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Abstract

In this paper a spin-1 spin-glass model under the presence of a uni-

form crystal field is investigated. It is shown that the model presents

both continuous and first-order phase transition separated by a tricriti-

cal point. The phase diagram is obtained within the replica-symmetric

solution and exhibits reentrance phenomena at low temperatures. Pos-

sibly it is the simplest model which can describe inverse freezing phe-

nomena.

Tricritical behavior and reentrance phenomena associated with first-order
transitions in disordered systems have been the subject of recent studies. For
instance, investigations of inverse freezing phenomena, where the ordered
phase is more entropic than the disordered one, have been conducted by
several authors [1, 2, 3, 4, 5, 6]. Such nonusual behavior has also been
observed in fermionic disordered systems (see [7] and references therein).
More recently, a spin model for strain glass has been used to account for the
effects of disorder in ferroelastics which can display reentrance phenomena
[8]. The models involved in those investigations are closely related to the
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Ghatak-Sherrington (GS) model [9], which has been intensively studied since
its introduction [4, 10, 11, 12, 13, 14].

The Ghatak-Sherrington model [9] is a generalization of the widely known
infinite-range Sherrington-Kirkpatrick (SK) model for a spin glass (SG) [15]
with arbitrary spin S > 1/2 and inclusion of a uniform crystal field. For
integer spin S the GS model displays both first-order and continuous tran-
sitions. The crystal field (D)-temperature (T ) phase diagram for S = 1 has
a continous transition line which meets a first-order transitions (FOT) line
at a tricritical point. These lines separates the paramagnetic from the spin-
glass phase. One of the most interesting feature of the S = 1 SG model is
the appearance of reentrance effects occuring at low temperatures which has
been recently associated with inverse freezing phenomena [1, 2, 3, 4, 5, 6].

Although it is widely accepted that the correct mean-field solution for
infinite-range spin-glass models is given by the Parisi Ansatz [16, 17, 18], the
replica-symmetric (RS) solution gives an initial clue to general topologies of
phase diagrams. For the GS model the RS solution has revelead a number
of difficulties in the low temperature region where first-order transtions take
place [12]. Inside this region we can find up to three distincts paramagnetic
solutions. However, only one of these solutions is stable with respect to
replica-symmetry breaking (RSB) fluctuations. On the other hand, we may
find up to four distincts spin-glass solutions in the same region which, unlike
the paramagnetic case, are all unstable with respect to RSB. Therefore, even
within the RS solution treatment we are faced with the problem of choosing
the most adequate SG solution in order to determine the FOT line. We
believe that this fact is at the origin of some controversies with respect to
the location of the FOT line predicted by the RS solution [9, 10, 11]. Recently
we have seen some progress with respect to the correct location of the FOT
line for the GS model [13, 14]. There remain, however, some points which
need to be clarified about the low temperature behavior of the GS model.

Another route of investigation on the mean-field behavior of spin-glasses
is the Thouless-Anderson-Palmer (TAP) approach which avoids the replica
method [19]. From the TAP equations one can obtain a simpler set of equa-
tions by excluding the so-called Onsager reaction-field term so that one gets
the naive mean-field equations. Bray, Sompolinsky and Yu (BSY) [20] intro-
duced an exactly soluble infinite-range SG model which is also a generaliza-
tion of the SK model. For the BSY model one can obtain exactly the naive

mean-field equations. These authors also studied their model by means of
the replica method and noted some interesting features. For instance, the
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RS solution describes a SG phase whose entropy is always non-negative for
finite temperatures and vanishes at zero temperature, in contrast to what is
observed in the RS solution to the SK model. In spite of this, the RS solution
to the BSY model is unstable in the whole SG region. Due to lack of the
Onsager term the BSY predicts a critical temperature that is twice the result
obtained for the SK model. Notwithstanding this, the low temperature be-
havior of both BSY and SK models are qualitatively the same. In particular
they have the same zero-tempareture properties.

In order to gain further understanding about tricritical behavior and reen-
trant effects in spin-glass systems we consider a BSY version of the GS model.
Our analysis is based on the replica approach, since we want to compare our
findings with the known results obtained for the GS model in previous stud-
ies.

The model consists of a set of m classical spin-1 variables Sia (a =
1, . . . , m) located at each site i = 1, . . . , N . The Hamiltonian is given by

H = − 1

2m

∑

(i,j)

m
∑

a,b=1

JijSiaSjb +D
N
∑

i=1

m
∑

a=1

S2
ia, (1)

where Sia = ±1, 0; the (i, j) sum is over all distinct pairs of sites; the ex-
change interactions Jij are quenched random variables with the Gaussian
distribution

P (Jij) =

(

N

2πJ2

)1/2

exp

(

−
NJ2

ij

2J2

)

, (2)

andD represents the effect of a uniform crystal field anisotropy term. Several
known cases are recovered in special limits: (i) m = 1 recovers the Ghatak-
Sherrington model; (ii) forD → −∞ the BSY model is re-obtained, including
the SK model for m = 1.

Since we are interested in the m → ∞ limit, the quenched free energy
per spin is given by

− βf = lim
N→∞

lim
m→∞

1

Nm
〈lnZ〉J , (3)

where 〈〉J denotes the configuration average over the disorder. In order to
proceed further the use of the replica method is introduced through the
identity lnZ = limn→0(Z

n−1)/n. Therefore, the averaged free energy density
may be expressed as
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βf = lim
n→0

lim
m→∞

1

mn
min φmn({qαβ}), (4)

where

φmn({qαβ}) =
1

4
m2(βJ)2

n
∑

α,β=1

q2αβ − lnTr{Sα

a
} exp(Hmn), (5)

and

Hmn =
1

2
(βJ)2

n
∑

α,β=1

m
∑

a,b=1

qαβS
α
a S

β
b − βD

∑

α,a

(Sα
a )

2. (6)

The condition for φmn({qαβ}) to be an extremum with respect to qαβ
yields

qαβ =
1

m2

m
∑

a,b=1

〈Sα
aS

β
b 〉mn (7)

where 〈Sα
aS

β
b 〉mn indicates the thermal average with respect to the replica

hamiltonian (6).
The replica-symmetric solution can be considered now. As in the BSY

model there is a non-trivial diagonal qαα and the requirement of a finite
susceptibility leads us to consider the RS Ansatz in the form:

qαβ = q (α 6= β), qαα = q + χ̄/m. (8)

Substituting (8) into (4) the free energy per spin is obtained

βf =
1

2
(βJ)2χ̄q −

〈

−1

2
(βJ)2χ̄m2(x) + ln z(x)

〉

x

, (9)

where

z(x) = 1 + 2e−βD cosh(βJ
√
qx+ β2J2χ̄m(x)), (10)

and

m(x) =
2 sinh(βJ

√
qx+ β2J2χ̄m(x))

eβD + 2 cosh(βJ
√
qx+ β2J2χ̄m(x))

. (11)
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The notation has been simplified by introducing

〈O(x)〉x =

∫ ∞

−∞

O(x)e−x2/2 dx√
2π

.

The equilibrium equations ∂f/∂q = 0 = ∂f/∂χ̄ yield

q = 〈m2(x)〉x, (12)

βχ̄ =
1√
q
〈xm(x)〉x. (13)

An integration by parts allows to re-write (13) as

χ̄ =

〈

p(x)−m2(x)

1− (βJ)2χ̄(p(x)−m2(x))

〉

x

, (14)

where

p(x) =
2 cosh(βJ

√
qx+ β2J2χ̄m(x))

eβD + 2 cosh(βJ
√
qx+ β2J2χ̄m(x))

. (15)

The set of Eqs. (9), (12) and (13) determine the phase diagram which
presents paramagnetic and spin-glass phases. It should be mentioned that
for numerical purpose Eq. (14) is more appropriate than Eq. (13).

The paramagnetic phase is described by q = 0 and

χ̄ =
1−

√

1− 4β2J2p2

2β2J2p
, p =

2

eβD + 2
. (16)

The simple form of p in the last equation shows that it is a single val-
ued function both in terms of inverse temperature β and anisotropy crystal
field D. It is important to recall that in the Ghatak-Sherrington model the
behavior of the corresponding term is more subtle [12]. As a matter of fact
in the GS case p represents a true order parameter and can display up to
three distinct solutions. Thus we have to find an additional criterion in or-
der to determine the thermodynamically stable paramagnetic solution. In
the present case p can be regarded as a mere density and a simple analysis
shows that the paramagnetic solution is physically acceptable as long as the
condition
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2β2J2

eβD + 2
< 1 (17)

holds.
Let us set J = 1 and consider the D − T phase diagram, where T =

1/β. From Eq. (17) the paramagnetic is stable at high temperatures and is
bordered by the line

D = T ln

[

2(2− T )

T

]

. (18)

At low temperatures there is a spin-glass phase with q > 0. Expanding
Eq. (12) for small q one finds

q = aq + bq2 +O(q3) (19)

where

a =
pT

T 2 − χ̄p
, (20)

and

b =
1

9

(1− 3p)

p3
Ta4. (21)

Thus the spin-glass phase exists as long as a < 1 and b > 0. From the
above expansion one finds a tricritical point given by a = 1 and b = 0.
Therefore the phase diagram consists of a continuous transition line given by
Eq. (18) as long as T > 2/3. For 0 ≤ T < 2/3 there is a region of coexisting
paramagnetic and spin-glass solutions and one has a first-order transition
which can be numerically determined by equating the corresponding free-
energy densities of these solutions. The continuous and first-order transition
lines meet at the tricritical point given by

T = 2/3, D = 4 ln 2/3 = .924169 . . . , (22)

which should be compared with the correponding results for the tricritical
point found for the GS model: T = 1/3, D = 1/2+ 2(ln 2)/3 = 0.962098 . . .
[9].

At zero temperature the first-order transition can also be easily found.
First one notes that limT→0 βχ̄ = χ is finite. From Eq. (12) one finds
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q = 2

∫ ∞

x∗

e−x2/2 dx√
2π

= erfc(x∗/
√
2), (23)

where

x∗ =
2D − χ

2
√
q

, (24)

and erfc is the usual complementary error function. The above expression is
valid for x∗ > 0. In this regime one also finds

χ =

(

2

πq

)1/2

e−x∗2/2, (25)

and, for the spin-glass free-energy density f0,

f0 = Dq −
(

2q

π

)1/2

e−x∗2/2. (26)

For negative values of x∗ we obtain, at the absolute zero of temperature,
q = 1, χ = (2/π)1/2 and f = − (π/2)1/2. Since from Eq. (9) the free energy
of the paramagnetic solution at T = 0 is zero for D > 0, the first-order
transitions at T = 0 is found by imposing, f0 = 0 from which follows, after
some simplifications with the help of Eqs. (23) and (25)

x∗ erfc(x∗/
√
2) =

1√
2π

e−x∗2/2. (27)

The above equation is exactly the same obtained previously for the replica
symmetric solution [12] to the GS model. The numerical solution to this
equation is x∗ = 0.612003 . . . , from which results, jointly with Eqs. (23) and
(25), q = 0.540535 . . . and χ = 0.899003 . . . , respectively. These numerical
results allow us to determine the location of the first-order transition at
T = 0:

D0 = D(T = 0) = 0.899033 . . . . (28)

Since the present model as well as the GS model have the same ground
state this is an expected result of general validity. Thus, as in the GS model
a stable RSB solution should give a slightly lower value for D0, and so the
reentrance effect must be enhanced. In fact, a previous numerical study of
the naive mean-field equations for T = 0 showed that D0 ≈ 0.86 [22].
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For 0 < T < 2/3 the first-order transition line can be obtained by nu-
merically solving the equilibrium equation and requiring that the spin-glass
and paramagnetic solution have the same free energy. The resulting phase
diagram is depicted in Fig. 1. As in the GS model case there is a reentrance
to the paramagnetic phase at low temperatures. However, one notices that
as T → 0 there is no new transition to the SG phase in the vicinity of D0

as was found in the replica solution to the Ghatak-Sherrington model [12].
This is a direct consequence of the vanishing of the spin-glass entropy as can
be verified by an analysis of the Clausius-Clayperon equation along the FOT
line.

In spite of the vanishing of the spin-glass entropy at T = 0 for any
value of D, a stability analysis along the lines pioneered by de Almeida and
Thouless [21] shows that the replica-symmetric spin-glass solution is always
unstable. Again, the numerical analysis of the stability conditions becomes
easier than in the corresponding Ghatak-Sherrington case since we did not
find any evidence of complex eigenvalues for the replica stability matrix. The
instability is signaled by the non-positiveness of the replicon eigenvalue

λR = T 2 − 〈(p(x)−m2(x))2〉x. (29)

Therefore, a correct description of the spin-glass phase requires a complete
solution to the corresponding Parisi’s equations as have been done for the GS
model [13, 14]. We can anticipate that in such replica-symmetry breaking
treatment the main features of the phase diagram would not be modified.
The continuous transition line as well as the location of the tricritical point
will not be changed, but a slight modification in the location of the FOT line
is expected in a similar way to what happens in the GS model, increasing
teh reentrance effect for T ≈ 0.

In conclusion, a naive version of the Ghatak-Sherrington model was inves-
tigated by the replica approach. The phase diagram was determined within
the replica-symmetric Ansatz. Both analytical and numerical results shows
that the replica-symmetric solution to the present model is simpler to anal-
yse than the corresponding Ghatak-Sherrington model. In spite of this, the
phase diagram for both models share several common features. At high tem-
peratures there is continuous transition line from the paramagnetic to the
spin-glass phase, while at low temperatures there is a line of first-order tran-
sitions. These two lines meet at a tricritical point. The present model also
exhibits a reentrance from the spin-glass to the paramagnetic phase. We
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believe that the present model could be useful to further investigations on
inverse freezing phenomena.

The author thanks to Prof. Śılvio Salinas for useful comments.
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Figure 1 Phase diagram obtained within the replica-symmetric approxima-

tion. The full AT curve is the line of continuous transitions and the broken curve

BT is the line of first-order transitions. These two curves meet at the tricritical

point T.
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