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I. INTRODUCTION

Entanglement lies at the heart of quantum mechanics [1].
For a long time it was considered synonymous with quantum
correlations and plays a pivotal role in various information
processing tasks, including, among others, quantum telepor-
tation [2], super dense coding [3], remote state preparation
[4], secret sharing [5], and quantum cryptography [6].

In quantum teleportation, using entangled states as re-
source, it is possible to transfer quantum information froman
unknown qubit to another one placed at a distance. Thus, one
of the party, say, Alice makes a two qubit measurement on
her qubit and the unknown state in Bell basis, and sends the
measurement results through a classical channel to the sec-
ond party, say, Bob (who is located away from Alice). Ac-
cordingly, Bob makes appropriate unitary transformationsto
obtain the desired state. Thus the ability of teleporting anun-
known state depends on the nature of entanglement of the re-
source state and is called teleportation fidelity.

The situation is very straight forward when we have an un-
known qubit to send with the help of a pure entangled state as
a resource. However, it is more involved when we have mixed
entangled states as a medium of teleportation. For a general
two qubit density matrixρ = 1

4 [I ⊗ I +
∑

i ri(σi ⊗ I) +
∑

j sj(I ⊗ σj) +
∑

i,j tij(σi ⊗ σj)], the teleportation fidelity
is a function of the eigenvalues of correlation matrixT = [tij ].
Similarly, when we go from qubits to higher dimensional bi-
partite states the teleportation fidelity is expressed in terms of
the singlet fraction of the state. The relation between optimal
teleportation fidelityF (ρ) and maximal singlet fractionf(ρ)
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in ad⊗ d system, if one performs quantum teleportation with
the stateρ, is [7]

F (ρ) =
df(ρ) + 1

d+ 1
. (1)

Here the singlet fraction is defined as,f(ρ) =
max|ψ〉〈ψ|ρ|ψ〉, and |ψ〉 is a maximally entangled state
in d ⊗ d. If f(ρ) > 1

d
then the parties can perform quantum

teleportation with the average fidelity of the teleported qubit
exceeding the classical limit2

d+1 .
In bipartite two qubit states it is known that the total amount

of entanglement present in the resource state is useful for tele-
portation. Here we try to answer the question; how much
entanglement is necessary for teleporting an unknown state
when we have a bipartite state in arbitrary dimensions. To an-
swer this question one has to quantify entanglement and find
out for what range of entanglement the state can be used as
a resource. In other words, one needs to establish a relation-
ship between the amount of entanglement and teleportation fi-
delity. In the literature, there exist different kinds of entangle-
ment measures, expressed in terms of Schmidt numbers, suit-
able for quantification of the amount of entanglement present
in the system.

Schmidt decomposition [8] is a very good tool to describe
composite systems. If|Ψ〉 is a pure state of composite systems
A and B then,

|Ψ〉 =
dA
∑

i=1

√

λi|iA〉|iB〉, (2)

represents the Schmidt decomposition of|Ψ〉, where
|iA〉(iA = 1, 2, ..., dA) ∈ HA and|iB〉(iB = 1, 2, ..., dB) ∈
HB are orthonormal bases for A and B respectively, and
dA ≤ dB . Hereλi are the Schmidt numbers or coefficients,
non-negative real numbers satisfying the relation

∑

i

λi = 1.
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We quantify the amount of entanglement present in the re-
source state to find out the bounds within which these states
can be useful for teleportation. In other words, we obtain re-
lations connecting entanglement measures with teleportation
fidelity via singlet fraction. Our results are obtained for arbi-
trary dimensional bipartite states with at most three non van-
ishing Schmidt coefficients. We implement our results to de-
tect mixed states useful for teleportation.

The plan of the paper is as follows. In section 2, we es-
tablish a relation between singlet fraction and different types
of entanglement measures for arbitrary dimensional pure two
qudit system with a maximum of three Schmidt coefficients.
This relation is the key to our work. Then we study the bounds
of teleportation fidelity and entanglement measures for two
special cases, i) arbitrary dimensional pure bipartite state with
two Schmidt coefficients, and ii) arbitrary dimensional pure
bipartite state with three Schmidt coefficients. These results
are used in section 3, to arbitrary dimensional mixed bipartite
systems with Schmidt coefficients two and three. In section
4, we apply our results on examples of mixed states, in par-
ticular, two qutrit mixed state with Schmidt rank two and two
qubit mixed states generated dynamically by an open system
model. Finally, we conclude in section 4.

II. RELATION BETWEEN SINGLET FRACTION AND
DIFFERENT ENTANGLEMENT MEASURES FOR PURE

TWO QUDIT SYSTEM WITH THREE SCHMIDT
COEFFICIENTS

In this section we obtain an explicit relation that will con-
nect the entanglement monotones with the singlet fraction for
a pure two qudit system of arbitrary dimension. However, it is
very difficult to obtain an analytical expression which relates
the entanglement monotones and singlet fraction with all non
zero Schmidt coefficients. Nevertheless, we obtain resultsin
d ⊗ d systems with two and three non zero Schmidt coeffi-
cients.

Let us consider a bipartited ⊗ d system in which three
Schmidt coefficients are non zero. Without any loss of gen-
erality we assume that the first three Schmidt coefficients are
non zero. Any pure two qudit system with three non zero
Schmidt coefficientsλ1, λ2 andλ3 can be written in Schmidt
decomposition form as,

|Ψd〉 =
√

λ1|00〉+
√

λ2|11〉+
√

λ3|22〉, (3)

with the Schmidt coefficients summing to one, i.e.,λ1 +λ2 +
λ3 = 1. To quantify the amount of entanglement in|Ψd〉 we
consider two different entanglement measuresE(d,2)(|Ψd〉)
andE(d,3)(|Ψd〉) which can be defined as [9],

E(d,2)(|Ψd〉) =
√

2d

d− 1
(λ1λ2 + λ2λ3 + λ1λ3), (4)

E(d,3)(|Ψd〉) =
( 6d2

(d− 1)(d− 2)

)
1

3

(λ1λ2λ3)
1

3 . (5)

Here E(d,2)(|Ψd〉) and E(d,3)(|Ψd〉) denote entanglement
measure for ad ⊗ d dimensional pure system defined by tak-
ing the sum of the product of the Schmidt coefficients taken
two or three at a time, respectively. We note that for a Schmidt
rank two state,E(d,3)(|Ψd〉) = 0 butE(d,2)(|Ψd〉) 6= 0.

The singlet fraction for the state|Ψd〉 is defined as

f(|Ψd〉) = max
|Φ〉

|〈Φ|Ψd〉|2, (6)

where the maximum is taken over all maximally entangled
states|Φ〉 in d ⊗ d systems. The singlet fractionf(|Ψd〉) for
pure state|Ψd〉 can also be expressed in terms of Schmidt co-
efficients [10] as

f(|Ψd〉) = 1

d

(

√

λ1 +
√

λ2 +
√

λ3

)2

. (7)

Expanding the the right hand side part of Eq. (7) and using
λ1 + λ2 + λ3 = 1, we get

√

λ1λ2 +
√

λ2λ3 +
√

λ1λ3 =
df(|Ψd〉)− 1

2
. (8)

Also, we have the following identity

λ1λ2 + λ2λ3 + λ1λ3 = (
√

λ1λ2 +
√

λ2λ3 +
√

λ1λ3)
2

−2
√

λ1λ2λ3(
√

λ1 +
√

λ2 +
√

λ3). (9)

Using (4), (5), (7), (8) and (9) we have

(E(d,2)(|Ψd〉))2 =
d3

2(d− 1)
(f(|Ψd〉)− 1

d
)2

− 4

d− 1

√

d(d− 1)(d− 2)

6
(E(d,3)(|Ψd〉)) 3

2

×
√

f(|Ψd〉). (10)

This establishes the required relationship between the en-
tanglement measuresE(d,2)(|Ψd〉) andE(d,3)(|ψd)〉 with the
singlet fractionf(|Ψd〉) for a pure two qudit system|Ψd〉 with
three non vanishing Schmidt coefficients.

Next, we will consider separately the cases of states of
Schmidt ranks two and three, respectively. For purpose of
clarity, in the discussions to follow, we modify the notation of
the entanglement measures discussed above, asE

d,i
j , where

d stands for thed ⊗ d dimensional system,j indicates the
Schmidt rank of the state under consideration andi is the num-
ber of coefficients taken at a time.
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A. States with Schmidt Rank Two

When one of the Schmidt coefficients (say,λ3) is zero, i.e.,
E

(d,3)
2 (|Ψd〉) = 0, from Eq. (10), we have

E
(d,2)
2 (|Ψd〉) =

√

d3

2(d− 1)
(f2(|Ψd〉)−

1

d
), (11)

where,f2(|Ψd〉) denotes the singlet fraction of Schmidt rank
two state, andf2(|Ψd〉) > 1

d
. If F2(|Ψd〉) denotes the telepor-

tation fidelity of Schmidt rank two states, thenE(d,2)
2 (|Ψd〉)

can be expressed in terms ofF2(|Ψd〉) as

E
(d,2)
2 (|Ψd〉) =

√

d3

2(d− 1)

[

(d+ 1)F2(|Ψd〉)− 2

d

]

. (12)

This establishes the relation between the entanglement mono-
tone and teleportation fidelity of Schmidt rank two states. If
the state|Ψd〉 has Schmidt number two and useful for telepor-
tation, then we have [12]

1

d
< f2(|Ψd〉) ≤

2

d
. (13)

Eq. (13) can be recasted in terms of teleportation fidelity as

2

d+ 1
< F2(|Ψd〉) ≤

3

d+ 1
. (14)

Using Eq. (14),E(d,2)
2 (|Ψd〉) can be seen to be bounded as

0 < E
(d,2)
2 (|Ψd〉) ≤

√

d

2(d− 1)
. (15)

When the amount of entanglement lies in the above range we
can use the state for teleportation. This quantifies the entan-
glement required for teleportation for a pure qudit state with
two non vanishing Schmidt coefficients.

B. States with Schmidt Rank Three

Next we take up sates where none of the three Schmidt co-
efficients are zero, i.e.,E(d,3)

3 (|Ψd〉) 6= 0.
(i) Using the well known result of arithmetic mean (AM)

being greater than or equal to geometric mean (GM) on three
real quantities

√
λ1,

√
λ2 and

√
λ3, we have

√
λ1 +

√
λ2 +

√
λ3

3
≥

(

√

λ1
√

λ2
√

λ3

)
1

3

.

(16)

Using Eqs. (5), and (7), we get

f3(|Ψd〉) ≥
9

d

( (d− 1)(d− 2)

6d2

)
1

3

E
(d,3)
3 (|Ψd〉). (17)

In terms of teleportation fidelity, the above equation can be
written as

F3(|Ψd〉) ≥ 9

d+ 1

[

( (d− 1)(d− 2)

6d2

)
1

3

E
(d,3)
3 (|Ψd〉)

]

+
1

d+ 1
. (18)

If the state|Ψd〉 is not useful for teleportation then we know
thatf3(|Ψd〉) < 1

d
. From this, it can be seen that Schmidt rank

three states are not useful for teleportation ind ⊗ d systems
when

0 < E
(d,3)
3 (|Ψd〉) ≤ 1

9

( 6d2

(d− 1)(d− 2)

)
1

3

. (19)

(ii) Once again usingAM ≥ GM on three real quantities√
λ1λ2,

√
λ1λ3 and

√
λ2λ3, we have

√
λ1λ2 +

√
λ1λ3 +

√
λ1λ3

3
≥

(

√

λ1λ2
√

λ1λ3
√

λ2λ3

)
1

3

.

(20)

Using Eqs. (5), and (8), we have

f3(|Ψd〉) ≥
6

d

[

((d− 1)(d− 2)

6d2

)
1

3

E
(d,3)
3 (|Ψd〉)

]

+
1

d
.(21)

Since, the singlet fractionf3(|Ψd〉) attains its maximum value
unity atλ1 = λ2 = λ3 = 1

d
, we have

6

d

[

((d− 1)(d− 2)

6d2

)
1

3

E
(d,3)
3 (|Ψd〉)

]

+
1

d

≤ f3(|Ψd〉) ≤ 1. (22)

In terms of teleportation fidelityF3(|Ψd〉), the above inequal-
ity can be expressed as

2

d+ 1
+

6

d+ 1

( (d− 1)(d− 2)

6d2

)
1

3

E
(d,3)
3 (|Ψd〉)

≤ F3(|Ψd〉) ≤ 1. (23)

Hence, pure entangled states with19 (
6d2

(d−1)(d−2))
1

3 <

E
(d,3)
3 (|Ψd〉) ≤ 1 and teleportation fidelityF3(|Ψd〉) > 2

d+1
are Schmidt rank three states useful for teleportation.

To summarize, the classification of entanglement, for rank
three states, in terms of teleportation fidelity, i.e., the “Entan-
glement of Teleportation”, is:
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(a). 0 < F3 ≤ 2
d+1 : state|Ψd〉 not useful for teleportation

and0 < E
(d,3)
3 (|Ψd〉) ≤ 1

9 (
6d2

(d−1)(d−2))
1

3 ;

(b). 2
d+1 < F3 < 1: state useful for teleportation and

1
9 (

6d2

(d−1)(d−2))
1

3 < E
(d,3)
3 (|Ψd〉) ≤ 1.

Thus if the pure qudit state|Ψd〉 of Schmidt rank three has

entanglementE(d,3)
3 (|Ψd〉) > 1

9 (
6d2

(d−1)(d−2))
1

3 , then it is use-
ful for teleportation, otherwise not.

III. BOUNDS ON ENTANGLEMENT MEASURES FOR
MIXED TWO QUDIT SYSTEMS USEFUL FOR

TELEPORTATION

In this section we would like to answer the following
questions : (i) What is the minimum amount of entangle-
ment needed to perform teleportation when Schmidt rank two
mixed state is used as a resource in ad⊗ d system? (ii) What
is the minimum amount of entanglement needed to perform
teleportation when Schmidt rank three mixed state is used as
resource in ad⊗ d system?

Let us consider a mixed qudit state described by the den-

sity operatorρ =
n
∑

i=1

piρi, where
∑n

i=1 pi = 1 and ρi

(= |ψi〉〈ψi|) are composite pure states. The singlet fraction
f(ρ) of the stateρ is defined as

f(ρ) = max
U

〈ψ+|U † ⊗ IρU ⊗ I|ψ+〉, (24)

whereU is the unitary matrix,I is the identity matrix and

|ψ+〉 = 1√
d

d−1
∑

k=0

|kk〉 represents a pure maximally entangled

state.
The entanglement measureE(d,2)(|Ψd〉) andE(d,3)(|Ψd〉)

given in Eqs. (4) and (5) for pure states can also be defined
for a mixed stateρ as

E(d,2)(ρ) = min

n
∑

i=1

piE
(d,2)(ρi), (25)

and

E(d,3)(ρ) = min

n
∑

i=1

piE
(d,3)(ρi). (26)

Here the minimum is taken over all pure state decompositions
of ρ. Now one may ask a question that, like entanglement
measures, does the singlet fractionf(ρ) also have the property
[11]

f(ρ) = min
∑

pif(ρi), (27)

where the minimum is taken over all decomposition ofρ. Un-
fortunately, the answer is no.

A. Two qudit mixed state of Schmidt rank two

It can be easily shown that the maximum amount of entan-
glement contained in a two qudit mixed state of Schmidt rank

two is
√

d
2(d−1) , i.e.,

0 < E
(d,2)
2 (ρ) ≤

√

d

2(d− 1)
. (28)

From Eq. (10),E(d,2)
2 (ρi) for any Schmidt rank two bipartite

pure qudit stateρi whosef2(ρi) < 1
d
, i.e., for states not useful

for teleportation, is

E
(d,2)
2 (ρi) =

√

d3

2(d− 1)

(1

d
− f2(ρi)

)

. (29)

Using Eqs. (25) and (29), we have

E
(d,2)
2 (ρ) = min

∑

i

pi

√

d3

2(d− 1)
(
1

d
− f2(ρi))

≤
∑

i

pi

√

d3

2(d− 1)
(
1

d
− f2(ρi))

=

√

d

2(d− 1)
−
√

d3

2(d− 1)

∑

i

pif2(ρi).(30)

Hence, if the mixed stateρ of Schmidt rank two in ad ⊗ d
system is not useful for teleportation then

0 < E
(d,2)
2 (ρ) ≤

√

d

2(d− 1)
−
√

d3

2(d− 1)

∑

i

pif2(ρi).(31)

But a Schmidt rank two pure bipartite qudit stateρi can be
useful for teleportation iff2(ρi) > 1

d
. Thus, we can say, mak-

ing use of Eqs. (10), and (28), that mixed states of Schmidt
rank two are useful for teleportation only when

√

d3

2(d− 1)

∑

i

pif2(ρi)−
√

d

2(d− 1)
≤

E
(d,2)
2 (ρ) ≤

√

d

2(d− 1)
. (32)

B. Two qudit mixed state of Schmidt rank three

Using Eq. (26) and the results for pure two qudit states
of Schmidt rank three, for two qudit mixed states of Schmidt
rank three we have:
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(i) if 0 < E
(d,3)
3 (ρ) ≤ 1

9 (
6d2

(d−1)(d−2))
1

3 then the mixed state
ρ of Schmidt rank three is not useful for teleportation.

(ii) If 1
9 (

6d2

(d−1)(d−2))
1

3 < E
(d,3)
3 (ρ) ≤ 1 then the mixed

stateρ of Schmidt rank three is useful for teleportation.

IV. ILLUSTRATIONS AND APPLICATIONS IN OPEN
QUANTUM SYSTEMS

In this section we provide examples of qubit and qutrit
mixed states as applications of our results. This paves the
way for detecting states which are useful for teleportationas
well as to quantify the amount of entanglement required for
teleportation, in realistic settings.

A. Two qutrit mixed states with Schmidt rank two

We consider a two qutrit mixed state of Schmidt rank two
given by

ρf =
5p

p+ 2
ρc +

2(1− 2p)

p+ 2
|φ〉〈φ|; 0 ≤ p ≤ 1

2
, (33)

where,ρc = 1
2 (|χ0〉〈χ0|+ |χ1〉〈χ1|). This decomposition for

stateρf is optimal. Here,|χ0〉 and|χ1〉 are of the form|χ0〉 =
√

3
5 |ψ〉+

√

2
5 |φ〉 and|χ1〉 =

√

3
5 |ψ〉 −

√

2
5 |φ〉, respectively,

and the states|ψ〉, |φ〉 are given by,|ψ〉 = 1√
3
(|00〉 + |11〉 −

e
iπ

3 |22〉) and|φ〉 = 1√
2
(|00〉 + |11〉). Also, p is the classical

probability of mixing.
We check whether the bounds onE(3,2)

2 (ρi) works for the
above density matrix. For3 ⊗ 3 dimension, the bound set by
Eq. (32) becomes

Fp ≤ E
(3,2)
2 (ρf ) ≤

√
3

2
, (34)

where,Fp = 3
√
3

2

∑

i

pif2(ρi) −
√
3

2
. If we calculate the

lower boundFp in Eq. (34) for the state [Eq. (33)], then

Fp = (1−
√
3)+2(2

√
3−1)p

p+2 , a function ofp. The graphical plot
of this bound with respect to the parameterp is shown in Fig.
(1). From Eqs. (34), and (15), it can be seen that the state (in
Eq. (33)) is useful for teleportation for0 ≤ p ≤ 1

2 .

B. States generated as a result of Two-Qubit Interaction with a
Squeezed Thermal Bath

Open quantum systems is the systematic study of the evo-
lution of the system of interest, such as a qubit, under the in-

0.0 0.1 0.2 0.3 0.4 0.5
p0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Fp

FIG. 1: The functionFp plotted against mixing parameterp

fluence of its environment, also called the bath or the reser-
voir. This results in decoherence and dissipation. Consider
the HamiltonianH = HS +HR +HSR; whereS stands for
the system of interest,R for reservoir andSR for the system-
reservoir interaction. Depending upon the system-reservoir
interaction, open systems can be classified into two broad cat-
egories, viz., dissipative or QND (quantum non-demolition).
In case of QND dephasing occurs without damping the sys-
tem, i.e., where[HS , HSR] = 0 while decoherence along with
dissipation occurs in dissipative systems, i.e.,[HS , HSR] 6= 0.
[15–17].

1. States generated as a result of Two-Qubit Open System
Interacting with a Squeezed Thermal Bath via a Dissipative

Interaction

Here we study the dynamics of the bound [Eq. (32)] for
a two-qubit open system interacting with a squeezed thermal
bath, modeled as a3−D electromagnetic field (EMF), as well
as its specialization to a vacuum bath, where the bath squeez-
ing (r) and temperature (T ) are set to zero, and undergoing a
dissipative interaction [18]. The model Hamiltonian is

H = HS +HR +HSR

=

2
∑

n=1

~ωnS
z
n +

∑

~ks

~ωk(b
†
~ks
)b~ks +

1

2
)

− i~
∑

~ks

2
∑

n=1

[~µn.~g~ks(~rn)(S
+
n + S−

n )b~ks − h.c.].(35)

Here~µn are the transition dipole moments, dependent on the
different atomic positions~rn and S+

n (= 1
2 |en〉〈gn|), and

S−
n (=

1
2 |gn〉〈en|) are the dipole raising and lowering op-

erators satisfying the usual commutation relations.Szn(=
1
2 (|en〉〈en| − |gn〉〈gn|)) is the energy operator ofnth atom
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andb†
~ks

, b~ks are the creation and anihilation operators of the

field mode~ks with the wave vector~k and polarization index
s = 1, 2. A key feature of the model is that the system-
reservoir (S-R) coupling constant~g~ks(~rn) is dependent on the
position of the qubitrn and is

~g~ks(~rn) = (
ωk

2ǫ~V
)

1

2~e~kse
i~k.rn , (36)

whereV is the normalization volume and~e~ks is the unit po-
larization vector of the field. The position dependence of the
coupling leads to interesting dynamical consequences and al-
lows the entire dynamics to be classified into two categories,
that is, the independent regime, where the interqubit distance
is far enough for each qubit to locally interact with an indepen-
dent bath or the collective regime, where the qubits are close
enough for them to interact with the bath collectively. Asum-
ing an initial system-reservoir separable state, with the system
in a separable, and the bath in a squeezed thermal state, with
time the qubits develop correlations between themselves via a
channel setup by the bath. A master equation for the reduced
dynamics of the two qubit system is obtained by tracing out
the environment (bath), using the usual Born-Markov and ro-
tating wave approximation (RWA). This can be then solved to
obtain the dynamics of the reduced density matrix, whose de-
tails are presented in [18], for the general case of a squeezed
thermal bath at finite temperature as well as for a vacuum
reservoir.

Let the reduced two-qubit density matrix of the system be
ρf (t). Its spectral decomposition corresponding to its eigen-
values (λi(t)) is,

ρf (t) =
∑

i

λi(t)ρi(t). (37)

Hereρi(t) = |ψi(t)〉〈ψi(t)|, |ψi(t)〉 being the eigenvectors
corresponding to the eigenvaluesλi(t) (

∑

i λi(t) = 1). For a
two qubit state the Eq. (32) becomes

2f − 1 ≤ E
(2,2)
2 (ρf (t)) ≤ 1 (38)

where,f =
∑

i

λi(t)f2(ρi(t)) and is the singlet fraction of

the mixed stateρf (t). Again we can easily say that for two-

qubit stateE(2,2)
2 is nothing but concurrenceC. It is clear

from Eq. (38) that iff > 1
2 then the statesρf (t) will be

useful for teleportation, which is a known fact. If we look at
the Figs. (2), and (3), for the case of a vacuum bath (T =
0, r = 0), concurrenceC (or E2,2

2 ) is seen to decrease with
time of evolutiont, with a predominantly oscillatory behavior
in the collective regime (marked by the inter qubit distance
r12 < 1). The singlet fractionf also shows similar behavior.
From these two figures, it is clear that when and whereC and
f become zero and12 , respectively, the system comes out of
the lower bound of Eq. (38).

For the case of a squeezed thermal bath, as the system
evolves with timet, concurrenceC and f exhibit damped
behavior, as seen in Figs. (4) and (5). If we increase the
inter-qubit distancer12, then the concurrenceC for the sys-
tem suddenly falls to zero (i.e., sudden death of entanglement
in the system). Thus, the system can be used as a resource for
teleportation purpose in the range0 ≤ r12 < rd. Here we
define a new termrd, such that atr12 = rd concurrenceC of
the system becomes zero. Obviously thisrd will be different
for different parameter (T, r) settings. The Figs. (5) depict the
abrupt decrease of concurrenceC and singlet fractionf asr12
increases and the system comes out of the lower bound of Eq.
(38).

2. States generated as a result of Two-Qubit Open System
Interacting with a Squeezed Thermal Bath via Quantum

Nondemolition Interaction

Now we take up the Hamiltonian, describing a QND inter-
action of two qubits with the bath as

H = HS +HR +HSR

=
2

∑

n=1

~εnJ
n
z +

∑

k

~ωkb
†
kbk

+
∑

n,k

~Jnz (g
n
k b

†
k + gn∗k bk). (39)

HereHS ,HR andHSR stand for the Hamiltonians of the sys-
tem, reservoir and system-reservoir interaction, respectively.
b
†
k, bk denote the creation and annihilation operators for the

reservoir oscillator of frequencyωk, gnk stands for the cou-
pling constant (again assumed to be position dependent) for
the interaction of the oscillator field with the qubit systemand
are taken to be

gnk = gke
−ik.rn , (40)

wherern is the qubit position. Since[HS , HSR] = 0, the
Hamiltonian [Eq. 39)] is of QND type. In the parlance of
quantum information theory, the noise generated is called the
phase damping noise. The position dependence of the cou-
pling constant once more allows for the dynamical classifica-
tion into the independent and collective regimes. In order to
obtain the reduced dynamics of the system , we trace over the
reservoir variables, the details of which can be found in [19].

Now we study the behavior of concurrenceC (actually
E

2,2
2 ) and singlet fractionf as the two-qubit system evolves

with time t both for collective and localized decoherence
model. It can be noticed from Figs. (6), and (7) that the
value of concurrenceC is higher and lasts longer in the case
of collective decoherence model than in the case of localized
decoherence model. As expected, the the singlet fractionf
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FIG. 2: Plot of (i) concurrenceC (orE(2,2)
2 ) and (ii) singlet fractionf with respect to the time of evolutiont, respectively. Here

we consider the case of a vacuum bath (T = r = 0) and the collective decoherence model (r12 = 0.05).
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FIG. 3: Plot of (i) concurrenceC (orE(2,2)
2 ) and (ii)f with respect to the inter-qubit distancer12, respectively. Here we

consider the case of vacuum bath (T = r = 0) and system is at timet = 10.

shows similar kind of behavior with timet. WhenC becomes
zero,f becomes equal to12 , i.e., the system at this particular
timet cannot be useful for teleportation, otherwise it is useful.

Hence the system comes out of the lower bound of Eq. (38),
when concurrenceC vanishes.

V. CONCLUSION

We have made a study of entanglement of teleportation for
arbitraryd ⊗ d dimensional states having Schmidt rank upto
three. The connections are established by developing relations
between entanglement measures and singlet fraction. This en-
ables a classification of entanglement as a function of tele-
portation fidelity, the “Entanglement of Teleportation”. These

results are then extended to mixed two qudit states, which we
illustrate on specific examples of a two qutrit mixed state of
Schmidt rank two as well as two qubit states dynamically gen-
erated by interaction with an appropriate reservoir, for both
pure dephasing as well as dissipative interactions.
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nancial support. S. Adhikari would like to thank Prof. H. S.
Sim for useful discussions.
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FIG. 4: Plot of (i) concurrenceC (orE(2,2)
2 ) and (ii) singlet fractionf with respect to the time of evolutiont, respectively, for a

squeezed thermal bath (T = 1, r = 0.1) in the collective regime (r12 = 0.05).
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FIG. 5: Plot of (i) concurrenceC (orE(2,2)
2 ) and (ii)f with respect to the inter-qubit distancer12, respectively, for a squeezed

thermal bath (T = 1, r = 0.1) and time of evolutiont = 1.
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FIG. 6: Plot of (i) concurrenceC (orE(2,2)
2 ) and (ii)f as a function of the time of evolutiont. Here we consider the case of

QND interaction (T = 5, r = 0.1), in the collective decoherence regime (r12 = 0.05).
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FIG. 7: Plot of (i) concurrenceC (orE(2,2)
2 ) and (ii)f as a function of the time of evolutiont, for the case of QND interaction

(T = 5, r = 0.1), in the independent decoherence regime (r12 = 1.1).
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