5/2 of the Rb
atom now marked as levels |1〉, |3〉 and |2〉, respectively,
as shown in Fig. 1(b). With this identification for Rb, we
observe that level |2〉 is energetically higher than level
|3〉. This corresponds to a negative transition frequency
ω2. The rotating wave approximation (RWA) thus holds
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for the negative frequency term of the field in the Hamil-
tonian [21]. Hence, the transition from level |3〉 to |2〉
annihilates a photon instead of creating a photon. The al-
lowed dipole transitions are now |1〉 ↔ |3〉 and |2〉 ↔ |3〉,
with two driving fields with Rabi frequencies Ω1 and Ω2

now acting on these transitions. Level |3〉 is the shared
level, and the transition |1〉 ↔ |2〉 is now dipole forbid-
den. The decay rates of |2〉 and |3〉 are Γ1 ≡ ΓD = 1.0 and
Γ2 ≡ ΓP = 6.0, respectively. The initial atomic system
is again ground state (|1〉) populated, and the detunings
are taken to be zero. The interactions of the three lev-
els are distinctly different from the Ξ system, and hence
can be associated with different nonclassical behaviors.
Λ systems have been extensively used in demonstrating
diverse coherent phenomena such as stimulated raman
adiabatic passage [24] and electromagnetically induced
transparency (EIT) [14].

C. The V system

The configuration of the V system (Fig. 1(c)) is con-
siderably different from the Ξ and the Λ systems. This
is due to the fact that the shared level in the V sys-
tem is the ground state. For the V system using Rb,
we consider level 5S1/2 as the shared ground level (|1〉)
and two hyperfine levels of 5P3/2 as the two-excited lev-
els (|2〉 and |3〉). Hence, Γ1 = Γ2 ≡ ΓP = 6.0. The
allowed transitions are |1〉 ↔ |3〉 and |1〉 ↔ |2〉, driven
by the classical fields of Rabi frequencies Ω1 and Ω2, re-
spectively. The transition |2〉 ↔ |3〉 is dipole-forbidden,
i.e., the ground state excitations take the system to two
excited levels that cannot be coupled, and interactions
are thus limited to ground state transitions. The initial
atomic system is again ground state (|1〉) populated, and
the detunings are set to zero. V systems are widely used
to study nonclassical phenomena such as quantum jumps
[25], quantum Zeno effect [26] and quantum beats [16].

III. QUANTUM CORRELATIONS

We compare measures of quantum correlations that
are defined from two different perspectives. Information-
theoretic measures, such as MID [10], QD [11, 12] and
WD [13], are based on the modification of quantum
correlations upon measurement. These correlations cal-
culate the difference in some specific property between
quantum states and their measured classical projections
to give us a measure of the nonclassicality. On the
other hand, there are nonclassical measures based on the
entanglement-separability criterion. We use concurrence
[27] as an example of entanglement monotone [8].

A. Measurement based correlations

Measurement Induced Disturbance (MID): It is derived
from the understanding that a truly classical state, with
respect to some measurement, will remain unchanged af-
ter the measurement [10]. Let us consider a bipartite den-
sity matrix ρab. If Bai and Bbj are complete von Neumann
measurements (one dimensional projections) for subsys-
tems a and b, respectively, for a classical state,

ρab =
∑
ij

Bai ⊗Bbj ρab Bai ⊗Bbj . (1)

The states ρab that do not satisfy (1) are essentially quan-
tum in nature. MID measures the quantumness in a bi-
partite state ρab by measuring the difference in the quan-
tum mutual information between the state ρab and its
least disturbed classical state obtained by the measure-
ment, ρclass =

∑
i Bi ρab Bi, where Bi are the spectral

projections of the state ρab. Thus

M(ρab) = I(ρab)− I(ρclass), (2)

where I(ρab) ≡ S(ρa) + S(ρb) − S(ρab) is the quantum
mutual information [28]. S(ρ) = −tr(ρ log2 ρ) is the
von Neumann entropy of a quantum state ρ. ρa and ρb
are the reduced density matrices of the subsystem a and
b, respectively. M(ρab) is the nonclassical measure of
MID [10]. Unlike other measures of correlation based on
projective measurements, MID does not introduce any
optimization on the measured states. Hence, MID serves
as an upper bound on other measurement based correla-
tions [29].

Quantum Discord (QD): It is defined as the difference
between two classically equivalent expressions for mutual
information when extended to the quantum regime [11,
12]. For the density operator ρab, the expressions for
quantum mutual information are

I(ρab) ≡ S(ρa) + S(ρb)− S(ρab)

6= S(ρa)− S(ρa|b) ≡ J(ρab), (3)

where S(ρab), as defined earlier, is the von Neumann en-
tropy. I(ρab) is the quantum mutual information [28] and
S(ρa|b) is the quantum conditional entropy [30]. The two
expressions in (3) are equal in the classical regime.

To calculate the quantum conditional entropy, S(ρa|b),
we use the one-qubit orthonormal projection basis: |i1〉 =
cos θ2 |0〉+eiφ sin θ

2 |1〉 and |i2〉 = e−iφ sin θ
2 |0〉+ cos θ2 |1〉,

with 〈i|j〉 = δij , i, j = 0, 1. The projection density
operators are given by the relations B1 = |i1〉〈i1| and
B2 = |i2〉〈i2|. On measuring the subsystem b using the
above set of projection operators, the post-measurement
states are ρiab = 1

pi
(Ia ⊗ Bi ρab Ia ⊗ Bi), where pi =

trab(Ia ⊗ Bi ρab Ia ⊗ Bi), and Ia is the identity opera-
tor acting on the subsystem a. The quantum conditional
entropy is then given by

S(ρa|b) = min
{Bi}

∑
i

piS(ρiab). (4)
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QD can then be defined using relation (3) and (4).

J(ρab) = S(ρa)− min
{Bi}

∑
i

piS(ρiab), (5)

QD(ρab) = I(ρab)− J(ρab). (6)

Quantum work deficit (WD): This concept is based on
the fact that information is a thermodynamic resource
[13]. It is defined as the amount of work (in terms of
pure states) that can be extracted from a quantum bi-
partite system under a closed global operation and the
amount that can be extracted using closed local opera-
tions and classical communications (CLOCC) [31]. WD
is the deficit in the two operations due to loss of nonclas-
sical correlations while performing CLOCC. Hence, WD
is a measure of nonclassical correlations.

Using the projection basis and the expressions for en-
tropy defined previously, we can obtain the expressions
for the global and CLOCC operations. Under the class
of global operations, the amount of work extractable (in
terms of pure states) is given by IG(ρab) = log2dimH −
S(ρab), where dimH is the dimension of the Hilbert space.
The amount of work that can be extracted using CLOCC
is dependent upon local unitary operations, local dephas-
ing and classical communication of the dephased state.
ρab →

∑
iBi ρab Bi.

ρiab =
∑
i

(Ia ⊗ Bi ρab Ia ⊗Bi). (7)

The amount of work that can be extracted using CLOCC
is given by IL(ρab) = log2dimH−infCLOCC [S(ρiab)]. WD
is then defined by the following expression:

∆(ρab) = IG(ρab)− IL(ρab). (8)

B. Entanglement measure

Concurrence: Entanglement in a bipartite system can
be measured using this entanglement monotone defined
for mixed states of two qubits [27]. Concurrence can be
defined for a two-qubit density matrix ρ(t) as C(ρ) =
max[0, λ1 − λ2 − λ3 − λ4], where λi(i = 1, 2, 3, 4) are the
square roots of the eigenvalues of the spin-flip operator,
R = ρ(t)ρ̃(t), with ρ̃(t) = (σy ⊗ σy)ρ(t)(σy ⊗ σy), and σy
is the Pauli spin matrix

σy =

(
0 −i
i 0

)
.

Concurrence is closely related to the entanglement of for-
mation. The entanglement of formation is a monotoni-
cally increasing function of concurrence. Concurrence,
however, is not a resource-based measure such as entan-
glement of formation [32].

IV. MODEL

Three-level atomic systems have been extensively used
to study quantum and nonlinear features of the semi-
classical atom-field system [19] and also the nonclassical
nature of emitted radiation in such systems [33]. En-
tanglement properties of three-level atomic systems have
also been investigated [34]. However, a general classifi-
cation of information-theoretic correlations for such sys-
tems does not exist, and we wish to investigate and com-
pare the features of the above quantum correlation fea-
tures using this versatile system.

A. The Hamiltonian

The Hamiltonian for a general three-level atom inter-
acting with two classical driving fields, in the RWA, can
be written as [16]:

H = H0 +HI , (9)

H0 = ~ω11|1〉〈1|+ ~ω22|2〉〈2|+ ~ω33|3〉〈3|,
HI = −~/2 (Ω1e

−iφ1e−iν1t|m〉〈n|
+Ω2e

−iφ2e−iν2t|l〉〈k|+ H.c.), (10)

where ~ωii is the energy of level |i〉 (i = 1, 2, 3); Ωje
−iφj

(j = 1, 2) is the complex Rabi frequency corresponding
to the classical driving field of frequency νj , m,n, l, k =
{1, 2, 3} denote the three atomic levels as appropriate
for the Ξ, Λ or V configuration. For the Ξ configura-
tion, (m,n, l, k) = (2, 1, 3, 2) correspond to the atomic
transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉. For the Λ config-
uration, (m,n, l, k) = (3, 1, 3, 2) correspond to the tran-
sitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉, and for the V configu-
ration, (m,n, l, k) = (3, 1, 2, 1) correspond to the transi-
tions |1〉 ↔ |3〉 and |1〉 ↔ |2〉 (Fig. 1).

B. The Atomic Density Matrix

The state of the atomic system, at any time t, can be
written in the following form:

|ψ(t)〉A = C1(t)e−i(ω11+ξ1)t|1〉+ C2(t)e−i(ω22+ξ2)t|2〉
+C3(t)e−i(ω33+ξ3)t|3〉, (11)

where ξi(i = 1, 2, 3) are phases that depend on the de-
tunings in a specific configuration. The detunings are
defined as

∆1 = ν1 − ω1,

∆2 = ν2 − ω2,

where ω1 = ωmm − ωnn, and ω2 = ωll − ωkk, are the
transition frequencies. (m,n, l, k) have been defined ear-
lier and are different for the three configurations.

Using the wavefunction (11), one can create a pure
state atomic density matrix ρA(t) which depends on the
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classical driving field frequencies νj(j = 1, 2). The evo-
lution of the atomic state is also followed by the decay
of the energy levels. Hence, the dynamics of the system
is in general mixed, and can be obtained using the von
Neumann (quantum Liouville) equation of motion,

ρ̇A(t) = − i
~

[H, ρA(t)]− 1

2
{Γ, ρA(t)}, (12)

where the elements of the relaxation matrix Γ are the
decay rates, 〈i|Γ|j〉 = Γi−1δij , i, j = 1, 2, 3 . The time-
evolved mixed atomic density matrix can be obtained
provided the initial states of the atom (before interaction)
are known.

C. The Photon Density Matrix

The nonclassical nature of the emitted radiation is de-
pendent on the interaction between the three-level atomic
system and the two-mode classical driving fields. The
desired output, in our case, is to limit the generation to
single photons for the two modes emitted after the in-
teraction, so that at any given time within the lifetime
of the atom, there will exist two photon states for each
mode. Thus the two-photon density matrix can be writ-
ten as ρph = Σ ρij,i′j′ |ij〉〈i′j′|, where |i, j〉 (|i′, j′〉) stands
for the two-photon states, with i and j (i′ and j′) = 0, 1
representing the number of photons in the first and sec-
ond modes, respectively. Such a two-photon state can
be achieved using the SPA [18] within the RWA [16].
The RWA ensures that a photon is created only when
an atomic de-excitation takes place. The SPA is applied
by ensuring that the excitation time (due to the driving
field strength) is larger than the decay time. If Ω is the
driving field Rabi frequency and Γ is the atomic decay
rate, we require 1/Ω > 1/Γ for the SPA to be valid, so
that the time taken for an atom to excite is much greater
than the decay time and for small times only a single de-
excitation will occur generating a single photon. Hence,
the ground state excitation strength Ω should be smaller
than the upper-level decay rate Γ.

The output state is thus a two-qubit (bipartite) photon
state. For a semiclassical interaction involving atoms and
driving fields, it has been shown that the density matrix
of the output radiation state can be completely derived
from the atomic density matrix [17]. Under the far-field
approximation [16, 35], for an atom located at ~r0, the
field operators of the emitted radiation at the point of
detection ~r are proportional to the atomic spin opera-
tors at the retarded time (t − |~r − ~r0|/c). This equiva-
lence leads to an expression for the photon density matrix
ρph(t) that is identical to the atomic density matrix at an
earlier time, ρA(t − r/c), calculated using the von Neu-
mann equation of motion. The photon density matrix
has a reduced rank three [36]. It has been shown [17]
that such an equivalence leads to the complete determi-
nation of the output photon state using quantum state
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FIG. 2: (Color online) The time evolution for correlation mea-
sures MID (red continuous), discord (blue circles) and work
deficit (green squares) along with the entanglement measure
concurrence (black dashed) for the cascade (Ξ) configuration.
The field detunings are ∆1 = ∆2 = 0, and the phases of the
Rabi frequencies are φ1 = φ2 = 0. The level decay rates are
Γ1 = 6.0, Γ2 = 1.0. SPA for this configuration requires that
Ω1 < Γ1. The driving field strengths are (a) Ω1 = 2.0, Ω2 =
1.0, and (b) Ω1 = 2.0, Ω2 = 5.0. The inset shows the evolu-
tion of population elements of the two-photon density matrix
and its purity.

tomography, where measurements can be made on either
the atomic or the photonic operators.

V. RESULTS AND ANALYSIS

As mentioned earlier, the system we consider is a gas
of Rb atoms. The three levels 5S1/2, 5P3/2 and 5D5/2

of the Rb atom are appropriated to obtain the Ξ, Λ and
V configurations. The (scaled) decay rates of 5P3/2 and
5D5/2 are ΓP = 6.0 and ΓD = 1.0, respectively, and 5S1/2

is the ground state (ΓS = 0) [21]. For desired results of
two-mode single photon generation, we restrict ourselves
to regimes that satisfy the SPA. In the Ξ and Λ con-
figuration (Fig. 1(a) and (b)), since the shared level is
5P3/2, we take the ground state excitation field (Ω1) to
be always less than the decay constant of 5P3/2 (in Ξ,
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Ω1 < Γ1 ≡ ΓP = 6.0; in Λ, Ω1 < Γ2 ≡ ΓP = 6.0). For
the V configuration (Fig. 1(c)), the ground state excita-
tion leads to transitions to the hyperfine levels of 5P3/2,
and hence both the driving fields Ω1 and Ω2 are less than
the decay constant of 5P3/2 (Ω1,2 < Γ1,2 ≡ ΓP = 6.0).
In our analysis, we set the atom-field detunings to zero
[37].

We calculate the measurement based quantum correla-
tions and entanglement of the output photon density ma-
trix that can be derived using the atomic density matrix
(Sec. IV. C) obtained from the von Neumann equation
of motion (12), in the three configurations. We present
only specific regimes to highlight interesting features of
the correlations in the interaction dynamics.
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FIG. 3: (Color online) Fixed time (t = 1.0) MID (red con-
tinuous), discord (blue circles), work deficit (green squares),
and concurrence (black dashed) in the Ξ configuration as a
function of the driving field strength Ω2. The field detunings
are ∆1 = ∆2 = 0, and the phases of the Rabi frequencies are
φ1 = φ2 = 0. The level decay rates are Γ1 = 6.0, Γ2 = 1.0.
SPA for this configuration requires that Ω1 < Γ1. One driv-
ing field strength Ω1 is fixed at (a) 1.5, and (b) 3.5. The inset
shows the variation of population elements of the two-photon
density matrix and its purity.

Ξ configuration: In Fig. 2, we consider the Ξ configura-
tion in two specific regimes of the driving classical fields.
The decay constants for the Ξ configuration are Γ1 =
6.0, Γ2 = 1.0. Hence, the driving field strengths are in

the range (Ω1,Ω2) < 6.0. The detunings and the Rabi
frequency phases have been set to zero. In Fig. 2(a), we
consider the regime where Ω1 > Ω2. We observe the dy-
namics of the correlation for Ω1 = 2.0,Ω2 = 1.0. Some
general observations can be made: MID always serves as
an upper bound on the other measurement based corre-
lation, such as, QD and WD [29]. The correlations QD
and WD are monotonic to each other but not necessar-
ily with MID. The evolution of MID in comparison with
that of concurrence is dependent on the choice of the
driving field regime. For Ω1 > Ω2, MID forms a non-
monotonic upper bound on concurrence at times t > 1.0.
In Fig. 2(b), corresponding to the field regime Ω1 < Ω2

(Ω1 = 2.0,Ω2 = 5.0), concurrence forms a monotonic up-
per bound on the measurement-based correlations. The
insets in Fig. 2 show the variation of the density matrix
population and the purity in these specific regimes. We
observe that the behavior of the correlations is closely
related to the dynamics of the populations (Fig. 1 inset).
The non-monotonic behavior of MID is associated with
the population difference in the two photon modes |00〉
and |11〉. It is clear from the plots that the sudden in-
crease in MID occurs when the populations of the modes
|00〉 and |11〉 are nearly equal. This could be due to the
fact that the non-optimization of the correlation measure
in MID is skewed in these regions. For cases where MID is
monotonic with the other measurement based measures,
the population is distinctly unequal. Observing the pu-
rity in these regimes, one can state that the monotonicity
is observed at higher levels of purity.

A similar behavior can also be observed for fixed time
dynamics of the system if the interaction is allowed to
vary across driving field strengths. In Fig. 3, keeping
the evolution time fixed (t = 1.0) and varying the two
classical driving fields, a similar behavior of the correla-
tions is observed. MID is greater than concurrence and
non-monotonic at times where the population levels are
equal with significantly lower purity (Fig. 3(a)) as com-
pared to regimes with unequal populations and lower pu-
rity where the measurement based correlations are mono-
tonic to concurrence (Fig. 3(b)). Hence, we observe that
the fixed time dynamics allows us to manipulate the cor-
relation hierarchy by changing the ground-state driving
field strength, Ω1.

Λ configuration: In Fig. 4, we consider correlation dy-
namics of the three-level Λ system. This can again be
implemented using a gas of Rubidium atoms and by suit-
ably tuning the atomic transitions. From the Ξ system,
the Λ system can be achieved by folding the upper 5D5/2

to lie below the shared 5P3/2 level. Hence, the levels |2〉
and |3〉 of the Ξ system are interchanged with the transi-
tion |1〉 ↔ |2〉 now forbidden. The driving field strength
limited by the SPA is Ω1 < 6.0, since the ground state ex-
citation is limited to |1〉 ↔ |3〉, where the decay constant
of level 5P3/2 (|3〉) is 6.0. We again consider two specific
regimes of the driving field strengths and investigate the
nature of the correlations. In Fig. 4(a), we consider the
regime Ω1 < Ω2 with Ω1 = 4.0 and Ω2 = 5.0. We con-
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FIG. 4: (Color online) The time evolution for MID (red continuous), discord (blue circles), work deficit (green squares) and
concurrence (black dashed) for the Λ configuration. The field detunings are ∆1 = ∆2 = 0, and the phases of the Rabi frequencies
are φ1 = φ2 = 0. The level decay rates are Γ1 = 1.0, Γ2 = 6.0. SPA for this configuration requires that Ω1 < Γ2. The driving
field strengths are thus taken as (a) Ω1 = 4.0, Ω2 = 5.0, and (b) Ω1 = 4.0, Ω2 = 1.0. The inset shows the evolution of population
elements of the two-photon density matrix and its purity.

sider the regime in relatively high ground state excita-
tions (high Ω1). We observe that the correlations attain
steady-state values faster than in the Ξ configuration. In
the considered regime, MID is an upper bound on con-
currence and the other correlation measures. However,
the measurement-based correlations such as QD and WD
are not monotonic with either concurrence or MID for
smaller times. There is a temporal discontinuity of con-
currence around t ≈ 0.5. The concurrence collapses to
a small finite value before sharply reviving. The revival
of entanglement is associated with an increase in discord
in the vicinity of the collapse. Such a feature of the cor-
relations has been reported in other systems [38]. Other
measures do not exhibit any discontinuity. At greater
times (t ≥ 1.0), the correlations are steady and weakly
monotonic. QD is more sensitive than WD to correla-
tion fluctuations. In Fig. 4(b), we consider the regime
Ω1 > Ω2, in particular, Ω1 = 4.0 and Ω2 = 1.0. In
this regime, all the measurement-based correlations are
bounded by concurrence (for most t). Steady state cor-
relations occur at t & 0.5, and the correlations are fairly
monotonic during the evolution. Discontinuity in con-
currence is observed. QD and WD are almost equal in
the steady state regime.

The behavior of the correlations can again be explained
by the population of the density matrix and the purity.
The inset of Fig. 4(a) shows that for t < 0.25, MID is
bounded by entanglement. As t increases, MID increases
non-monotonically and is greater than concurrence at
higher times. This is directly related to the fall in the
population difference of the two-photon states |00〉 and
|11〉. The population of the state |01〉 also increases with
t. Hence, the mixed nature of the density matrix in-
creases with time. The bound of MID over the correla-
tion measures is the strongest at points where the pop-
ulations are nearly equal, reducing when the population
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FIG. 5: (Color online) The time evolution for MID (red con-
tinuous), discord (blue circles), work deficit (green squares)
and concurrence (black dashed) for the V configuration. The
field detunings are ∆1 = ∆2 = 0, and the phases of the Rabi
frequencies are φ1 = φ2 = 0. The level decay rates are Γ1 = Γ2

= 6.0. SPA for this configuration requires that Ω1,2 < Γ1,2.
The driving field strengths are Ω1 = 2.0, Ω2 = 4.0. The inset
shows the evolution of population elements of the two-photon
density matrix and its purity.

difference increases. It is further observed that purity of
the system decreases as the concurrence bound fails and
MID starts behaving non-monotonically. In contrast, the
inset of Fig. 4(b) shows that the population difference is
greater resulting in a concurrence bound over other cor-
relations. The point where the difference is negligible
corresponds to regions where MID is briefly greater than
concurrence (at a point where collapse of concurrence oc-
curs). The population of the state |01〉 remains negligible
for all t. The collapse and revival of concurrence in both
the regimes correspond to the points of minimal purity
as observed from the inset of Fig. 4. The minimal purity
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FIG. 6: (Color online) Time evolutions of MID (red continuous), discord (blue circles), work deficit (green squares) and
concurrence (black dashed) for all the three configurations, Ξ (top), Λ (middle) and V (bottom). The field detunings are ∆1

= ∆2 = 0, and the phases of the Rabi frequencies are φ1 = φ2 = 0. The chosen driving field strengths of Ω1 = Ω2 = 2.0 (left
panel) and Ω1 = Ω2 = 4.0 (right panel) satisfy the SPA for all three configurations.

corresponds to the point where the population difference
between the levels |00〉 and |11〉 vanishes.

V configuration: In Fig. 5 we analyze the correlations
for the three-level V system. As mentioned before, this
system is quite different from the Ξ and the Λ configu-
rations. The shared level here is the ground state 5S1/2

with the two excited upper levels taken to be the hyper-
fine levels of 5P3/2, and level 5D5/2 is not used in the
V system. Hence the levels |1〉, |2〉 and |3〉 correspond
to the atomic levels 5S1/2 and two hyperfine levels of
5P3/2. The allowed transitions are between |1〉 ↔ |2〉 and
|1〉 ↔ |3〉. The transition |2〉 ↔ |3〉 (between hyperfine
levels of 5P3/2) is forbidden. The correlation dynamics of
the V system turns out to be different from that of the Ξ
and the Λ system in the absence of the metastable level
5D5/2. The two excited levels have equal decay rates
(Γ1,Γ2 = 6.0). In Fig. 5, we observe that the correla-
tions attain steady state after t = 1.0 and concurrence
forms a monotonic upper bound on the other correla-
tions. The measurement based correlations MID, QD
and WD overlap for these times. For times t < 1.0, MID
is non-monotonic and greater than concurrence (except
for time t < 0.25). The concurrence exhibits collapse
and revival. The behavior is qualitatively common in all
regimes of the driving field strengths at zero detunings.

The behavior of the correlations can again be associated
with the photon state populations and purity of the den-
sity matrix. We observe that for t > 1.0, the density
matrix is pure, with the two mode photons lying in the
state |11〉 (the population difference ≈ 1). This corre-
sponds, as with Ξ and Λ configuration, to a monotonic
behavior of the correlations. The pure dynamics ensures
that all the measurement based correlations are equal
and bounded by a monotonic, slightly greater concur-
rence. For times t < 1.0, the dynamics is again dependent
on the population difference and purity. MID is greater
than concurrence for times when the population differ-
ence is low. The collapse of concurrence corresponds to
the point where population difference is zero and purity
is minimal.

Comparison: In Fig. 6, we make a comparative study
of the behavior in the three configurations under inves-
tigation, by choosing a common regime that satisfies the
SPA for all configurations. We consider a region of mod-
erately low values of the driving fields (Ω1 = Ω2 = 2.0)
and another region of higher values (Ω1 = Ω2 = 4.0).
Some of the aspects of the correlation that can be quali-
tatively studied are monotonicity, temporal steady state,
qualitative hierarchy and the nature of the two-photon
density matrix. We observe that monotonicity in the cor-
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relations is lacking in the Ξ system even for low driving
strengths, and monotonicity does not get restored with
time. MID is a bound on concurrence in both the low and
high field regimes, and temporal steady state is mildly
achieved at higher fields. The behavior of the correla-
tions is dependent on the population difference between
the photon states |00〉 and |11〉. No collapse and revival
or any discontinuity of concurrence is observed. For the
Ξ system, we observe from Fig. 2 that population differ-
ence is sharp for cases when the two driving forces are
unequal by a factor of more than 2.0. In those instances,
the evolution of the density matrix is relatively pure and
the correlations are monotonic (as in Fig. 2(b)). The Λ
system has a distinctly different behavior in the low and
high field regimes, which is consistent with general results
over all regimes. The two-mode photons are less corre-
lated for low driving fields as compared to the Ξ system.
The correlations are fairly monotonic at low fields with
concurrence forming an upper bound on the correlations.
For small times (t < 0.5) the evolution is unsteady and
marked by sharp discontinuity in concurrence (collapse
and revival) around t ≈ 0.5. At greater times, the corre-
lations quickly assume steady state in both the regimes,
unlike in a Ξ system. In the high field regime, MID forms
an upper bound on all the correlations. In terms of the
density matrix, the low-field regime corresponds to the
region of greater difference in the population and higher
purity as compared to the high field regime (for times
greater than t ≈ 0.5). Though the absolute measure of
correlation generated in the Λ system is less than that in
the Ξ system, the correlations are steady and monotonic
for most values of the driving field. The evolution in the
V system is far less complicated. As mentioned earlier,
for times greater than 0.5 (steady state values), the cor-
relation dynamics in the V system is uniform across all
regimes. Concurrence forms an upper bound on all the
other correlations which are fairly monotonic and steady.
This is probably due to the fact that the density matrix
attains maximum purity and level population difference
in a short evolution time. The pure dynamics is probably
due to the absence of a metastable level in the interacting
system. Hence, in comparison to Ξ and Λ systems, the V
system has fairly steady correlations across all regimes of
driving field strengths. The photon correlations, similar
to the Λ system, is low for lower driving strengths, and
discontinuity in concurrence is also observed correspond-
ing to the minima of purity before steadiness is achieved.

VI. SUMMARY

In this paper, we have exhaustively studied and com-
pared the dynamical behaviors of various nonclassical
correlations of a two-photon state generated in a semi-
classical atom+field system. A three-level atom interact-
ing with two classical driving fields is extensively used in
quantum optical experiments, and may also prove useful
in implementation of quantum information tasks. The

characterization of the nonclassical correlations in the
output photon modes after interaction is an important
step in this direction.

We have probed the dynamics of entanglement (con-
currence) as well as of measurement-based correlations,
such as MID, QD and WD, for three different configura-
tions, namely, Ξ, Λ and V, of the three-level atom driven
by two external classical fields. We observe that the qual-
itative behavior of the measurement-based correlations is
very dependent on the specific regime of interacting field
strengths. Further, the amount of correlations generated
is enhanced at different regimes for different configura-
tions. In general, MID is an upper bound on the other
measurement-based correlations. With respect to entan-
glement, the behavior of MID is regime dependent. MID
is bounded above by entanglement in regimes where the
dynamics is relatively pure and the population elements
of the density matrix are not evenly distributed. QD and
WD appear to be almost equal in these regimes. How-
ever, in regimes of relative higher mixedness, the mono-
tonicity of MID is disturbed, and it is then not bounded
by entanglement.

The Ξ configuration produces photon states with rel-
atively high correlation even at low driving fields. The
dynamics in the Ξ system is more mixed as compared
to the Λ and V systems. The Ξ system can be suit-
ably controlled using the driving fields to generate cor-
relations dominated both by MID or concurrence and is
ideally suited to experimentally study the temporal evo-
lution of the two measures with respect to the evolution
of the system in the Hilbert space. The optimization
of MID and monotonicity of measurement based corre-
lations can be experimentally analyzed using quantum
state tomography. Λ and V systems are better suited for
generating steady monotonic correlations in both low and
high strength driving field regimes. The Λ system can
be suitably tuned to generate steady correlations with
either entanglement or MID as an upper bound. The
mixedness in the generated states can be controlled using
the driving field strengths for implementation in exper-
iments. V systems, however, can generate ideally pure
correlated photons bounded by concurrence at all field
strength regimes. The absence of a metastable state in
the V system allows production of pure correlated out-
put photon states. The measurement-based correlations
are all equal at steady values. However, in the Λ and V
systems, significant correlation is generated only for high
driving field strengths.

Hence, specific regimes and configurations can be used
to generate and manipulate the correlations in the output
two-photon state as desired. Our findings may thus be
immensely useful in practical implementations with such
interacting photon states.
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