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We present a new model of large-scale multilayer convection in solar
type stars. This model allows us to understand such self-similar structures
observed at solar surface as granulation, supergranulation and giant cells.
We study the slow-rotated hydrogen star without magnetic field with the
spherically-symmetric convective zone. The photon’s flux comes to the con-
vective zone from the central thermonuclear zone of the star. The interaction
of these photons with the fully ionized hydrogen plasma with T > 105K is
carried out by the Tomson scattering of photon flux on protons and elec-
trons. Under these conditions plasma is optically thick relative to the Tom-
son scattering. This fact is the fundamental one for the multilayer convection
formation. We find the stationary solution of the convective zone structure.
This solution describes the convective layers responsible to the formation of
the structures on the star’s surface.

KEY WORDS Large-scale convection, Tomson scattering, solar atmo-
sphere structures

INTRODUCTION

The systematic extreme ultraviolet and X-ray emission observations from
Skylab station, Yohkoh, SoHO and Trace satellites give us the very inter-
esting images of solar corona. After the previous images modifications (the
partial gain of some interesting details) we can see large-scale corona struc-
tures around the solar disk and these structures are not associated with
active regions (Priest et al., 1990; Chertoc, 2002). The structures are similar
to standard coronal loops that connected separate active regions together
(Beck, 1998), but their ”foots” lean on the photosphere out of active regions.
These regular structures cover the hole solar disk as the more large-scale
chromocpheric network. The lifetime of such loops is about a week for rel-
atively small loops with length approximately equal to 2 · 104 km and with
plasma concentration approximately equal to 1015 m−3 but for the most great
loops with length approximately equal to 3 · 105 km and with plasma con-
centration approximately 2 · 1014 m−3 the lifetime is about some months.
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These large-scale structures (chains, loops) are observed for some years. We
see that all the observed loop systems associated with quiet Sun permanent
exist as a regular part of solar corona. It’s necessary note that photosphere
and chromosphere have regular structures such as grains, supergrains and
giant grains. The giant grains are discovered by the helioseismology’s meth-
ods (Bec, 1998). These giant grains have the regular structure, their sizes
are about 3 · 105km with regular plasma speeds of 100m/s. It’s well known
that granulation, chromospheric network, supergranulation and giant loops is
the consequence of under-photosphere convective zone existence. The solar-
like stars photospheres have the similar structures as Sun has: grains and
supergrains.

In this paper we present the simple model of the hydrogen star convection
zone.

The necessary condition of free convection (rises in plasma layers with
thickness of only some times smaller then solar radius) is the Schwarzschild
criterion – the specific entropy of plasma decreases with moving away from
the star center. Such convection will develop when the temperature inside of
small convective volume (convective cell) decreases slower than the temper-
ature decreases in neighboring plasma (Rudiger, 1989).

We use the Schwarzschild criterion later in our paper.
If solar convection is laminar so such processes as granulation, chromo-

sphere network and supergranulation may exist in the convective layers of
different thickness. Therefore solar convective zone consists of the three lay-
ers at least.

Under large-scale laminar convection conditions the small-scale turbulent
convection appears owing to development of different plasma instabilities.
The ejections of matter at granulation and supergranulation scales are con-
nected more than likely with instabilities dynamics. The lifetime of these
ejections is small and they can’t change the regular structure of quiet Sun
but these ejections outline this structure by effective way.

In this paper we propose the laminar convection model. In this model all
the structures – granulation, chromosphere network, supergranulation and
regular large-scale coronal structure – are examined as result of laminar con-
vection action. We suppose that these structures are the different realizations
of solution spectrum.

Let’s consider the main assumptions of this model: The convective zone
is the layer with the spherically symmetry distribution of plasma around the
radiative transfer energy zone. In this layer the condition of real hydrostatic
equilibrium is carried out.

In this paper we consider a case when the layer under study consists of
the ionized hydrogen plasma only (protons and electrons). This consideration
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may not be applied for the Sun atmosphere conditions but it significantly sim-
plifies the mathematical description of convection and allow us understand
the mechanism of convection zone structures formation. In our model this
layer is open system through which the energy flux moves upwards. So let’s
consider that the plasma conditions we can described as polytropic equation:

N

N0

=

(
T

T0

)n

(1)

where n is the polytropic index, N and T are the plasma concentration
and temperature. These values are N0 ≈ 5 ·1027m−3 and T0 ≈ 2 ·106K at the
bottom border of the layer. The layer thickness (the convective zone depth)
is approximately 0.3R�, where R� is the solar radius. The energy emission
come to convective zone, the temperature Tr ≈ T0 near the bottom border
of the convective zone. This flux is the reason of the development of laminar
convection.

The emission and ionized plasma interaction is carried out by photon
scattering on electrons and protons in case where the photon energy don’t
exceed the value kT . The time of energy transmission from photons to plasma
don’t excess the value (Kaplan, Tsytovich, 1973):

t0 =
3mpc

8σT εr
, (2)

if kTr � mpc
2, where k is the Boltzmann’s constant, σT is the Thomson

probability section of scattering, mp is the electron mass, εr = 4σB
c
Tr

4 , σB is
the Stephan – Boltzmann constant. If Tr = T0 then t0 ≈ 0.1s.

The distance of free run for photons is equal to ∆ ≈ (σTN)−1. If N = N0

then ∆ ≈ 3 m.
In ∆3 volume plasma and emission are in thermodynamic equilibrium

almost because of the radiation is connected with matter.
The thermal conductivity mechanism is made available by the next pro-

cesses in our case. The plasma (heated by radiation in value ∆3) loses the
energy by bremsstrahlung. The speed of these losses is εep = 1.6 ·10−40N2

√
T

J · m−3s−1. The characteristic time of this process is equal to (Kaplan,
Tsytovich, 1973): t2 = 2.6 · 1017

√
TN−1s. If N = N0, T = T0 we derive

t2 ≈ 10−6s. At the other hand the bremsstrahlung heats up the electrons in
the vicinity of the volume ∆3. The time taken for this process

t1 =
3mec

8σTE
, (3)

where E = 3/2NkTme/mp is the electron energy density. If T∗ ≤ T ≤ T0

and N∗ ≤ N ≤ N0, N∗ = 2.5 · 1026m−3 we find 20s < t1 < 160s.
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The characteristic rate of thermal conductivity is equal to vχ = ∆
t1

. So
the thermal conductivity coefficient for the process described (for the same
order of magnitude) is equal to:

χ = vχλ =
λ∆

t1
(4),

where λ is the thickness of the shell warmed up.
The convectional energy transfer is carried out thanks to macroscopic

transports of the value ∆3. The temperature inside the volume ∆3 is higher
then the plasma temperature in the layers which are situated higher then the
bottom border of the convective zone, see Section 1. Thus the Archimedean
raising force acts on this value and gives him the acceleration g·∆T

T
, where

g is the free fall acceleration on the bottom border of the convective zone,
∆T = T0 − T , T < T0.

The flotation process is retarded by viscosity. In our case the viscosity
is the consequence of the Tomson scattering. The value ∆3 is full of plasma
and radiation. When this value moves the radiation is scattered by electrons
of neighboring plasma. Thanks to the scattering the equalization of elec-
tron momentum takes place inside the volume ∆3 and outside of one. This
viscosity they called radiation viscosity. It characterized by the viscosity
coefficient

ν =
1

3

c

σTN
(5).

If N = N0 then ν ≈ 6 · 109 m2/s. This value is similar to the value esti-
mation taken from the analysis of observations. The floating is ended when
the raising force is in equilibrium with viscosity forces. The characteristic
time of convective floating is equal to

t2 =
ν

gλ∆T
T

,

where λ is correspond to characteristic scale of the convective layer (the
mixing length). If λ ≈ 2 · 108m, T = T0 and ∆T

T
≈ 1, g = 2g�, where

g� ≈ 274m/s2 is the gravity force acceleration on the solar surface then we
have t2 ≈ 0.05s. So at the bottom border of the convective zone the relation
t1 > t2 is taken place. In this case the convective transfer is more effective
then the heat conduction.

Near the top border of the convective zone N = 4 · 1022 m−3 and ∆∗ =
(σTN)−1 ≈ 103 km. In this case we can ignore the Tomson effect. The
radiation of plasma propagates free up to solar photosphere.
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In the section 1. we give the solutions of stationary convective zone
structures in the hydrodynamics approximation with the heat conduction
(4) and viscous (5) coefficients.

These solutions have the solitary wave structure and describe the model
of multi-layer convection. All the convective cells have the torus contour.

1 THE EQUATIONS OF THE STATIONARY CONVECTIVE ZONE
STRUCTURE

The set of simultaneous equations for the spherically symmetric station-
ary convective zone which rotates about z axis (because of the hydrodynamics
approximation is correct) have the form:

(~v,∇)~v =
∇(p+ pr)

ρ
+ ~g + ν · ∇~v − 2[~v, ~ω] (6)

is the motion equation, where ~ω is the angular velocity of convective zone
rotation, ρ is the plasma density, p is the plasma pressure, pr is the pressure
of radiation.

(~v,∇)T = χ ·∆T (7)

is the heat conduction equation,

∇(p+ pr) + ρ~g = 0 (8)

is the hydrostatics equilibrium equation,

dpr
dr

= −σTN
c

1

4πr2
L (9)

is the radiation transfer equation outside of the volume ∆3,

dL

dr
= 4πr2εep (10)

is the bremsstrahlung of plasma equation inside the volume ∆3,

dM = 4πr2ρ · dr (11)

is the mass conservation equation.
In the equation (8) we don’t take the density of radiation ρr because of

ρr � ρ in solar-like stars.
The set of simultaneous equations (8-10) have used by A.S.Eddington in

1926 (Eddington, 1926).

5



Let p = NkT,N = N(r), T = T (r) and state of plasma is described by
the polytropic equation (1). Let’s take the variable x = r

ζ
, where

ζ =
( kT0

4πGmpρ0

)1/2

≈ 13 · 105km > R�.

Then function τ = T
T0

with equations (8) - (11) can be transformed to the
following equation

(n+ 1)
1

x2
(x2τx)x = −τn + ατ 2n+ 1

2 , (12)

where index x means the differentiation with respect to x and

α =
σT εep(N0, T0)

4πGmpρ0

≈ 1017.

Let velocity vector ~v has the {V,W,Z} components in spherical coordi-
nate system. The vector of angular velocity ~ω has the following components:
{ωcosθ,−ωsinθ, 0, 0}.
Let θ � 1. From the equations of the structure

(~v,∇)~v = ν ·∆~v − 2[~v, ~ω]

(~v,∇)T = χ ·∆T , (13)

one can find the equation for V (x) and τ(x):

V Vx =
ν

ζ
· 1

x2
· (x2Vx)x

V τx =
χ

ζ
· 1

x2
· (x2τx)x (14)

The equations (12) and (14) are simplified when we assume that the compo-
nent of velocity V is decreased with the depth. This condition is in agreement
with solar observations: the plasma spread out velocity in the photosphere
decreases with the scale increasing from grains to giant grains.

We choose the solution in the next form:

V =
σ

ζ
ν (15)

where σ is the free parameter.
This permits us to simplify the equation (14) and transform it to the

following:
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(n+ 1)βτx = −τ 2n+1(1− ατn+1/2), (16)

where β = 7.5, σ = ν0
χ0
σ. The equation (16) has different solutions for the dif-

ferent values of n. Let’s choose the value n (use the Schwarzschild criterion).
According to this criterion the temperature inside the small element ∆3 has
to decrease with increasing of the distance from the star center slower then
decreasing of plasma temperature occurs. The plasma is in the hydrostatic
equilibrium and the radiation is absence.

Substitute pr = 0, p = NkT and ρ = mp ·N to (8).
Use the polytropic equation (1), we find the relative change of the plasma

temperature (radiation doesn’t take into account)

|Tx
T
|0 =

mpgζ

(n+ 1)kT0

τ−1.

In the volume ∆3 the temperature changes according to (16). Also let’s
take into account α � 1 and τ ≤ 1. Then ατn+1/2 � 1 and relative change
of the temperature inside the volume ∆3 is approximately equal to:

|Tx
T
| ≈ α

(n+ 1)β
τ 3n+1/2

In our case of the evolution of the convective instability |Tx
T
|0 > |Tx

T
| the

number β is evaluate as: β > α
223
τ 3n+3/2. In this case we have τn � (α

√
τ)−1.

Therefore β > (223α2)−1.
At the other hand one can integrate the equation (16) because of ignoring

the first member of the right part of the equation.
Thus we obtain the next algebraic equation:

τ−3n−1/2 − 1 =
α

β

3n+ 1/2

n+ 1
(x− x0).

Using this equation and the consideration that τn � (α
√
τ)−1 we find that

β < 3n+1/2
n+1

x−x0
α2τ

. The value of polytropic index n (1) is necessary to choose
as to make up the next unequality:

1

223α2
< β <

3n+ 1/2

n+ 1

x− x0

α2τ
. (17)

For the solar-like star we have 1
303
≤ τ ≤ 1 and 10−4 ≤ x − x0 ≤ 2

57
. In this

case the unequality (17) is realized for all n having the positive values. Let’s
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choose n = 3/2. Then the accurate solution of the equation (16) for τ(x) one
can find from the next algebraic equation:

2

5β
(x− x0) =

1

3
(1− 1

τ 3
) + α(1− 1

τ
)− α3/2

2

(
ln
α1/2 + 1

α1/2 − 1
− lnα

1/2τ + 1

α1/2τ − 1

)
(18)

We have taken into account that τ(x0) = 1 here.
The solution for τ(x) has the solitary wave form. It’s clear from the form

of the equation (16).
If α1/2τ >> 1 we have the asymptotic solution(T0

T

)5

≈ 2α

βζ
(r − r0) (19)

For x→ x0 one can find that

τ ≈ e−
2

3αβ
(x−x0) → 1.

At last we can find the expression for the speed components W and Z.
Then we examine the most simple case of the symmetric spreading out on
the sphere surface when W = Z. Let’s consider also that the angular velocity
w we can take from the equation

V
∂W

∂x
+ 2W · ω · cosθ =

ν

ζ2
· 1

x2
· ∂
∂x

(
x2∂W

∂x

)
. (20)

As follows from the equation (20) the convective zone rotates differently.
Thanks to the convection the redistribution of the rotatory moment inside
the star takes place. This effect is accurately studied in (Rudiger, 1989).

Under conditions selected in our paper we can find the equation for W
from the first equation of the set of simultaneous equations (14). His form
becomes simple enough

dW 2

dl
=

ν

ζ2
· 1

x
· dW

2

dl2
, (21)

if we change the θ and φ angular variables to l variable and dl =
√
dθ2 + sin2θdϕ2.

Among the multiple numbers of solutions of the equation (21) there is peri-
odic solution. This periodic solution has the next form:

W = W0 · tg(W0
ζ2

ν
· x · (l − l0)), (22)

where W0 is the speed peak value W , the point l0 is situated at the radius
x and is the start reading for l coordinate. On the surface of sphere with
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radius x∗ plasma spreads out from l0 point. So our model is symmetric
there are many points l0,i on the surface of the sphere of radius x∗. The
distance between the neighboring points is equal to 2ξ = x0(l0,i − l0,i−1) =
x∗ ·∆l = πν

W0ζ2
. Between these points there are two opposing plasma streams

with velocities of opposite direction. These streams compensate each other
at the distance ξ from the each points.

So all the surface of the radius x∗ breaks-down to the cells with diameters
which are equal to ξ. All the number of these cells L we can calculate when
we the surface square πx2

∗ divide by the cell square π(ξ/2)2 : L = 4 · (x∗/ξ)2.
Then the velocity amplitude is equal to W0 = πν/2ξ2x∗

√
L. The kinetic

energy density ε is proportional to W 2
0 . So the convective streams have the

spectral energy distribution ε ∼ L ∼ ε−2. The solutions of the convective
zone structures (21) and (22) describes the stationary convection when all
zone of the convective energy transfer consists of the layers with the different
thickness. Every convective cell have the torus form. These solutions of
this important problem are made for the first time. From the equation (19)
follows the next conclusion: the convective zone differently rotates. Thanks
to the convection the rotation moment redistribution inside the star is taken
place. This effect is studied in detail in (Rudiger, 1989).

2 SUMMARUY AND CONCLUSIONS

This model qualitatively describes the deep convective layers of the star
under the supergrains layer. In case of the star’s convective transfer it’s
important that plasma at these layers is the fully ionized. We don’t study
star’s plasma at the highest convective under-photospheric layer where the
turbulent processes are possible. In this turbulent layer there are necessary
conditions for the generation of the long-scale magnetic field of the star. At
the layers under this turbulent under-photospheric layer the convection is the
stationary convection.

Let’s use the asymptotic solution (19) for the convective zone analysis.
We have the convective zone consists of some layers with thickness of λi, i =
0, 1, 2, ... The temperature on the lower part of the layer’s border is equal to
Ti, on the top part is Ti∗ . If we take the dependence of parameters from (15)
and (19) on T0 into account so we can find the relation between the velocity
and temperature at the bottom and top borders of the neighboring layers:

Vi−1/Vi = (λi−1/λi)
2(Ti/Ti−1)3/2(Ti−1∗/Ti∗)5 (23)

For the qualitative estimation let’s substitude the characteristics of the
convective layers associated with giant cells and supergrains into (23):

V0 = 10m/s, T0 ∼ 2 · 106K,λ0 ∼ 3 · 105km
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Figure 1: The convective zone structure

V1 = 100m/s, T1 ∼ 106K,λ1 ∼ 3 · 104km.

In this case we obtain that T0∗ ≈ 0.4T1∗ and the temperature on the top
border of the layer λ0 is smaller than the temperature on the top border of
the layer λ1 < λ0. So we can see that λ1 torus are situated into λ0 torus.

This qualitative analysis of the formulae (23) allows us to make the con-
clusion about relatively disposed convective layers in the hydrogen star. The
layers are put one into another as we can see at the Figure 1.
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In (Rozgacheva et al., 2003; Rozgacheva et al., 2004 ) was shown, that
the torus typical scales may form the geometric progression. This fact is
one of our model tests. Such geometric progression that described stationary
structures at Solar surface is probably form the fractal set.
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