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Abstract

The oscillatory Couette flow between an oscillatinger cylinder and a stationary
outer cylinder is considered in the study. New Itssior the stress and heat flux at the "gas-
cylinder wall" interface are obtained. The contimuumodel based on the Navier-Stokes
equations for compressible fluid is completed wthle equations of continuity and energy
transport. Along with the numerical solution propdsn our previous paper [29], it is used to
investigate the cylinder-gas interaction. The wgakar stress (drag) and heat flux variation at
the cylinder walls are numerically investigated:skEorder velocity-slip boundary conditions
are specified referring to two types of motion o€ inner cylinder- harmonic oscillations and
stepwise oscillations. Two types of energy transf@undary condition at inner cylinder are
considered - inner cylinder with constant wall temgture and adiabatically insulated inner
cylinder. Results found for the drag and heat flaxiations are presented accounting for
different oscillation frequencies and Knudsen nureb@arts of the results obtained for the
harmonically oscillating inner cylinder are comghte the numerical data, obtained by the
DSMC method in [18]. In the case of harmonicalBcilating inner cylinder a drag phase
delay with respect to the wall velocity is estaidid and studied. Hydrodynamic selfsimilarty
of the drag and energy transfer variations is cordd and analyzed.
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1. Introduction

The Couette flow in both plane and cylindrical getmyn has been
investigated by many authors [1], [2], [3], [4].].]96], [7], [8]. Recently the
study of oscillatory planar Couette flow betweentically moving surfaces has
become an important part of MEMS modeling [9]. Th&ark et al. [10]
presented a thorough study of oscillatory Coudtierd between two parallel
smooth walls, using DSMC solutions. Hadjiconstamiifil 1] extended the work
of [10] to include a second-order slip-flow boundareatment. A plane
oscillatory Couette flow was considered also by],[1Mhere an analytical
solution in the hydrodynamic regime was obtained.citical analysis of

theoretical and experimental data on the slip amnapj coefficients available in

* Corresponding author e-mghg@imbm.bas.hg




the open literature was presented in [21]. Tang €14] analyzed the effects of
the Stokes and Knudsen numbers, the coefficientanfential momentum
accommodation of an oscillating Couette flow and 8tokes second problem
by using lattice simulation. Based on the lineatiZ&oltzmann equation a
detailed numerical solution for a wide range of ga®faction and oscillatory
frequency was proposed by [16]. Taheri et al [1ifijzed the linearized Navier-
-Stokes--Fourier equations and regularized 13-moraquations to present the
rarefaction effects in the plane oscillatory Coedtow. problems. Non-planar
effects in an oscillatory cylindrical gas flow haveen studied in [18], where an
incompressible viscous flow model and the Direani8ation Monte Carlo
method were used to predict the velocity and skseass profiles within the
whole range of Knudsen number. The energy generasa consequence of
dissipation cannot be neglected even in the casesaflating with moderate
amplitude of the driven wall velocity. Recently tliecompressible Navier-
Stokes-Fourier (NSF) equations in the cylindricalap coordinate reference
frame were employed in [15], while the simultaneceféects of viscous
dissipation and rarefaction phenomenon were takém account. Analytical
solutions for the gas and liquid velocity and tenapere distribution were found
in [28] for steady state one-dimensional microclgraylindrical Couette flow
between a shaft and a concentric cylinder.

In a previous paper [29] we presented numericallyaiza of the
continuum model of nonisothermal oscillatory cyhiecdl Couette gas flow in
the slip regime. Our analysis was based on thareamh Navier--Stokes (NS)
equations for compressible fluid completed with dggations of continuity and
energy transport. Note also that nonstationaryorglotemperature and density
variations were considered. Here we extend our ipusv investigations.
Analyzing an oscillatory cylindrical Couette flonewpresent new results for the
stress and heat flux at the gas-cylinder wall fats, and they turn to be

important gas flow characteristics. We also caleuland discuss numerical



results found for the drag and heat flux variatjoegarding different oscillation
frequencies and Knudsen numbers that change witimits relatively wider
than those specified in [29]. Along with harmongmfoth) oscillations we
consider the other limit case of stepwise (impulssjillations of the rotating
cylinder. Yet, an arbitrary periodic movement o¢ ttotating cylinder may find
room between the two limit cases - the harmonic thedstepwise ones. Two
cases of boundary conditions at the inner cylindal employed to solve the
energy transfer equation are investigated. Thé ding corresponds to constant
wall temperature of the inner cylinder and the sécone - to an adiabatically
insulated inner cylinder. The latter requiremengimibe important in the case of
insulated cylindrical system without temperaturatoa of the inner cylinder. A
part of the results obtained for harmonic osciblasi of the inner cylinder have
been compared to the numerical data, obtainederpéper [18] by the DSMC
method. In the case of harmonically oscillatinganaylinder a drag phase delay
[10] with respect to the wall velocity is estabkshand investigated. Noticeable
heat flux variations in the gas flow are observdtemwthe adiabatic insulated
inner cylinder is investigated. The previously alied and established fact of
low speeds selfsimilarity of the macroscopic flomaacteristics is numerically
confirmed also for drag and heat flux variatiors).tThe selfsimilarity with
respect to the wall velocity amplitude variatiotiswas prediction of low speed

effects such as drag and heat transfer.

2. Problem formulation

The mathematical model outlined in the subsectiogisw (2.1 an 2.2)
and containing the transport equations and theespandingly boundary
conditions, is set forth in [29].
2.1. Continuum model

We study a rarefied hard sphere gas flow betweencwwaxial cylinders

(one dimensional, axis-symmetric problem). The meyinder has radiug and



peripheral velocity,, the outer R, andV,, respectively. The continuous model
Is based on the Navier—Stokes (NS) equations fanpcessible fluid, completed
with the equations of continuity, the ideal gas lamd energy transport. For
details see [1], [11], [29].

The following standard notations are usedor the density and for the
temperature, wheré is the velocity vectomu andv are the velocity components

along axisr and ¢, P is the pressurep,P,T,uv=f(r,t), 1,

i

i=r,g;, j=¢,z are
the stress tensor components g@nid the dissipation function [19].

For a perfect monatomic hard sphere gas, the sitycand heat transfer

coefficients read as [20]:

(1) wu= ,U(T): Cypolovo‘/?’ C, 21_56\/7_7

(2)  A=A(T)=C,pd NV, C, =£J7r.

The model equations are normalized by using thevimhg scales: for
density p, =mn, (mis the molecular masgy— the average number density), for
velocity V, =,/2RT, - R is the gas constant, for length - distance betvtben
cylindersL =R, -R,, for time t, =LV, , for temperaturdg, - the wall temperature
of both cylinders. The Knudsen numberkis=1,/L, where the mean free path
is 1, andy =c,/c, =53 (C, andc, are the heat capacities at constant pressure and

constant volume respectively). In this way, therahteristic number Kn and the

constantsC, andcC, take part in the dimensionless model. For brevigreafter
the same symbolst, p, P, T, u, vand R,i =12are used for the corresponding

dimensionless variables ahts the dimensionless time.
2.2 Boundary conditions
Following [12] and [18] the first-order slip boungtaconditions, imposed

at both walls, can be written directly in dimendess form as follows

@) ve Ak 3=V =),

rr



(4) u=o0,

oT
(5) TiZTKna—r:L

at r=R, i=12. The upper sign in (3) and (5) correspondsy, r =R and the
lower one toi=2, r =R,. For diffuse scattering we have used the viscdips s
and temperature jump coefficientg =1.1466and ¢, = 2.1904, calculated in [22]
and [23] respectively using the kinetic BGK equati(see [24] for details). The

same slip coefficients were used by [25], [26], ][2%wo0 types boundary

conditions for the inner cylinder are used, whea tuter one is at rest (i.e.

- harmonic oscillations:

(6) Vi(t)=V,+AV,sin@),

where @ is the dimensionless circular frequency (the fdritequency).
- stepwise oscillations:

V,+AV,, 2km<ak<2km+r

UIROR

Vi -AV,,  2km+msat<2k+m ]

where k = 01,2,3... The dimensionless period of the oscillatians is equal to:
8) tw=2rmw.

In Egs.(6), (7)v, is the mean wall velocity anal; - its amplitude.

We consider in the present study circular freqesnmuch larger than the
molecular collision frequency. The characteris@zgmeters, used in [12], to

characterize the speed of oscillatigh=v_/w, connects the intermolecular
collision frequencyv, and the dimensional oscillation frequeney If 6 - 0,

the molecular collisions can be neglected.

It is convenient to introduce an additional dimenkss parameter, to
describe the forced frequency influence, namelyStakes number as given in
[10], [18]:



Q) pB-= Dy

v

In EQ.(9) « Is the dimensional circular frequenay, - the dimensional time and

v is the kinematic viscosity. Using Eq.(1), the doling relation between
dimensionless circular frequenay and Stokes numbes can be written.

(10) @w=CKnp.

2.3.Wall shear stress (drag) definition

The wall shear stress or the drag is defined mgmsionless stress tensor

component,,, expressing the viscous interaction between twghfering thin
“shells” of the gas medium:

(1) 7, =r,,/(oN2),

where r,,is the stress tensor component along the gaxeccording to [19],

written on the driven wall, in dimensional form. d&anting for the axis-
symmetric case and using the definitions in thevipresly section 2.1, the

dimensionless stress tensor componept can be expressed through the

dimensionless quantities T :

(12) 7, :—CﬂKn\/T:{rg[Xﬂ :

r

2.4. Heat flux definition
The heat transfer measure is the heat flux in e rgedia on the wall,

expressed as:

(13) g, = —Ag—: =-C,0,T,C, Knﬁ%—-: =—C,PoTo0
where the dimensionless heat flgxis

(14) g=-C,Kn/T ‘Z—I

And A is the heat transfer coefficient defined in Eq.(3)



2.5.Numerical solution

The transfer equations, together with the boundamditions (3)-(7)
written for u, v, with zero initial profiles, formulate the unsteashate initial-
boundary value problem. The initial variations fnsity and temperature are
constanti.ep(r,t=0)=1, T(r,t=0)=1.

A central implicit finite difference scheme of sed order of
approximation is used to solve numerically the folated problem [25], [26].
The numerical solution is described in [29].

Everywhere in the calculations, the valug/, =03 of the velocity
amplitude is used and =0. The dimensionless cylinder radii arRe=1 R, =2.
The case corresponding to Kn=0.1 is chosen to bhasacteristic one. This
value of the Knudsen number is close to the ugpet for the slip flow regime
[10], [11]. Hence, the numerical results for diéiet Knudsen numbers (less or
larger then Kn=0.1) are put together with thosentbtor Kn=0.1.

The difference value problem is solved startingnfriaitial profiles for all
unknown quantities and proceeding until the estAbient of a steady
oscillating regime. It takes commonly from aboueam two periods (in the case
of harmonic oscillations and relative small Stokesnber - g<4), to 16-24
periods (in the case of stepwise oscillations aidtive high Stokes number -

B=32). Everywhere in the figures time evolution of themerical results for
0< wt/(27)<1(wheret=0 is a reference time), for one period is shownrdfte

establishment of steady oscillation.

3 Numerical results: Wall shearstress
3.1 Harmonic oscillations
Typical cases of harmonic oscillating inner cygndfor two different

Knudsen numbers are presented on Fig.1la, 1b, wherdrag results obtained



with NS model are compared against the correspgnddMC results

(calculated also fonv, = 0.3).
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Fig.1 Harmonic oscillations — drag, comparison NS —
DSMC, g=4, AV,=03, & =0.8862
¢,, =-0.075929, ¢,, =-0.060179a) Kn=0.1 with phase delay, b) Kn=0.2 with
phase delay, c) Kn=0.1 without phase delay, &3&a without phase delay.

The drag changes harmonically following the walloegy change with
negative sign as described in boundary condition(3tqFor both groups of
results presented on Fig.1la, a phase delay camdsrved i.e. the drag phase
depends in relation to the wall velocity phase. Baene results without the
phase delay are plotted on fig.1b. The values afsphdelay in both cases
areg, , =-0.075929and ¢, , =-0.060179.

Applying the scales introduced in section 1, tivaeshsionless period is
defined as Eq.(8), and a new dimensionless varialdan be introduced instead
of dimensionless time

(15) r=at/(2m), 0<r<1 O<t<t,.



More generalized results for drag variation forfetént values of
Knudsen number and frequencies are shown on Figsar@l 2b. For that

purpose the mean integral drag value is introduced:
(16) Drag, = [absDrag(r)ldr ,
0

wheret, is the dimensionless oscillating period amdag =7,, .

The results, presented on Fig.2 are in agreemeatvaith the analytical

solution results, presented in Emerson et al [18],
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Fig.2 Drag dependencies. on Kn, a) for two fixelliga of g and b) Drag
dependencies oa, for three fixed Knudsen numbers

Following Park et al (2004) [10], the general eg@ntation of the velocity
signal at any arbitrary coordinatés expressed as:
(17) V(r,t)=AV,sin@t +y),
where ¢ is the phase angle. From the slip boundary caditin the cylinder

wall at r =R follows the connection:

(18) %fm = AV, sin@t) - v(R,t).

7]

In EqQ.(18) the gas velocity can be expressed u&gdgl7) or using the
numerical results fow(R,t). As seen from numerical results, plotted on Fig.3a
the gas velocity variation on the wall shows alsonfonic time dependence.

The 7., variation according Eq.(18) is proportional tofeiilence between both



velocities (those of wall and gas). This differersalso presented on Fig.3a and
the phase delay of the velocities difference wébpect to the wall velocity is
obvious. The change of the Knudsen and Stokes nucalse only quantitative
variation in the phase delay value. lgis the value of drag phase delay value
close to the inner cylinder wall=R

(19) ¢, =wt, /(2n) ,

andt, is the corresponding dimensionless delay time afjdsariation toward to
driven wall velocity. Note that the above descrilpedcess is not observed in

the case of stepwise oscillations (Fig3.b).
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Fig.3 Velocity variation on the driven cylinder
wall,Kn=01, =4, AV, =03, ©=0.8862,
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Fig.4a presents the relation of the drag phasgyd®rresponding to the
case of harmonic oscillation for two fixed valuds ® and three fixed values of
Kn. The DSMC results calculated fgg =4 and presented on the same figure
confirm the phase delay existing, and are in catal¢ agreement with the NS
results. The phase delay dependencies for thred #x numbers and< g <64
are plotted on Fig.4b.
Hydrodynamic selfsimilarity

Our previous paper [29] established and explairtesl hydrodynamic

similarity between velocity profiles for wall amplde values ofav,, <03 to



those calculated for wall amplitude valuesagf=03, (note thatAv,,is the

value of the velocity amplitude different from O&hd used in boundary
condition Eq.(6) instead otV,).
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Fig.4 Harmonic oscillations — drag phase delayajliree fixed values of,
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The same fact is observed for the drag interadietween the gas media

and the inner cylinder wall. Drag relation Eq.(d@jtten forAv, =03, can be

modified for amplitude values afv,, < 0.3 as follows:

(20) 7, :—AA\\/E C#Knﬁ{ri[xﬂ—ﬁf

arlr)] av,

For example on Fig.5 are compared the NS resudtsulated forav,, = 03010

and scaled using Eq.(20), with NS results #v, =03 and DSMC results
(presented on Fig.1). The NS results after appl¥qg20) for drag and phase
delay in both cases are identical. The results isanthe hydrodynamic
selfsimilarity again.
4.2.Sepwise oscillations

The drag variation numerical results, for two cas&h different Stokes
numbers (different forced oscillation frequencias) plotted on Fig.6.. The first

case (8=4), corresponds to this on Fig.1a, but for stepwiseillating inner

cylinder. No phase delay is established, as exgikim previous subsection.
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The numerical results for mean integral drag depeoéd for three fixed

values of Kn and Stokes numberchanging in the limitg< <128, are

presented on Fig.7.
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Hydrodynamic selfsimilarity
The hydrodynamic selfsimilarity discussed in theyious section can be
observed also in the case of stepwise oscillatlig.8 shows comparison

between the numerical results, calculated Ao, = 030107, and scaled using

Eq.(20) with the results calculated fawv, = 03. The results confirm again the

existence of hydrodynamic selfsimilarity.
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Fig.8 Selfsimilarity in drag variations, stepwissclations, a)kn= 0.1, =4,
b). Kn=01 £=8.

4. Numerical results: Heat transfer "cylinder wall — gas media"

In this section we analyze the energy transfersgsdem " cylinder wall--
gas media" considering both cylinders -- the tetnilg inner cylinder and the
static outer one. Variations of the heat flux a& ttmer and outer cylinder walls,
regarding one period in both cases of oscillatteris&armonic and stepwise, are
shown on Fig.9. The results concern the same typases as those, shown in
Fig.1a and 6. Visible difference between the haat ¥ariations on the outer
cylinder wall is observed when the adiabaticallgulated inner cylinder is
investigated -- the line marked with 3.
4.1.Hydrodynamic selsimilarity

The hydrodynamic selfsimilarity is valid also imetcases of heat transfer

through cylinder wall. The heat flux dependence(Es). written forav, = 03,

can be modified for values afv,, < 03 as follows:
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Fig.9 Heat flux, selfsmilaritykn = 0.1, =4 , a)harmonic oscillations, b)
stepwise oscillations.

Note that g in Eq.(22) is the heatflux, calculated for velgctamplitude
AV,; = 030107, and scaled using Eq.(21). The second power ofvidecity

guotient can be explained by the quadratic deparadbatween heat energy and
fluid velocity in the dissipation function.

Based on the numerical results found for dragreeat flux for both types
of inner cylinder oscillations, we may confirm aedtend the conclusion of
[29], stating that in the case of oscillations witblatively small velocity
amplitude, neither NS nor DSMC additional compuatasi are needed. It is
sufficient to use Eq.(20) or Eq.(21) to recalculdue results once found for drag
or heat flux obtained at a moderate wall velocitypétude AV, = 0.3. Regarding
both types of inner cylinder wall oscillations tregdproach adopted with some
caution, can avoid a lot of unnecessary and tinmswaming calculations of the
viscous drag and heat energy transfer in a systgtmder wall -- gas media"
system.

As in Fig.9, Fig.10a, b shows the variation of theat flux at the outer
cylinder wall heat flux variations presented but amarger scale. It is clearly



seen that the period of variation of dimensionlesat flux 7, = 05is exactly

twice smaller [26] then that of the driven wall @eity variationr , =1.
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Fig.10 Outer cylinder wall heat flux:
Kn=01, B=4 AV,=03 w=0.8862, w, =1.7724, a)harmonic oscillations, b)

stepwise oscillations .

Using the EQ.(19) the dimensionless circular feeguy of the heat flux is

calculated asw, =1.7724 This frequency is twice larger then the forced

frequency « =0.8862. Such a correlation can be observed for Stokesbrum
values 3<4 and Knudsen numbers <0.1 at the slip regime, for both types of
oscillations of the inner cylinder. As our numeliaalculations show this
frequency quotient does not depend on Knpgomumbers within the above
specified limits. This fact can be used to calauklie forced circular frequency
in a system, where this frequency of the innemadgdr oscillations is unknown
and can not be measured.
4.2.Adiabatic insulated inner cylinder

The case of adiabatically insulated inner cylm@®] is a case possibly
more close to the reality then the case of an imy#inder with constant
temperature. The corresponding boundary conditidheadriven cylinder wall,
used instead of Eq.(b) is

oT _ _
(22) E—O, r—Rl .



The numerical results show difference in the temee profiles in both cases
[29], but this does not affect significantly theagrvalue at the oscillating
cylinder wall. Hence, such results are not shown tla figures. Energy
generated as a result of dissipation is transfaimexigh the outer cylinder wall,
only. The condition presented by EQ.(22) is appliehd the heat flux
calculations at the outer cylinder wall are presdnin Fig.9a for harmonic
oscillations and in Fig.9b -for stepwise oscillaso(denoted with 3). In both
cases the heat energy transfer is about two tinoes mtensive.
Heat flux mean integral value

The heat flux mean integral value is defined snyl as the drag mean

value:

(23) a, =jq(r)dr

The p())lot of the mean integral value of the heat fla. Stokes number in
the case of a harmonically oscillating inner cyéindgs shown in Fig.11a. and in
the case of stepwise oscillations — on Fig.11b feat flux moduli at both
cylinder walls are of the same order of magnitdia:. qualitative comparison to
DSMC results found in [29] shows, that the numeéreaults of the NS model
solution must be examined carefully for Knudsen hareKn =0.2 and Stokes

numbersg = 16.

4.3.Gas temperature at cylinder walls: frequency and phase delay

The numerical results provide a twice larger cimcdtequency of the gas
temperature variations at both cylinder walls [2Bhat correlation between
circular frequencies does not depend on the osoilisatype and the phase delay
value. Gas temperature variations at the wall ¢faemonic oscillating inner
cylinder with and without phase delay is shown ig.E2. A phase delay with
respect to the wall velocity of the inner cylindeall is visible analyzing gas

temperature variation at the inner and outer cginalls.



4x10 1x10 . — 3 3
b) 12 3 b) l‘:‘< q,r=R,
0 R R 0 .+ [1 kn=0.01
s s ———— 5 I\ jm _—
EN O F % —~
N B S
6 R, 3 Kn=0.02 \< —
20 a0 éoﬁ 80 100 120 20 10 20 30ﬁ 20 50 60

Fig,11 Mean integral heat flux dependencies, anbaic oscillations, b)
stepwise oscillations
Analyzing the numerical results about a harmonycaficillating inner cylinder
the following conclusions can be drawn: gas tentpegaat the inner cylinder
wall has larger mean value and oscillates withilatreely wider range as
compared to the gas temperature at the outer eylindhll. An opposite
tendency is observed when analyzing the phase dgalags. The thermal wave
arising near the driven wall as a result of digsgpaneeds finite time to reach

the outer cylinder wall. Lep,, be the delay of the gas velocity phase close to
the inner cylinder wall ang,, - the delay of the gas velocity phase delay close

to the outer cylinder wall, then
(24) ¢, =, /(2”); Pra = Wty /(277) s

2 101 b) 1.01
o 1008 g © 1.008 ~
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 1.006 S 1006
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Fig.12 Gas temperature variations at the
wall,Kn=01, B=4, AV,=03 @=0.8862 harmonic oscillating inner cylinder
¢,, =0.023411 ¢,, =0.10629. a) with phase delay, b) without phase delay.



where ¢,, and t,, are the corresponding dimensionless delay times Th

difference
2
(25) at= ty — by ZEH( 2.d _¢1,d) )

is the dimensionless time needed for temperatureewa reach the outer
cylinder wall.

In the case of stepwise oscillating inner cylinderphase delay of the gas
temperature variation at the inner cylinder walbisserved. At the same time,
the phase delay of the gas temperature variatidgheabuter cylinder wall is
larger then that of the case with harmonically ltetang inner cylinder.

a) b)
1.04 1.04
x o
L 102 I 1.02
1
0 0.25 05 0.75 1 1 025 05 075 1
at/(2m) at/(2x)
1.004 1.004
o~N
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Fig.13 Wall gas temperature variatioks= 0.1, 8=4, AV, =03, stepwise
oscillating inner cylinderg,, =0., ¢,, =0.239218) with phase delay, b) without
phase delay.

6. Conclusions

The NS model and the numerical solution found enablk to investigate
numerically a cylindrical oscillatory Couette flown two limit cases of
oscillation of the active inner cylinder. The vissointeraction " cylinder- gas™
is studied within relatively wide ranges of osdilg frequencies - Stokes
number. The calculations confirm the existence yafrbdynamic selfsimilarity
in drag and heat transfer in both cases of osoilabf the inner cylinder. It is
also found that a phase delay of drag, wall gaspéeature and heat flux
variations exist in one hand and the driven walbewy variation, in other hand.

In the case of harmonically oscillating inner cyglen the drag phase delay with



respect to the driven wall velocity is numericallyestigated. Visible difference
in heat flux variations within the gas flow are ebsed when studying an

adiabatically insulated inner cylinder.
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