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Abstract

The theory of distributions provides generalized solutions for prob-
lems which do not have a classical solution. However, there are prob-
lems which do not have solutions, not even in the space of distribu-
tions. As model problem you may think of

�4u = up�1 ; u > 0; p � 2N

N � 2

with Dirichlet boundary conditions in a bounded open star-shaped set.
Having this problem in mind, we construct a new class of functions
called ultrafunctions in which the above problem has a (general-
ized) solution. In this construction, we apply the general ideas of Non
Archimedean Mathematics (NAM) and some techniques of Non Stan-
dard Analysis. Also, some possible applications of ultrafunctions are
discussed.

Mathematics subject classi�cation: 26E30, 26E35, 35D99, 81Q99.
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1 Introduction

We believe that Non Archimedean Mathematics (NAM), namely, mathemat-
ics based on Non Archimedean Fields is very interesting, very rich and, in
many circumstances, allows to construct models of the physical world in
a more elegant and simple way. In the years around 1900, NAM was in-
vestigated by prominent mathematicians such as David Hilbert and Tullio
Levi-Civita, but then it has been forgotten until the �60s when Abraham
Robinson presented his Non Standard Analysis (NSA). We refer to Ehrlich
[9] for a historical analysis of these facts and to Keisler [10] for a very clear
exposition of NSA.
In this paper we apply the general ideas of NAM and some of the tech-

niques of NSA to a new notion of generalized functions which we have called
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ultrafunctions. Ultrafunctions are a particular class of functions based on
a superreal �eld R� � R. More exactly, to any continuous function f : RN !
R, we associate in a canonical way an ultrafunction f� : (R�)N ! R� which
extends f ; but the ultrafunctions are much more than the functions and
among them we can �nd solutions of functional equations which do not have
any solutions among the real functions or the distributions.
Now we itemize some of the peculiar properties of the ultrafunctions:

� the space of ultrafunctions is larger than the space of distributions,
namely, to every distribution T; we can associate in a canonical way an
ultrafunction T� (cf. section 4.2);

� similarly to the distributions, the ultrafunctions are motivated by the
need of having generalized solutions; however, while the distributions
are no longer functions, the ultrafunctions are still functions even if
they have larger domain and range;

� unlikely the distributions, the space of ultrafunctions is suitable for non
linear problem; in fact any operator F de�ned for a reasonable class of
functions, can be extended to the ultrafunctions; for example, in the
framework of ultrafunctions �2 makes sense (here � is the Dirac measure
seen as an ultrafunction);

� if a problem has a unique classical solution u; then u� is the only
solution in the space of ultrafunctions,

� the main strategy to prove the existence of generalized solutions in the
space of ultrafunction is relatively simple; it is just a variant of the
Faedo-Galerkin method.

This paper is organized as follows. In Section 2 we introduce NAM via the
notion of �-limit. This approach is quite di¤erent from the usual approach
to NAM via NSA. It follows a line developed in [2], [3], [5] and [6]. In this
section, we introduce all the notions necessary to understand the rest of
the paper, but we omit details and most of the proofs. In sections 3 and
4, we introduce the notion of ultrafunction and the last three sections are
devoted to applications. The applications are chosen as examples to show
the potentiality of the theory and possible directions of study; they are not
an exhaustive study of the topic treated there.

Before ending the introduction, we want to emphasize the di¤erences by
our approach to NAM and the approach of most people working in Nonstan-
dard Analysis: there are two main di¤erences, one in the aims and one in
the methods.
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Let examine the di¤erence in the aims. We think that in�nitesimal and
in�nite numbers should not be considered just as entities living in a parallel
universe (the nonstandard universe) which are only a tool to prove some
statement relative to our universe (the standard universe), but rather that
they should be considered mathematical entities which have the same status
of the others and can be used to build models as any other mathematical
entity. Actually, the advantages of a theory which includes in�nitesimals
rely more on the possibility of making new models rather than in the proving
techniques. Our papers [4] and [6] as well as this one, are inspired by this
principle.
As far as the methods are concerned we introduce a non-Archimedean

�eld via a new notion of limit (see section 2.2). Moreover, we make a very
limited use of logic: the transfer principle (or Leibnitz Principle) is given by
Th. 11 and it is not necessary to introduce a formal language. We think that
this approach is closer to the way of thinking of the applied mathematician.

1.1 Notation

Let 
 � RN be a set not necessarily open: then

� F (
; E) denotes the set all the functions de�ned in 
 with values in
E;

� C (
) denotes the set of real continuous functions de�ned on a set 
;

� C0
�


�
denotes the set of real continuous functions on 
 which vanish

on @
;

� Ck (
) denotes the set of functions de�ned on an 
 � RN which have
continuous derivatives up to the order k

� Ck0
�


�
= Ck

�


�
\ C0

�


�
;

� D (
) denotes the set of the in�nitely di¤erentiable functions with com-
pact support de�ned on a set 
 � RN ; D0 (
) denotes the topological
dual of D (
), namely the set of distributions on 
;

� S (
) denotes the Schwartz space and S 0 (
) the set of tempered distributions;

� E (
) = C1 (
) denotes the set of the in�nitely di¤erentiable func-
tions; E 0 (
) denotes the topological dual of E (
), namely the set of
distributions with compact support in 
;
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� H1(
) is the usual Sobolev space de�ned as the set of functions u 2
L2 (
) such that ru 2 L2 (
) ;

� H1
0 (
) is the closure of D (
) in H1(
);

� H�1(
) is the topological dual of H1
0 (
):

2 �-theory

As we have already remarked in the introduction, �-theory can be considered
as a variant of nonstandard analysis. It can be introduced via the notion of
�-limit, and it can be easily used for the problems which we will consider in
this paper.

2.1 Non Archimedean Fields

In this section, we will give the basic de�nitions relative to non-Archimedean
�elds and some of the basic facts. F will denote an ordered �eld. The
elements of F will be called numbers. Clearly F contains (a set isomorphic
to) the rational numbers.

De�nition 1 Let F be an ordered �eld. Let � 2 F. We say that:

� � is in�nitesimal if for all n 2 N, j�j < 1
n
;

� � is �nite if there exists n 2 N such as j�j < n;

� � is in�nite if, for all n 2 N, j�j > n (equivalently, if � is not �nite).

De�nition 2 An ordered �eld K is called non-Archimedean if it contains an
in�nitesimal � 6= 0.

It�s easily seen that the inverse of a nonzero in�nitesimal number is in-
�nite, and the inverse of an in�nite number is in�nitesimal. Clearly, all
in�nitesimal numbers are �nite.

De�nition 3 A superreal �eld is an ordered �eld K that properly extends R.

It is easy to show that any superreal �eld contains in�nitesimal and in-
�nite numbers. Thanks to in�nitesimal numbers, in the superreal �elds, we
can formalize a new notion of �closeness".
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De�nition 4 We say that two numbers � and � 2 K are in�nitely close if
� � � is in�nitesimal. In this case, we will write � � �.

It is easy to see that the relation "�" of in�nite closeness is an equivalence
relation.

Theorem 5 If K is a superreal �eld, every �nite number � 2 K is in�nitely
close to a unique real number r � �, called the shadow or the standard
part of �. We will write r = sh(�). If � 2 K is a positive (negative) in�nite
number, then we put sh(�) = +1 (sh(�) = �1).

We can also consider the relation of ��nite closeness":

� �f � if and only if � � � is �nite:

It is readily seen that also �f is an equivalence relation. In the literature,
the equivalence classes relative to the two relations of closeness � and �f ,
are called monads and galaxies, respectively.

De�nition 6 The monad of a number � is the set of all numbers that are
in�nitely close to it:

mon(�) = f� 2 K : � � �g
The galaxy of a number � is the set of all numbers that are �nitely close to
it:

gal(�) = f� 2 K : � �f �g

So, mon(0) is the set of all in�nitesimal numbers in K and gal(0) is the
set of all �nite numbers.

2.2 The �-limit

U will denote our "mathematical universe". For our applications a good
choice of U is given by the superstructure on R:

U =
1[
n=0

Un

where Un is de�ned by induction as follows:

U0 = R
Un+1 = Un [ P (Un)
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Here P (E) denotes the power set of E: If we identify the couples with the Ku-
ratowski pairs and the functions and the relations with their graphs, clearly
U contains almost all the mathematical objects needed in mathematics.
Given the universe U , we denote by � the family of �nite subsets of U :

Clearly (�;�) is a directed set and, as usual, a function ' : � ! E will be
called net (with values in E).

Axioms of the �-limit
� (�-1) Existence Axiom. There is a superreal �eld K � R such that
for every net ' : � ! R there exists a unique element L 2 K called
the ��-limit" of ': The �-limit will be denoted by

L = lim
�"U

'(�) or L = lim
�2�

'(�)

Moreover we assume that every � 2 K is the �-limit of some real
function ' : �! R.

� (�-2) Real numbers axiom. If '(�) is eventually constant, namely
9�0 2 � : 8� � �0; '(�) = r; then

lim
�"U

'(�) = r

� (�-3) Sum and product Axiom. For all ';  : �! R:

lim
�"U

'(�) + lim
�"U

 (�) = lim
�"U
('(�) +  (�))

lim
�"U

'(�) � lim
�"U

 (�) = lim
�"U
('(�) �  (�))

Theorem 7 The axioms (�-1),(�-2),(�-3) are consistent.

Proof. In order to prove the consistency of these axioms, it is su¢ cient to
construct a model. Let us consider the algebra F (�;R) of the real functions
de�ned on � and set

I0 = f' 2 F (�;R) j '(�) is eventually 0g

It is easy to check that I0 is an ideal in the algebra �: By the Krull-Zorn
Theorem, every ideal is contained in a maximal ideal. Let I be a maximal
ideal containing I0: We set

K :=
F (�;R)
�=I
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where the equivalence relation �=I is de�ned as follows:

' �=I  :, '�  2 I

It is easy to check that K is an ordered �eld and R � K if we identify
r 2 R with the equivalence class [r]�=I : Finally, we can de�ne the �-limit as

lim
�"U

'(�) = [']�=I

Now, it is immediate to check that the �-limit satis�es (�-1),(�-2),(�-3)
�

Now we want to de�ne the �-limit of any bounded net of mathematical
objects in U (a net ' : � ! U is called bounded if there exists n such that
8� 2 �; '(�) 2 Un). To do this, consider a net

' : �! Un (1)

We will de�ne lim�"U '(�) by induction on n. For n = 0; lim�"U '(�) is
de�ned by the axioms (�-1),(�-2),(�-3); so by induction we may assume
that the limit is de�ned for n� 1 and we de�ne it for the net (1) as follows:

lim
�"U

'(�) =

�
lim
�"U

 (�) j  : �! Un�1; 8� 2 �;  (�) 2 '(�)
�

De�nition 8 Amathematical entity (number, set, function or relation) which
is the �-limit of a net is called internal.

If E 2 U , and ' : �\P (E)! Un; then we will use the following notation:

lim
�"E

'(�) = lim
�"U

'(� \ E):

2.3 Natural extensions of sets and functions

De�nition 9 The natural extension of a set E � R is given by

E� := lim
�"U

cE(�) =

�
lim
�"U

 (�) j  (�) 2 E
�

where cE(�) is the net identically equal to E.
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Using the above de�nition we have that

K = R�

In this context a function f can be identi�ed with its graph; then the
natural extension of a function is well de�ned. Moreover we have the following
result:

Theorem 10 The natural extension of a function

f : E ! F

is a function
f � : E� ! F �

and for every ' : � \ P (E)! E; and every f : E ! F , we have that

lim
�"U

f('(�)) = f �
�
lim
�"U

'(�)

�
When dealing with functions, when the domain of the function is clear

from the context, sometimes the "�" will be omitted. For example, if � 2 R�
is an in�nitesimal, then clearly e� is a short way to write exp�(�):
The following theorem is a fundamental tool in using the �-limit:

Theorem 11 (Leibnitz Principle) Let R be a relation in Un for some
n � 0 and let ', 2 F (�;Un). If

8� 2 �; '(�)R (�)

then �
lim
�"U

'(�)

�
R�
�
lim
�"U

 (�)

�

Remark 12 Notice that, in the above theorem, the relations "=" and "2"
do not change their "meaning", namely "=�" and "2�" have the same inter-
pretation than "=" and "2".

De�nition 13 An internal set is called hyper�nite if it is the �-limit of
�nite sets.
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All the internal �nite sets are hyper�nite, but there are hyper�nite sets
which are not �nite. For example the set

R� := lim
�"U
(R \ �)

is not �nite. The hyper�nite sets are very important since they inherit many
properties of �nite sets via Th. 11. For example, R� has the maximum and
the minimum and every internal function

f : R� ! R�

has the maximum and the minimum as well.
Also, it is possible to add the elements of an hyper�nite set of numbers

or vectors. Let
A := lim

�"U
A�

be an hyper�nite set; then, the hyper�nite sum is de�ned as follows:X
a2A

a = lim
�"U

X
a2A�

a

In particular, if A� =
�
a1(�); :::; a�(�)(�)

	
with �(�) 2 N; then, setting

� = lim
�"U

�(�) 2 N�

we use the notation
�X
j=1

aj = lim
�"U

�(�)X
j=1

aj(�):

2.4 Quali�ed sets

Also, if Q � � and ' : �! Un, the following notation is quite useful

lim
�2Q

'(�) = lim
�"U

e'(�)
where e'(�) = � '(�) for � 2 Q

? for � =2 Q
We use this notation to introduce the notion of quali�ed set:

De�nition 14 We say that a set Q � � is quali�ed if for every bounded net
'; we have that

lim
�"U

'(�) = lim
�2Q

'(�):
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By the above de�nition, we have that the �-limit of a net ' depends
only on the values that ' takes on a quali�ed set. It is easy to see that
(nontrivial) quali�ed sets exist. For example, by (�-2), we can deduce that,
for every �0 2 � the set

Q (�0) := f� 2 � j �0 � �g

is quali�ed. In this paper, we will use the notion of quali�ed set via this
Theorem

Theorem 15 Let R be a relation in Un for some n � 0 and let ',  2
F (�;Un). Then the following statements are equivalent:

� there exists a quali�ed set Q such that

8� 2 Q; '(�)R (�)

� we have �
lim
�"U

'(�)

�
R�
�
lim
�"U

 (�)

�
Proof : It is an immediate consequence of Th. 11 and the de�nition of

quali�ed set.
�

3 The abstract theory

In this section we will present a method to extend any vector space V to a
larger vector space B [V ] of hyper�nite dimension. In the next section we
will apply this method to functional vector spaces.

3.1 De�nition of ultravectors

De�nition 16 Let H be a separable real (or complex) Hilbert space with
scalar product (� ; �) and let V � H be a dense subspace. We assume that
H 2 U and we set

B [V ] := lim
�"V

V�

where
V� := Sp (�)

is the span of �. B [V ] is called the space of ultravectors based on V:
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In order to simplify the notation, sometimes, we will set VB = B [V ] :
Notice that VB is a vector space of hyper�nite dimension � 2 N�, were � is
de�ned as follows:

� = dim�(VB) = lim
�"V

(dimV�) :

Let f 2 V ; if we identify f and f �; we have that V � VB. Now let

� : H� ! VB (2)

be the orthogonal projector. Then, to every vector f 2 H; we can associate
the ultravector �f 2 VB: If fejgj�� is a basis for VB;then

�f =

�X
j=1

(f; ej)ej (3)

Let V 0 denote the dual of V; namely, V 0 is the family of linear functionals
T on V:

De�nition 17 For any T 2 V 0; we denote by �T the only vector in VB such
that

8v 2 VB; (�T; v) = hT �; vi ;
�T is called dual ultravector. Using the orthonormal basis fejgj��, we have
that

�T =

�X
j=1

(�T; ej)ej =

�X
j=1

hT �; eji ej (4)

Notice that, if we identify H as a subset of V 0; the operator � de�ned
by (4) is the extension of the operator (3) and hence we have denoted them
with the same symbol.
From our previous discussion the space of ultravectors VB contains three

types of vectors

� standard ultravectors: u 2 VB is called standard if u 2 V (or, to be
more precise, if there exists f 2 V such that u = f �);

� dual ultravectors: u 2 VB is called dual ultravector if u = �T for some
T 2 V 0;

� proper ultravector: u 2 VB is called proper ultravector if it is not a
dual ultravector.

The ultravector which are not standard will be called ideal.
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3.2 Extension of operators

De�nition 18 Given the operator F : D ! V 0; D � V; the map

F� : VB \D� ! VB

de�ned by
F� = � � F � (5)

is called canonical extension of F:

By the de�nition of F�, if u 2 VB \D�; we have that

8v 2 VB; (F� (u) ; v) = hF � (u) ; vi (6)

Using an orthonormal basis fejgj�� for VB;we have

F� (u) =

�X
j=1

hF �(u); eji ej

If we identify H with its dual and we take F : V \D ! H; then equation
(6) becomes:

8v 2 VB; (F� (u) ; v) = (F � (u) ; v) : (7)

4 The ultrafunctions

4.1 De�nition

De�nition 19 Let 
 be a set in RN , and let V (
) be a vector space such
that D(
) � V (
) � C(
) \ L2(
): Then any function

u 2 B [V (
)]

is called ultrafunction.

So the ultrafunctions are �-limits of continuous functions in V�
�
RN
�
:=

Sp
�
� \ V

�
RN
��
and hence they are internal functions

u : 
� ! C�:
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Remark 20 If V (
) is a Sobolev space such as H1 (
) ; then the elements
of V (
) are not functions, but equivalence class of functions, so also the
elements of B [V (
)] are equivalence class of functions. In order to avoid
this unpleasant fact, in the de�nition of ultrafunctions, we have assumed
V (
) � C(
). Moreover, this choice has also an other motivation: as we will
see in the applications, if we approach a problem via the ultrafunctions, we do
not need Sobolev spaces (even if we might need the Sobolev inequalities). In
some sense the ultrafunctions represent an alternative approach to problems
which do not have classical solutions in some Ck(
):

Since VB(
) � [L2(
)]
�
; it can be equipped with the following scalar

product

(u; v) =

Z �




u(x)v(x) dx:

where
R �


is the natural extension of the Lebesgue integral considered as a

functional.
Notice the Euclidean structure of VB(
) is the �-limit of the Euclidean

structure of every V�(
) given by the usual L2 (
) scalar product.
If f 2 C(
) is a function such that,

8g 2 V (
);
Z
f(x)g(x) dx < +1 (8)

then it can be identi�ed with an element of V (
)0 and, by Def. 17, there is
a unique ultrafunction f� such that 8v 2 VB(
);Z �

f�(x)v(x) dx =

Z �
f �(x)v(x) dx: (9)

The map
� : C(
) \ V (
)0 ! VB(
) (10)

is called canonical map. Notice that f� 6= f � unless f 2 V (
):
Now let us de�ne a new notion which helps to understand the structure

of ultrafunctions:

De�nition 21 A hyper�nite basis fejgj�� for VB (
) is called regular basis
if

� it is an orthonormal basis,

� fejgj2N is an orthonormal Schauder basis for L2(
):
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The following theorem shows that regular bases exist:

Theorem 22 Let fhjgj2N � V (
) be an orthonormal Schauder basis for
L2(
) and let W be the space generated by �nite linear combinations of the
elements of fhjgj2N (hence W is a dense subspace of V (
)): Then there
exists a regular basis fejgj�� for VB (
) such that

ej = hj for j � �

where
� = dim� (VB (
) \W �) :

Proof. Let
h
fhjgj2N

i�
= fhjgj2N� � V (
)� be an orthonormal Schauder

basis for L2(
)� and set

� = max fk 2 N� j 8j � k; hj 2 VB (
)g

Since fhjgj2N � V (
), � is an in�nite number in N�: Set ej = hj for j �
�: Now, we can take an orthonormal basis fejgj�� for VB which contains
fejgj�� :
�
So every ultrafunction u 2 VB (
) can be represented as follows:

u(x) =

�X
j=1

ujej(x) =
�X
n=1

ujhj(x) +

�X
j=�+1

ujej(x) (11)

with

uj =

Z �
u�(x)ej(x) dx 2 R�; j � �:

In particular, if f 2 L2(
) (or more in general if f 2 V 0(
)), the numbers

fj; j 2 N, are complex numbers. The internal function f�(x) =
�X
j=1

fjej is

the orthogonal projection of f � 2 L2(
)� on VB (
) � L2(
)�:

Example: Let us see an example; we set

� 
 = [0; 1] ;

� V ([0; 1]) = C20 ([0; 1]) ;

� hj(x) =
p
2 sin (j�x);
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By Th. 22 there exists a regular basis fej(x)gj2J which contains
�p
2 sin (j�x)

	
j2N.

With this assumptions, every vector u 2 VB ([0; 1]) can be written as follows

u(x) =
p
2

�X
n=1

uj sin (j�x) +

�X
j=�+1

ujej(x) with uj =

Z 1

0

u(x)ej(x)dx:

4.2 Ultrafunctions and distributions

First, we will give a de�nition of the Dirac �-ultrafunction concentrated in q:

Theorem 23 Given a point q 2 
; there exists a unique function �q in VB(
)
such that

8v 2 VB(
);
Z �

�q(x)v(x) dx = v(q): (12)

�q will called the Dirac ultrafunction in VB(
) concentrated in q: Moreover,
we set � = �0:

Proof. Let fejgj�� be any orthonormal basis for VB (
) and set

�q(x) =

�X
j=1

ej(q)ej(x)

It is easy to check that �q(x) has the desired property; in factZ �
�q(x)v(x) dx =

Z � �X
j=1

ej(q)ej(x)v(x) dx

=

�X
j=1

�Z �
ej(x)v(x) dx

�
ej(q) = v(q):

�
Next let us see how to associate an ultrafunction T� = �T to every

distribution T 2 D0: Let fhjgj2N � D be an orthonormal Schauder basis for
L2(
); then, there exists an in�nite number � such that fhjgj�� is a basis
for VB(
) \ D�; then, T�(x) can be de�ned as follows:

T�(x) =
�X
j=0

hT �; hjihj(x) (13)
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Notice that this de�nition in independent of the choice of the basis sinceZ �
T�(x)v(x) dx = hT �; vi if v 2 VB(
) \ D� (14)

Z �
T�(x)v(x) dx = 0 if v 2 (VB(
) \ D�)? : (15)

where (VB(
) \ D�)? denotes the orthogonal complement of VB(
) \ D� in
VB(
):

Remark 24 Here the reader must be careful to distinguish the Dirac ultra-
function as de�ned by 12 and the ultrafunction related to the distribution � 2
D0 which now we will call �D: In fact, by (13) we have that

�D(x) =
�X
j=0

hj(0)hj(x)

while

�(x) =
�X
j=0

hj(0)hj(x) +

�X
j=�+1

ej(0)ej(x)

where fhjgj�� [fejg�+1�j�� is a regular basis for (VB(
) \ D�)
? : Of course,

if ' 2 D, we have thatZ �
�(x)'(x) dx =

Z �
�D(x)'(x) dx = '(0);

actually the above inequality holds for every ' 2 VB(
) \ D�.

The above remark suggests the following de�nition:

De�nition 25 An ultrafunction eq 2 VB(
) is called a �-type ultrafunction
if

8' 2 D;
Z �

eq(x)'(x) dx � '(q):

Following the classi�cation of ultravectors, (14) and (15), the ultrafunc-
tions can be classi�ed as follows:

De�nition 26 An ultrafunction u 2 VB(
) is called
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� standard if u 2 V (
) or, to be more precise, if there exists f 2 V (
)
such that u = f �;

� ideal if it is not standard;

� dual ultrafunction if u = �(T ) for some T 2 V (
)0;

� distributional ultrafunction if u = �(T ) for some T 2 D0;

� proper ultrafunction if it is not a distributional ultrafunction.

5 The Dirichlet problem

As �rst application of ultrafunctions, we will consider the following Dirichlet
problem: 8<: u 2 C2(
)

��u = f(x) for x 2 

u(x) = 0 for x 2 @


(16)

Here 
 is a bounded set in RN :
This problem is relatively simple and it will help to compare the Sobolev

space approach with the ultrafunctions approach.

5.1 Generalized solutions

It is well known that problem (16) has a unique solution provided that
f(x) and @
 are smooth. If they are not smooth, it is necessary to look
for generalized solutions. In the Sobolev space approach, we transform prob-
lem (16) in the following one:�

u 2 H1
0 (
)

��u = f(x)
(17)

It is well known that this problem has a unique solution for any open set

 and for a large class of f; namely for every f 2 H�1(
). In this approach,
the boundary condition is replaced by the fact that u 2 H1

0 (
); namely by
the fact that u is the limit (in H1(
)) of a sequence of functions in C2(
)
having compact support in 
. The equation ��u = f is required to be
satis�ed in a weak sense:

�
Z



u�' dx =

Z



f' dx 8' 2 D(
)
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u itself is not a function but an equivalence class of functions de�ned a:e: in

:

Now let us see the ultrafunctions approach. In this case we set V 2;0
B (
) =

B
�
C20(
)

�
and problem (16) can be written as follows:�

u 2 V 2;0
B (
)

���u = f(x) for x 2 
�
(18)

where �� = � ��� : V 2;0
B (
)! V 2;0

B (
) is given by Def. 18.
The following result holds:

Theorem 27 For any f 2 V 2;0
B (
); problem (18) has a unique solution.

Proof. By de�nition, V 2;0
B (
) is the �-limit of �nite dimensional spaces

V�(
) � C20(
). For every u 2 C10(
); by the Poincaré inequality, we have
that Z




ru � ru dx � k kuk2L2(
) :

In particular, the above inequality holds for any u 2 V�(
). Now, let

�� : L
2(
)! V�(
);

be the orthogonal projection. For every u; v 2 V�(
); we have thatZ



ru � rv dx =
Z



��u v dx

Then, by the Poicaré inequality,

���� : V�(
)! V�(
)

is a positive de�nite symmetric operator. Then it is invertible. So we have
that, for any � 2 �; there exists a unique �u� 2 V�(
) such that

8v 2 V�(
);
Z



���u�v dx =
Z



f�v dx (19)

where f� 2 V�(
) is such that f = lim
�"V

f�: If we take the �-limit in this

equality, we get

8v 2 V 2;0
B (
); �

Z �




���u v dx =

Z �




fv dx (20)
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where
�u = lim

�"V
�u�

and hence, by (7), we get
����u = f

The uniqueness follows from the uniqueness of �u�.
�

Remark 28 This example shows quite well the general strategy to solve prob-
lems within the framework of ultrafunctions. First you solve a �nite dimen-
sional problem and then you take the �-limit. Since the �-limit exists for any
sequence of mathematical objects, the solvability of the �nite dimensional ap-
proximations imply the existence of a generalized solution.

The solution is a function �u : 

� ! R�; �u is de�ned for every x 2 
�;

and we have that u(x) = 0 for x 2 @
�: So the boundary condition can be
interpreted "classically" while this is not possible in H1

0 (
). If problem (16)
has a solution U 2 C2(
); then

�u = U�:

If problem (17) has a solution U 2 H1
0 (
); then we have thatZ




U' dx �
Z �




�u' dx 8' 2 C20(
)

Notice that in the above formula the left hand side integral is a Lebesgue
integral while in the right hand side,

R � is the �-transform of the Riemann
integral; the integral make sense since �u; ' 2

�
C0(
)

��
. In the theory of

ultrafunctions, the Lebesgue integral seems to be not so necessary.
There are interesting and physically relevant cases in which the general-

ization of the Dirichlet problem cannot be treated within the Sobolev space
H1
0 (
): For example, consider the problem:�

��u = �y for x 2 

u(x) = 0 for x 2 @
 (21)

where �y is the Dirac measure concentrated at y 2 
. This problem is quite
natural in potential theory; in fact u represents the potential generated by a
point source (and usually it is called Green function). However this problem
does not have solution inH1

0 (
) since � =2 H�1(
): Actually, with some work,
it is possible to prove that it has a "generalized solution" in H1

0 (
) + E
0
(
):
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However, in the framework of ultrafunction, problem (21) is nothing else but
a particular case of problem (18).
However, if f 2 V 2;0

B (
) is a proper ultrafunction, (namely, f cannot be
associated to a distribution via (14) and (15)), problem (18) has a solution
which cannot be interpreted as a distribution solution. For example, you can
take f = �(x)2: Remember that �(x)2; in the ultrafunction theory, makes
sense by Def. 18.

Remark 29 If you take f = �2 you get a well posed mathematical problem,
but, most likely, it does not represent any "physically" relevant phenomenon.
However, it is possible to choose some proper ultrafunction f 2 V 2;0

B (
) which
models physical phenomena. For example

f(x) = sin�(n � x); n 2 RN ; jnj = 1; � 2 R� in�nite, x 2 K�; K �� 


might represent a electrostatic problem in a sort of periodic medium such as
a crystal. Here K represent the support of the crystal and f(x) represents its
charge density; it consists of periodic layers of positive and negative charges
at a distance of 1

��
: From a macroscopic point of view the solution is 0, but

at the microscopic level this is not the case. In fact the solution u of problem
(18) does not vanish, even if it can be proved that

8v 2 C2(
);
Z �




�u v dx � 0:

5.2 The variational approach

Looking at problem (16) from a variational point of view, the comparison be-
tween the Sobolev space approach and the ultrafunctions approach becomes
richer.

It is well known that the equation (16) is the Euler-Lagrange equation of
the energy functional

J(u) =

Z



�
1

2
jruj2 � fu

�
dx

Thus a minimizer of J(u) on C20(
) solves the problem. However, if f(x) and
@
 are not smooth a minimizing sequence does not converge in C20(
) and
also when it converges, it can be proved only by making hard estimates.
On the other hand, if you de�neH1

0 (
) as the closure ofD(
) with respect
to the norm

kukH1
0
=

sZ



jruj2 dx
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the functional J(u) becomes 1
2
kuk2H1

0
�
R


fu dx and it is immediate to see

that it has a minimizer provided that f 2 H�1(
):
If you consider problem (21), the trouble with the energy functional is

that the energy

J(u) =

Z



1

2
jruj2 dx� u(y); u 2 C20(
)

is not bounded below and J cannot be extended to all H1
0 (
):

Instead, if we use the ultrafunctions approach, the energy

J(u) =

Z �


�

�
1

2
jruj2 � �yu

�
dx; u 2 V 2;0

B (
)

is well de�ned and it makes sense to look for a minimizer in V 2;0
B (
): For

every � � C20(
)\�; J(u) has a minimizer u� in V�(
) � C20(
), and hence,
if you set

�u = lim
�"V

u�;

we have that

J(�u) = lim
�"V

�Z



1

2
jru�j2 dx� u�(y)

�
minimizes J(u) in V 2;0

B (
): Clearly, for some values of u, J(u) may assume
in�nite values in R�, but this is not a problem, actually in my opinion, this
is one of the main reason to legitimate the use non-Archimedean �elds. In
fact in the framework of NAM, it is possible to make models of the physical
world in which there are material points with a �nite charge. They have
an "in�nite" energy, but, nevertheless, we can make computations and if
necessary to evaluate it. The epistemological (and very interesting) issue
relative to the meaning of their "physical existence" should not prevent their
use.

6 The bubbling phenomenon relative to the
Sobolev critical exponent

The bubbling phenomenon relative to the critical Sobolev exponent is the
model problem which has inspired this work. In general (at least in the
simplest cases), the bubbling phenomenon consists in minimizing sequences
whose mass concentrate to some points; however their "limit" does not exist
in any Sobolev space and not even in any distribution space due to the
"strong" non-linearity of the problem. Nevertheless, these problems have
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been extensively studied and we know a lot of facts relative to the minimizing
sequences (or more in general to non-converging Palais-Smale sequences)
which, up to an equivalence relation, are called critical points at in�nity (see
[1]). The literature on this topic is huge (you can �nd part of it in [7]). We
refer also to [1], [8] and [7] for an exposition of the utility of knowing the
properties of the critical points at in�nity.
Ultrafunction theory seems to be an appropriate tool to deal with these

kind of problems.

6.1 Description of the problem

Let us consider the following minimization problem:

min
u2Mp

J(u)

where

J(u) =

Z



jruj2 dx

and

Mp =

�
u 2 C20(
) :

Z



jujp dx = 1
�

Here 
 is a bounded set in RN with smooth boundary, N � 3 and p > 2. If J
has a minimizer, it is a solution of the following elliptic eigenvalue problem:8>><>>:

u 2 C20(
)
��u = �up�1 for x 2 

u(x) > 0 for x 2 
R



jujp dx = 1

(22)

As usual in the literature, we set

2� =
2N

N � 2;

2� is called the critical Sobolev exponent for problem (22) (notice that this
"�" has nothing to do with the natural extension). Moreover, we set

mp := inf
u2Mp

J(u)

The following facts are well known (see e.g. [7] and references):

� (i) if 2 < p < 2�; then mp > 0 and it is achieved; hence problem (22)
has a solution.
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� (ii) if p = 2�; then m2� > 0 and it is achieved only if 
 = RN ; however
there are particular domains 
 such that (22) has a solution (which, of
course, is not a minimizer of J; but a critical point).

� (iii) if p > 2�; then mp = 0 and it is not achieved.

Probably, the most interesting case is the second one (the critical expo-
nent case) since it presents many interesting phenomena. If un is a minimizing
sequence, it has a subsequence u0n which concentrates to some point x0 2 
;
more exactly, u0n * 0 weakly in H1

0 (
) and strongly in H
1
0 (
nB"(x0)); conse-

quently, ju0nj
p * �x0 weakly in D0(
); but (�x0)

1=p cannot be interpreted as a
generalized solution in the framework of the distribution theory just because
(�x0)

1=p makes no sense. This phenomenon is called "bubbling" and probably
problem (22) with p = 2� is the simplest problem which presents it. Similar
phenomena occur in many other variational problems such as the Yamabe
problem, the Kazdan-Warner problem, in the study of harmonic maps be-
tween manifolds, in minimal surfaces theory, in the Yang-Mills equations
etc.
Let us go back to discuss the concentration phenomenon of a minimizing

sequence. Not all the points of 
 have the same "dignity" as concentration
points. Let us explain what do we mean.
Let

up; p 2 (2; 2�); (23)

be a minimizer of J(u) on the set Mp. If p ! 2� from the left, it is well
known that

lim
p!(2�)�

mp = m2�

and that
vp :=

upR


jupj2

�
dx
; (24)

is a minimizing sequence of J on M2� : If, for every u 2M2� ; we set

B (u) =

Z



x juj2
�
dx

then we have that, in the generic case,

lim
p!(2�)�

B (vp) = x

where x is an interior point of 
. Thus, in this sense, x is a "special"
concentration point. If we apply ultrafunction theory, the world "special"
will get a new meaning; in fact x will be characterized as the point in�nitely
close to the concentration point of the generalized solution. This issue will
be further discussed in the next section.
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6.2 Generalized solutions

The minimization problem considered in the previous section can be studied
in the framework of the ultrafunctions. In this framework the problem takes
the following form:

min
u2fMp

J(u) (25)

where

J(u) =

Z �




jruj2 dx

and fMp =

�
u 2 V 2;0

B (
) j
Z �




jujp dx = 1
�

where V 2;0
B (
) = B

�
C20(
)

�
:

Theorem 30 For every p > 2; problem (25) has a solution ~up: If we setemp = J(~up); we have the following

� (i) if 2 < p < 2�; then emp = mp 2 R+ and there is at least one standard
minimizer ~up, namely ~up 2 C20(
);

� (ii) if p = 2�;(and 
 6= RN); then em2� = m2� + " where " is a positive
in�nitesimal;

� (iii) if p > 2�; then emp = "p where "p is a positive in�nitesimal.

Proof. The proof of this theorem is a simple application of the nos-
tandard methods. We will describe it with some details for the reader not
acquainted with these methods.
We set

~up = lim
�"C20(
)

up;�

where up;� is the minimizer of J(u) on the setMp\V�(
); V�(
) = Sp(�) �
C20(
). We recall that Mp \ V�(
) 6= 0 for � in a quali�ed set and that the
minimum exists since V�(
) is a �nite dimensional vector space and hence
Mp \ V�(
) is compact. If we set

mp;� := min
u2Mp\V�(
)

J(u);
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taking the �-limit, we have that

emp := lim
�"C20(
)

mp;� = min
u2fMp

J(u):

So the existence result is proved. Now let us prove the second part of the
theorem:
(i) If you take �0 = fupg ; where up is given by (23) then for every � � �0,

we have that
mp;� := min

u2Mp\V�(
)
J(u) = J(up) = mp

and hence, taking the �-limit, we have that emp = mp.
(ii) It is well known that the value em2� is not achieved by any function

u 2M2� \ V�(
); then m2�;� > m2� ; and hence, taking the �-limit, we have
that em2� > m2� : On the other hand, for every b 2 R+; there exists u 2M2�

such J(u) � m2� + b; and hence

em2� = J(~u2�) � J(u) � m2� + b;

and so, by the arbitrariness of b; we get that em2� � mp:
(iii) follows by the same argument used in (ii) replacing m2� with 0:

�
The next theorem shows that, for p = 2�; the solution ~u concentrates

where it is expected to do.

Theorem 31 Suppose that problem (22) (with p = 2�) has a unique mini-
mum ~u and set

� = B� (~u) :=

Z �




x j~uj2
�
dx 2 
�:

Then
� � lim

p!(2�)�
B (vp) :

where vp is de�ned by (24).

Proof. Fix r 2 R+. We want to prove that, for p su¢ ciently close to 2�;
we have that

d�(B (vp) ; �) � r

where d� denotes the distance in
�
RN
��
. We have that

� = lim
�"C20(
)

x� (26)
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where x� = B (u�) and u� is a minimizer of J on the manifoldM2� \V�. Let
~u be the minimum of J on fM2�, and apply Th. 15, to the relation R de�ned
as follows:

u�R (M2� \ V�(
))
if and only if

u� is the unique minimum of J onM2� \ V�(
):

Then by Th. 15, there exists a quali�ed set Q � �(V ); such that, for
every � 2 Q; u� is the unique minimum of J on M2� \ V�(
):
Thus 9b 2 R+; 9�0;8� � �0; � 2 Q;8u 2M2� \ V�

J(u) < m2� + b) d�(B (u) ; x�) �
r

2

and hence, may be taking a bigger �0; using (26), we get

J(u) < m2� + b) d�(B (u) ; �) � r (27)

Now, let vp be the function de�ned by (24); it is well known that

lim
p!(2�)�

J(vp) = m2�

Then we can take p so close to 2� so that

J(vp) � m2� + b:

Since vp 2M2� \ V�; for every � � �0 [ fvpg ; � 2 Q, by (27), we get that

d�(B (vp) ; �) � r:

�

Remark 32 If J does not have a unique minimum, but a set of minimizers,
we set

� = f� 2 
� : � = B (~u) where ~u is a minimizerg :
Then, arguing as in the proof of the above theorem, it is easy to get the
following result: let pn ! (2�)�, let xn = B (vpn) and let x

0
n be a converging

subsequence of xn. Then there exists � 2 � such that

� � lim
n!1

x0n
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7 Ultrafunctions and Quantum Mechanics

In this section we will describe an application of the previous theory to the
formalism of Quantum Mechanics. In the usual formalism, a physical state is
described by a unit vector  in a Hilbert spaceH and an observable by a self-
adjoint operator de�ned on it. In the ultravectors/ultrafunctions formalism,
a physical state is described by a unit vector  in a hyper�nite space of
ultravectors VB and an observable by a Hermitian operator de�ned on it.
We think that the ultravectors approach presents the following advan-

tages:

� once you have learned the basic facts of the �-theory, the formalism
which you get is easier to handle since it is based on the matrix theory
on �nite vector spaces rather than on unbounded self-adjoint operators
in Hilbert spaces;

� this approach is closer to the "in�nite" matrix approach of the begin-
ning of QM before the work of von Neumann and also closer to the way
of thinking of the theoretical physicists and chemists;

� all observables (hyper�nite matrices) have in�nitely many eigenvectors;
so the continuous spectrum can be considered as a set of eigenvalues
in�nitely close to each other;

� the distinction between standard and ideal ultravectors has a physical
meaning;

� the dynamics does not present any di¢ culty since it is given by the
exponential matrix relative to the Hamiltonian matrix.

Clearly it is too early to know if this formalism will lead to some new
physically relevant fact; in any case we think that it is worthwhile to inves-
tigate it. In this paper we limit ourselves only to some very general remark.

7.1 The axioms of Quantum Mechanics

We start giving a list of the main axioms of quantum mechanics as it is
usually given in any textbook and then we will compare it with the alternative
formalism based on ultravectors.

Classical axioms of QM

Axiom C1. A physical state is described by a unit vector  in a Hilbert
space H.
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Axiom C2. An observable is represented by a self-adjoint operator A
on H.
(a) The set of observable outcomes is given by the eigenvalues �j of A.
(b) After an observation/measurement of an outcome �j, the system is

left in a eigenstate  j associated with the detected eigenvalue �j.
(b) In a measurement the transition probability P from a state  to an

eigenstate  j is given by

P =
��� ;  j���2 :

Axiom C3. The evolution of a state is given by the Shroedinger equation

i
@ 

@t
= H 

where H; the Hamiltonian operator, is a self-adjoint operator representing
the energy of the system.

Axioms of QM based on ultravectors

AxiomU1. A physical system is described by a complex valued-ultravector
space VB = B [V ] ; a state of this system is described by a unit ultravector
vector  in VB.

Axiom U2. An observable is represented by a Hermitian operator A on
VB.
(a) The set of observable outcomes is given by sh

�
�j
�
where �j is an

eigenvalue of A.
(b) After an observation/measurement of an outcome sh

�
�j
�
, the system

is left in an eigenstate  j associated with the detected eigenvalue �j.
(b) In a measurement the transition probability P from a state  to an

eigenstate  j is given by

P =
��� ;  j���2 :

Axiom U3. The evolution of the state of a system is given by the
Shroedinger equation

i
@ 

@t
= H (28)

where H; the Hamiltonian operator, representing the energy of the system.

Axiom U4. Only the physical states represented by standard vectors
(namely vectors in V ) can be produced in laboratory.
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7.2 Discussion of the axioms

AXIOM 1. In the classical formalism, a physical system is not described only
by a given Hilbert space as axiom C1 claims, but by an Hilbert space and
the domain of a self-adjoint realization of the Hamiltonian operator. On the
contrary, in the ultravectors formalism the physical system is described just
by the space VB. Let see an example:
A particle in a box. For simplicity, we consider a one-dimensional

model and suppose that the box is modelled by the interval [0; 1] : Clearly,
the Hilbert space L2 (0; 1) is not su¢ cient to describe the system but it is
necessary to give the Hamiltonian

H : H2 (0; 1) \H1
0 (0; 1)! L2 (0; 1)

de�ned by

H = � 1

2m
� (29)

where � must be intended in the sense of distribution (here m denotes the
mass of the particle and we have assumed } = 1).
A particle in a ring. Now suppose that a point-particle is constrained

in a ring of length 1. Also in this case any state can be represented by a vector
in the Hilbert space L2 (0; 1) ; but in order to describe the system is necessary
to give a di¤erent selfadjoint realization of the Hamiltonian operator, namely
an operator having the form (29), but de�ned on the domain

H : H2
per (0; 1)! L2 (0; 1)

where H2
per (0; 1) is the closure in the H

2 norm of the space

C2per [0; 1] =
�
 2 C2([0; 1] ;C) j  (0) =  (1);  0(0) =  0(1)

	
Now let us see how these two cases can be described in the ultrafunctions

formalism.

A particle in a box. In this case, the system is described by the space

V 2;0
B [0; 1] := B

�
C20 [0; 1]

�
The Hamiltonian operator H is given by the canonical extension of � 1

2m
�

to B [C20 [0; 1]].
A particle in a ring. In this case, the system is described by the space

V 2;per
B [0; 1] := B

�
C2per [0; 1]

�
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and the Hamiltonian operatorH is given by the canonical extension of � 1
2m
�

to B
�
C2per [0; 1]

�
.

Thus in the ultrafunctions description, di¤erent physical systems give
di¤erent ultrafunction spaces; on the contrary, the Hamiltonian is given by
the unique canonical extension of � 1

2m
� in the relative spaces.

AXIOM 2. In the ultrafunction formalism, the notion of self-adjoint op-
erator is not needed. In fact osservables can be represented by internal Her-
mitian operators. It follows that any observable has exactly � = dim�(VB)
eigenvalues (of course, if you take account of their multiplicity). No essential
distinction between eigenvalues and continuous spectrum is required. For ex-
ample, consider the eigenvalues of the position operator q̂ of a free particle.
The eigenfunction relative to an eigenvalue q 2 R is an ultrafuncion of �-type
concentrated at the point q (see Def. 25).
In general the eigenvalues ��s of an internal Hermitian operator A are

hyperreal numbers, and hence, assuming that a measurement gives a real
number, we have imposed in Axiom 2 that the outcome of an experiment
is sh(�). However, we think that the probability is better described by the
hyperreal number

��� ;  j���2 rather than the real number sh(��� ;  j���2) (see
[6] for a presentation and discussion of the Non Archimedean Probability).
For example, let  2 D be the state of a system; the probability of �nding a
particle in the position q is given by����Z  (x)�eq(x)dx

���� = � j (q)j

where eq is a �-type function and the normalization factor

� = keqk�1(L2)� � 0

is an in�nitesimal number.

AXIOM 3. Since H is an internal operator de�ned on a hyper�nite vector
space it can be represented by an Hermitian hyper�nite matrix and hence
the evolution operator of (28) is the exponential matrix etH :

AXIOM 4. In ultrafunction theory, the mathematical distinction between
the standard states and the ideal states is intrinsic and it does not correspond
to anything in the usual formalism. The point is to know if it corresponds
to something physically meaningful. Basically, we can say that the stan-
dard states can be prepared in a laboratory, while the ideal states represent
"extreme" situations useful in the foundations of the theory and in thought
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experiments (gedankenexperiment). For example the Dirac �-measure is not
a standard state but an ideal state and it represents a situation in which the
position of a particle is perfectly determined. Clearly this situation cannot be
produced in a laboratory, but nevertheless it is useful in our description of the
physical world. The standard states are represented by functions in V which
is chosen depending on the model of the physical system. The other states
(namely, the states in VBnV ) are the ideal states. This situation makes more
explicit something which is already present in the classical approach. For
example, in the Shroedinger representation of a free particle in R3, consider
the state

 (x) =
'(x)

jxj ; ' 2 D(R
3); '(0) > 0:

We have that  (x) 2 L2(R3) but this state cannot be produced in a labora-
tory, since the expected value of its energy

(H ; ) =
1

2m

Z
jr j2 dx

is in�nite. In other words, Axiom 4 makes formally precise something which
is already present (but hidden) in the classical theory. This point will be
discussed also in the next section.

7.3 The Heisenberg algebra

In this section we will apply ultrafunction theory to the description of a quan-
tum particle via the algebraic approach. For simplicity here we consider the
one-dimensional case. The states of a particle are de�ned by the observables
q and p which represent the position and the momentum respectively. A
quantum particle is described by the algebra of observables generated by p
and q according to the following commutation rules:

[p; q] = i; [p; p] = 0; [q; q] = 0

The algebra generated by p and q with the above relations is called the
Heisenberg algebra and denoted by AH . The Heisenberg algebra does not
�t in the general theory of C�-algebras since both p and q are not bounded
operator. The usual technical solution to this problem is done via the Weyl
operators and the Weyl algebra (for more details and a discussion on this
point we refer to [11]).
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Let us see an alternative approach via ultrafunction theory. First of all
we take a representation of AH ; namely an algebra homomorphism

J : AH ! L(V )

where L(V ) is the algebra of the linear operators on a complex vector space
V � H 2 U where H is an Hilbert space and U is our universe (see section
2.2). To �x the ideas, we can consider the following "classical example":

H = L2(R); V = S;

J(p) = �i@; J(q) = x:

The quantum system of a particle will be described by the ultravector
space VB = B [V ]. The operators J(p) and J(q) can be extended to the space
VB according to de�nition (18); such extensions will be called p̂ and q̂ respec-
tively. p̂ and q̂ are Hermitian operators and hence VB has an othonormal basis
generated by the eigenfunctions of p̂ or q̂. Let feaga2� be the eigenfunctions
of q̂ corresponding to the eigenvalue a 2 � � R�. A very interesting fact is
that the eigenfunctions violate the Heisenberg relation [p̂; q̂] = i:
To see this fact we argue indirectly. Assume that the Heisenberg relation

holds; then
([p̂; q̂] ea; ea) = i keak2 :

On the other hand, by a direct computation, we get:

([p̂; q̂] ea; ea) = ((p̂q̂ � q̂p̂) ea; ea) = (p̂q̂ea; ea)� (q̂p̂ea; ea)
= (q̂ea; p̂ea)� (p̂ea; q̂ea) = a (ea; p̂ea)� a (p̂ea; ea) = 0:

This fact is consistent with the Axiom U4 which establishes that the
ideal states cannot be produced in laboratory. According to this description
of QM, the uncertainty relations hold only for the limitation of the experi-
mental apparatus. In a laboratory you can prepare a state corresponding to
a function  in the space V = S, but you cannot prepare a state such as
ea 2 VBnS which corresponds to a particle which is exactly in the position a:
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