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We study bipartite entangled states in arbitrary dimerssemd obtain different bounds for the teleportation
fidelity. In addition, we establish various relations betwéeleportation fidelity and the entanglement measures
depending upon Schmidt rank of the states. These relatimhdaunds help us to determine the amount of
entanglement required for teleportation. We call this amhaf entanglement required for teleportation as
“Entanglement of Teleportation”. These bounds are usectterthine the teleportation fidelity as well as the
entanglement required for teleportation of states modeied two qutrit mixed system as well as two qubit
open quantum systems.

PACS numbers: 03.65.Yz, 03.65.Ud, 03.67.Mn

I. INTRODUCTION in ad ® d system, if one performs quantum teleportation with
the statep, is [1]
Entanglement lies at the heart of quantum mechahlcs [1]. df(p) + 1
For a long time it was considered synonymous with quantum F(p) = Aty (1)

correlations and plays a pivotal role in various informatio d+1

processing tasks, including, among others, quantum telepoyere  the singlet fraction is defined asf(p) =
tation [2], super dense codingl [3], remote state preparatiomazlw (W|plw), and |v) is a maximally entangled state
[4], secret sharing [5) a”?’ quantym cryptography [6]. ind®d. If f(p) > é then the parties can perform quantum
In quantum teleportation, using entangled states as regienortation with the average fidelity of the teleportethigu
source, it is possible to transfer quantum information fiaxm exceeding the classical limjg-.
unknown qubit to another one placed at a distance. Thus, one |, yipartite two qubit states it is known that the total amoun
of the party, say, Alice makes a two qubit measurement ORy entanglement present in the resource state is usefuieor t
her qubit and the unknown state in Bell basis, and sends thﬁortation. Here we try to answer the question: how much
measurement results through a classical channel to the segsanglement is necessary for teleporting an unknown state
ond party, say, Bob (who is located away from Alice). AC-\yhen we have a bipartite state in arbitrary dimensions. Fo an
cordingly, Bob makes appropriate unitary transformatitns - qyer this question one has to quantify entanglement and find
obtain the desired state. Thus the ability of teleporting@an ¢ for what range of entanglement the state can be used as
known state depends on the nature of entanglement of the rg-resqyrce. In other words, one needs to establish a refation
source state and is called teleportation fidelity. ship between the amount of entanglement and teleportation fi
The situation is very straight forward when we have an unejity. In the literature, there exist different kinds otamgle-
known qubit to send with the help of a pure entangled state agent measures, expressed in terms of Schmidt numbers, suit-

aresource. However, itis more involved when we have mixedyp|e for quantification of the amount of entanglement presen
entangled states as a medium of teleportation. For a generg the system.

two qubit density matrixp = 3[I @ I + 3%, ri(0; @ I) + Schmidt decomposition[8] is a very good tool to describe
> sl ®aj) +32; ; tij(o: ® 0;)], the teleportation fidelity  composite systems. I¥) is a pure state of composite systems
is a function of the eigenvalues of correlation maifix= [t;;]. A and B then,

Similarly, when we go from qubits to higher dimensional bi-

partite states the teleportation fidelity is expressedrmseof da

the singlet fraction of the state. The relation betweennogpti ) = Z VAilia)lis), 2)
teleportation fidelityF'(p) and maximal singlet fractiof(p) i=1

represents the Schmidt decomposition p¥), where

lia)(ia = 1,2,...,da) € Ha and|ip)(ip = 1,2,...,dp) €
*Electronic addres§ SKSazmsGAS@gmaNkom Hy;3 are orthonormal bases for A and B respectively, and
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We quantify the amount of entanglement present in the re- E(d’3)(|\11d>) _ ( 6d? ) ()\1)\2)\3)% 5)
source state to find out the bounds within which these states (d—1)(d-2) '
can be useful for teleportation. In other words, we obtain re
lations connecting entanglement measures with telepontat Heare E@2)(|gd)) and E(@3)(|¥4)) denote entanglement
fidelity via singlet fraction. Our results are obtained fdtia  measure for @ © d dimensional pure system defined by tak-
trary dimensional bipartite states with at most three nan va ing the sum of the product of the Schmidt coefficients taken
ishing Schmidt coefficients. We implement our results to deywyo or three at atime, respectively. We note that for a Schmid
tect mixed states useful for teleportation. rank two state /(43 (|T4)) = 0 but E(©2) (|Td)) £ 0.

The plan of the paper is as follows. In section 2, we es- 114 singlet fraction for the stat@<) is defined as
tablish a relation between singlet fraction and differgpets
of entanglement measures for arbitrary dimensional puoe tw dvy dy 12
qudit system with a maximum of three Schmidt coefficients. FI¥9) = mq%X (@I, (©)
This relation is the key to our work. Then we study the bounds
of teleportation fidelity and entanglement measures for twavhere the maximum is taken over all maximally entangled
special cases, i) arbitrary dimensional pure bipartitestéth  stateg®) in d ® d systems. The singlet fractigf(|¥4)) for
two Schmidt coefficients, and ii) arbitrary dimensionalg@ur pure staté¥?) can also be expressed in terms of Schmidt co-
bipartite state with three Schmidt coefficients. Theseltgsu efficients[10] as
are used in section 3, to arbitrary dimensional mixed bifgart
systems with Schmidt coefficients two and three. In section d 1 2
4, we apply our results on examples of mixed states, in par- Fo%) = d <\/>\T * \/YQ * \/73) ' (7)
ticular, two qutrit mixed state with Schmidt rank two and two
qubit mixed states generated dynamically by an open systefaxpanding the the right hand side part of EQl (7) and using

model. Finally, we conclude in section 4. A1+ A2+ A3 =1, we get
df (|w9)) —1
Il. RELATION BETWEEN SINGLET FRACTION AND VAde + 1V Aos + VA As = 5 — (8
DIFFERENT ENTANGLEMENT MEASURES FOR PURE
TWO QUDIT SYSTEM WITH THREE SCHMIDT Also, we have the following identity

COEFFICIENTS

AA2 4+ Aoz + A A3 = (\/)\1)\2 + \/>\2)\3 + \/)\1>\3)2

In this section we obtain an explicit relation that will con-
nect the entanglement monotones with the singlet fraction f “2V A A3(VAL+ VA2 + V). (9)

a pure two qudit system of arbitrary dimension. Howeves iti
very difficult to obtain an analytical expression which teta  Using (2), [),7),[(B) and19) we have
the entanglement monotones and singlet fraction with ail no

zero Schmidt coefficients. Nevertheless, we obtain results (E@2)(|pd)))? = d’ (F(|wdy) — 1)2
d ® d systems with two and three non zero Schmidt coeffi- 2(d—1) d
cients.
. . . . . 4 d(d—1)(d—2 :
Let us consider a bipartité ® d system in which three - ( 6)( )(E(d=3)(|\11d>))%

Schmidt coefficients are non zero. Without any loss of gen-
erality we assume that the first three Schmidt coefficierds ar x4/ F(1TD)). (10)
non zero. Any pure two qudit system with three non zero
Schmidt coefficients\1, Aoy and\3; can be written in Schmidt

i This establishes the required relationship between the en-
decomposition form as,

tanglement measurds®?) (| %)) and E(%3)(|4?)) with the

FNE oo — — singlet fractionf (| '?)) for a pure two qudit systemir?) with
[0%) = VA1]00) + VA2 [11) + V/ A522), ) three non vanishing Schmidt coefficients.
with the Schmidt coefficients summing to one, 8.+ Ao + Next, we will consider separately the cases of states of

A3 = 1. To quantify the amount of entanglementin’) we ~ Schmidt ranks two and three, respectively. For purpose of
consider two different entanglement measurgé2) (|w4))  clarity, in the discussions to follow, we modify the notatiof

and E(%3) (Ju?)) which can be defined ad [9], the entanglement measures discussed abovE;.iéswhere

d stands for thel ® d dimensional system; indicates the

(d,2) (1qpdyy 2d Schmidt rank of the state under consideration@asdhe num-
BEE() = m(AlAQ +A225 + A ds), (4)  per of coefficients taken at a time.



A. States with Schmidt Rank Two Using Egs.[(b), and{7), we get

When one of the Schmidt coefficients (say) is zero, i.e., f3(|9%) = 2(%) B (9. a)

ES)(|wdy) = 0, from Eq. [I0), we have d 6d
In terms of teleportation fidelity, the above equation can be
(4.2) 1 43 4 1 written as
E7T(UY) = | 57— (f2(1¥9)) — =), (11)
2(d—-1) d J 9 (d—1)(d—2)\3 (d,3) 17 d
B 2 | () B ()

where, f>(|¥?)) denotes the singlet fraction of Schmidt rank
two state, and>(|¥%) > L. If /5(|¥%)) denotes the telepor- L1 (18)
tation fidelity of Schmidt rank two states, thé?ﬁd’m(|\1!d>) d+1

i d
can be expressed in termsBf(| 7)) as If the state| ¥4 is not useful for teleportation then we know

that f3(|¥?)) < <. From this, it can be seen that Schmidt rank

(d.2) /1 vd d3 (d+ 1) Fy(|¥d)) — 2 three states are not useful for teleportationli® d systems
B ([0h) =[5 L1
2(d—1) d when
. . . (d 3) d 1 6d2 %
This establishes the relation between the entanglemensmon 0< B3 (o)) < 9 (m) . (19)

tone and teleportation fidelity of Schmidt rank two statds. |
the statd¥¢) has Schmidt number two and useful for telepor- (i) Once again usingd M > GM on three real quantities

tation, then we hav@.Z] VA e, VA andy/ AN, we have

1 2 1

g <P <= I S N (Y onnoww i
Eq. (I3) can be recasted in terms of teleportation fidelity as (20)

9 ; 3 Using Egs.[(b), and{8), we have
R Fp(|v9)) < i1 (14)
d 6 (d— 1)(d—2) 3 (d,3) d 1
| ) fallwh) > = | (=) "B (e )| + 2.21)
Using Eq. [I#),£;“~ (|¥?)) can be seen to be bounded as
d Since, the singlet fractiofi; (|¥'¢)) attains its maximum value

0 < ES"P(jwdy) <

(15) unityath; = Xy = A3 = 1, we have

2(d—1)°
o —1)(d—2)\3 1
When the amount of entanglement lies in the above range we g l(%) ’ Eéd’g)(|\lfd>) + p
can use the state for teleportation. This quantifies thenenta 6

glement required for teleportation for a pure qudit statthwi < f3(|®h) < 1. (22)
two non vanishing Schmidt coefficients.
In terms of teleportation fidelity; (| ¥¢)), the above inequal-
ity can be expressed as
B. States with Schmidt Rank Three

2 6 ((d —1)(d-2)
Next we take up sates where none of the three Schmidt co- d+1 d+1 6d? p

efficients are zero, i.eE\"® (|¥?)) # 0. S F(v9) <1 (23)
(i) Using the well known result of arithmetic mean (AM)

being greater than or equal to geometric mean (GM) on thre

) 0 )

2

glence, pure entangled states wi%‘(#f(dd))% <

real quantities/A;, v/ A2 andy/\3, we have E3) (1)) < 1 and teleportation fidelitys (| ¥%)) > pEn)
are Schmidt rank three states useful for teleportation.
VAL + VA2 + VA3 3 To summarize, the classification of entanglement, for rank
> (VA1 VA2 . L ol e :
3 = ( ALV Az )‘3) three states, in terms of teleportation fidelity, i.e., tEatan-

(16) glement of Teleportation”, is:



a). 0 < Fy < —2-: state|T%) not useful for teleportation A. Two qudit mixed state of Schmidt rank two
1 P
d,3 2 1,
and0 < BEO(WY) < 3=t It can be easily shown that the maxi f
(b). -2 < Fy < 1: state useful for teleportation and t can be easily shown that the maximum amount of entan-

glement contained in a two qudit mixed state of Schmidt rank

%((dfff'l(zdf2))% < Eédyg)(mjd)) <1. two is | / 54—, i.e
Thus if the pure qudit statel?) of Schmidt rank three has Ad=pyr
entanglemengy”® (|0 4)) > 3 ()" then itis use- d
ful for teleportation, otherwise not. 0< Eéd’Q)(p) < m (28)
Ill. BOUNDS ON ENTANGLEMENT MEASURES FOR From Eq. [I0) E{*? (p;) for any Schmidt rank two bipartite
MIXED TWO QUDIT SYSTEMS USEFUL FOR pure qudit state; whosefs(p;) < 4, i.e., for states not useful

TELEPORTATION for teleportation, is

In this section we would like to answer the following (.2) 43 1
questions : (i) What is the minimum amount of entangle- By (pi) = m(g - f2(Pz'))- (29)
ment needed to perform teleportation when Schmidt rank two
mixed state is used as a resource ih@d system? (ii) What Using Egs.[[Z5) and{29), we have
is the minimum amount of entanglement needed to perform

teleportation when Schmidt rank three mixed state is used as ) e 1
: 5 2 - mi o - ,
resource in & ® d system? E*7(p) = min EZ Di 20— 1)( fa(pi))

Let us consider a mixed qudit state described by the den- d
sity operatorp = i, whereS"" p, = 1 andp; a1
Y op r ;pp Li1P r < Zpi m(a—fé(m))
(= |[v:){x;|) are composite pure states. The singlet fraction
f(p) of the state is defined as d d3 30
fp) = max(p|UT @ ZpU @ Z|Y™), (24) :
whereU is the unitary matrix,Z is the identity matrix and Hence, if the mixed statg of Schmidt rank two in al ® d
d—1 system is not useful for teleportation then
[Ty = Ld Z |kk) represents a pure maximally entangled
k=0 d d3
state. 0 < ES?(p) < \/ - \/ i f2(pi)(31)
The entanglement measufé® ) (| %)) and E(43) (|¥4)) 2(d—1) 2(d 1) ;

given in Egs. [(#) and{5) for pure states can also be defined ) . )
for a mixed state as But a Schmidt rank two pure bipartite qudit statecan be

useful for teleportation iffz(p;) > é. Thus, we can say, mak-

(d2)/ \ _ . (d2) ing use of Egs.[(10), anf(P8), that mixed states of Schmidt
E7(p) = mmEZ’lE (pi), (25 rank two are useful for teleportation only when
and [ 3 d
n PYFEEEEY pifa(pi) =\ 577 =
2(d—1 Z 2(d—1
E43)(p) = mianiE(d’B) (pi)- (26) ( )5 ( )
i=1 d
(d,2)
Here the minimum is taken over all pure state decompositions Ey(p) < 2(d —1)° (32)
of p. Now one may ask a question that, like entanglement
measures, does the singlet fractjt{p) also have the property
] B. Two qudit mixed state of Schmidt rank three

= min i i)y 27 . .
1) Zp fes) @ Using Eg. [26) and the results for pure two qudit states
where the minimum is taken over all decompositiopobin-  of Schmidt rank three, for two qudit mixed states of Schmidt
fortunately, the answer is no. rank three we have:



(i)if 0 < ESYY(p) < é(#‘fd_m)% then the mixed state

p of Schmidt rank three is not useful for teleportation. o7
2 1 d, .

(i) If $(=2E—)% < ES"(p) < 1 then the mixed

statep of Schmidt rank three is useful for teleportation. osst

IV. ILLUSTRATIONS AND APPLICATIONS IN OPEN
QUANTUM SYSTEMS 0%

In this section we provide examples of qubit and qutrit 04 & 5 5 = 2P
mixed states as applications of our results. This paves the
way for detecting states which are useful for teleportatien
well as to quantify the amount of entanglement required for FIG. 1: The functionF), plotted against mixing parameter
teleportation, in realistic settings.

A. Two qutrit mixed states with Schmidt rank two fluence of its environment, also called the bath or the reser-
voir. This results in decoherence and dissipation. Conside

We consider a two qutrit mixed state of Schmidt rank twothe Hamiltoniant/ = Hys + Hp + Hsr; wheresS stands for

given by the system of interesR for reservoir andS R for the system-
reservoir interaction. Depending upon the system-regervo
5p 2(1—2p) 1 interaction, open systems can be classified into two broad ca
Pr= o aPe + Dt2 |6)(6;0 < p < bR (33)  egories, viz., dissipative or QND (quantum non-demoljtion

In case of QND dephasing occurs without damping the sys-
where,p. = 1(|x0)(xo| + [x1)(x1]). This decomposition for tem, i.e., wher¢Hs, Hsr] = 0 while decoherence along with
statep is optimal. Here}xo) and|y1) are of the formjy,) =  dissipation occurs in dissipative systems, [Hs, Hsr] # 0.

V210 + /216 andix) = /216) - \/216). respectively, L5
and the stateB)), |¢) are given by|y) = %(|OO) +|11) —
' _ 1 i ; 1. Satesgenerated asa result of Two-Qubit Open System
22)) and|g) = Z5(|00) + [11)). Also, p is the classical Interacting with a Squeezed Thermal Bath via a Dissipative

probability of mixing.

We check whether the bounds @52 (p;) works for the
above density matrix. F& ® 3 dimension, the bound set by Here we study the dynamics of the bound [EEC1(32)] for
Eq. (32) becomes a two-qubit open system interacting with a squeezed thermal

V3 bath, modeled as®&— D electromagnetic field (EMF), as well
(34)  asits specialization to a vacuum bath, where the bath squeez

Interaction

3,2
Fy, < Eé )(Pf) <

2" ing (r) and temperaturel() are set to zero, and undergoing a
V3 dissipative interaction [18]. The model Hamiltonian is
where, F, = % Zpifg(pi) — —. If we calculate the
i 2 H = Hs+ Hgr+ Hsgr
lower boundF), in Eq. (33) for the state [Eq.[(B3)], then 1
F, == ‘[)”(2\[ UP 3 function ofp. The graphical plot = > hwnSi+ Zhwk(bj;s)b,;s +3)

of this bound W|th respect to the parametas shown in Fig.
(@). From Eqgs.[(34), and (115), it can be seen that the state (in
Eq. [33)) is useful for teleportation for< p < 1. — zhz Z )(S;F + 5,)bz — h.c[35)

B. States generated as a result of Two-Qubit Interaction whha  Hereji,, are the transition dipole moments, dependent on the
Squeezed Thermal Bath different atomic positions’, and S;" (= ile,)(gn|), and
S, (= 1|gn){en|) are the dipole raising and lowering op-

Open quantum systems is the systematic study of the eve@rators satisfying the usual commutation relationS? (=
lution of the system of interest, such as a qubit, under the ini(|e,)(en| — [gn)(gn|)) is the energy operator ofth atom



6

andb% , b are the creation and anihilation operators of the For the case of a squeezed thermal bath, as the system
S evolves with timet, concurrence” and f exhibit damped
behavior, as seen in Figs[](4) aid (5). If we increase the
inter-qubit distance-; 2, then the concurrena@ for the sys-
tem suddenly falls to zero (i.e., sudden death of entangiéme
in the system). Thus, the system can be used as a resource for
7 () = ( Wk )%: iR (36) teIeportation purpose in the range< r> < rq. Here we
kg AT 2ehV’ ke ’ define a new termy, such that at;5, = r4 concurrence& of
whereV is the normalization volume ang: is the unit po- the system becomes zero. Obviously thjswill be different
larization vector of the field. The position dependence ef th for different parameteri(, r) settings. The F|gSE{5) depictthe
coupling leads to interesting dynamical consequencesland #Pruptdecrease of concurrenand singlet fractiorf asr»
lows the entire dynamics to be classified into two categpriedncreases and the system comes out of the lower bound of Eq.
that is, the independent regime, where the interqubit witsta
is far enough for each qubit to locally interact with an indiep
dent bath or the collective regime, where the qubits aresclos
enough for them to interact with the bath collectively. Asum
ing an initial system-reservoir separable state, with yséesn
in a separable, and the bath in a squeezed thermal state, with
time the qubits develop correlations between themselhaea vi I - .
channel setup by the bath. A master equation for the reduced '\_'OW we take up the Hamiltonian, describing a QND inter-
dynamics of the two qubit system is obtained by tracing ougction of two qubits with the bath as

field modelgS with the wave vectok and polarization index

s = 1,2. A key feature of the model is that the system-
reservoir (S-R) coupling constagit (77,) is dependent on the
position of the qubit,, and is ‘

2. Satesgenerated as a result of Two-Qubit Open System
Interacting with a Squeezed Thermal Bath via Quantum
Nondemolition Interaction

the environment (bath), using the usual Born-Markov and ro- H — Hot Ho+ H

tating wave approximation (RWA). This can be then solved to QS e Hsn

obtain the dynamics of the reduced density matrix, whose de- . n i
tails are presented in_[118], for the general case of a sqdeeze N zjl hen s+ zk: fiwiby D

thermal bath at finite temperature as well as for a vacuum _ ;
reservoir. + > R (gRbL + g7 be). (39)
Let the reduced two-qubit density matrix of the system be nk

t). Its spectral decomposition corresponding to its eigen- . .
\p/zj;l(u)es (X(tg)) is P P 9 9 HereHg, Hr andHgg stand for the Hamiltonians of the sys-

tem, reservoir and system-reservoir interaction, resypgt
p(t) = Z Xi(8)pi (). (37) bl, b denote the creation and annihilation operators for the
p reservoir oscillator of frequenayy, g; stands for the cou-
_ _ pling constant (again assumed to be position dependent) for
Here p(t) = [4i(1))(4i(t)], [¢i(t)) being the eigenvectors  the interaction of the oscillator field with the qubit systand

corresponding to the eigenvaluggt) (3, Ai(t) = 1). Fora  5re taken to be
two qubit state the EqL(B2) becomes
no_ e*ik.rn 40
2 —1 < EFD(ps(1) <1 (38) e (0
wherer, is the qubit position. SincgHg, Hsr] = 0, the
where, f = Y \i(t)f2(pi(t)) and is the singlet fraction of Hamiltonian [Eq.[3P)] is of QND type. In the parlance of
) i _ ) guantum information theory, the noise generated is calied t
the mixed state;(¢). Again we can easily say that for two- phase damping noise. The position dependence of the cou-
qubit stateEéQ’Q) is nothing but concurrenc€'. It is clear  pling constant once more allows for the dynamical classifica
from Eq. [38) that iff > % then the statep;(¢) will be  tion into the independent and collective regimes. In order t
useful for teleportation, which is a known fact. If we look at obtain the reduced dynamics of the system , we trace over the
the Figs. [2), and{3), for the case of a vacuum bath=  reservoir variables, the details of which can be foundif}.[19
0,7 = 0), concurrence& (or E§’2) is seen to decrease with Now we study the behavior of concurrence (actually
time of evolutiont, with a predominantly oscillatory behavior E22"2) and singlet fractiory as the two-qubit system evolves
in the collective regime (marked by the inter qubit distancewith time ¢ both for collective and localized decoherence
ri2 < 1). The singlet fractiory also shows similar behavior. model. It can be noticed from Figs[](6), aid (7) that the
From these two figures, it is clear that when and witérend  value of concurrencé’ is higher and lasts longer in the case
f become zero ang, respectively, the system comes out of of collective decoherence model than in the case of loddlize
the lower bound of Eq[(38). decoherence model. As expected, the the singlet fragtion
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(4) (i)

FIG. 2: Plot of (i) concurrenc€’ (orEéQ’Q)) and (ii) singlet fractionf with respect to the time of evolutianrespectively. Here
we consider the case of a vacuum bath- » = 0) and the collective decoherence modgh(= 0.05).

FIG. 3: Plot of (i) concurrenc€’ (or Eém)) and (ii) f with respect to the inter-qubit distaneg, respectively. Here we
consider the case of vacuum baih+ r = 0) and system is at time= 10.

shows similar kind of behavior with time WhenC becomes  Hence the system comes out of the lower bound of Eg. (38),
zero, f becomes equal té, i.e., the system at this particular when concurrenc€' vanishes.
timet cannot be useful for teleportation, otherwise it is useful.

V. CONCLUSION results are then extended to mixed two qudit states, which we
illustrate on specific examples of a two qutrit mixed state of
We have made a study of entanglement of teleportation fopchmidt rank two as well as two qubit states dynamically gen-
arbitraryd @ d dimensional states having Schmidt rank upto€rated by interaction with an appropriate reservoir, fothbo
three. The connections are established by developingmetat Pure dephasing as well as dissipative interactions.
between entanglement measures and singlet fraction. thise Acknowledgment: T. Pramanik thanks UGC, India for fi-
ables a classification of entanglement as a function of telenancial support. S. Adhikari would like to thank Prof. H. S.
portation fidelity, the “Entanglement of Teleportation’hdse  Sim for useful discussions.
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FIG. 4: Plot of (i) concurrenc€' (orEéQ’Q)) and (ii) singlet fractionf with respect to the time of evolutianrespectively, for a
squeezed thermal batli' = 1, r = 0.1) in the collective regimer{, = 0.05).
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FIG. 5: Plot of (i) concurrencé’ (or E§2’2)) and (i) f with respect to the inter-qubit distaneg,, respectively, for a squeezed
thermal bath{" = 1, = 0.1) and time of evolutiort = 1.
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FIG. 6: Plot of (i) concurrencé€’ (or E§2’2)) and (ii) f as a function of the time of evolutian Here we consider the case of
QND interaction {" = 5, = 0.1), in the collective decoherence regimegy(= 0.05).
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FIG. 7: Plot of (i) concurrenc€’ (or E§2’2)) and (ii) f as a function of the time of evolutianfor the case of QND interaction
(T'=5,r = 0.1), in the independent decoherence regime & 1.1).
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