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Abstract  
The oscillatory Couette flow between an oscillating inner cylinder and a stationary 

outer cylinder is considered in the study. New results for the stress and heat flux at the "gas-
cylinder wall" interface are obtained. The continuum model based on the Navier-Stokes 
equations for compressible fluid is completed with the equations of continuity and energy 
transport. Along with the numerical solution proposed in our previous paper [29], it is used to 
investigate the cylinder-gas interaction. The wall shear stress (drag) and heat flux variation at 
the cylinder walls are numerically investigated. First order velocity-slip boundary conditions 
are specified referring to two types of motion of the inner cylinder- harmonic oscillations and 
stepwise oscillations. Two types of energy transfer boundary condition at inner cylinder are 
considered - inner cylinder with constant wall temperature and adiabatically insulated inner 
cylinder. Results found for the drag and heat flux variations are presented accounting for 
different oscillation frequencies and Knudsen numbers. Parts of the results obtained for the 
harmonically oscillating inner cylinder are compared to the numerical data, obtained by the 
DSMC method in [18].  In the case of harmonically oscillating inner cylinder a drag phase 
delay with respect to the wall velocity is established and studied. Hydrodynamic selfsimilarty 
of the drag and energy transfer variations is confirmed and analyzed. 
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1. Introduction 

The Couette flow in both plane and cylindrical geometry has been 

investigated by many authors [1], [2], [3], [4], [5], [6], [7], [8]. Recently the 

study of oscillatory planar Couette flow between vertically moving surfaces has 

become an important part of MEMS modeling [9]. Thus, Park et al. [10] 

presented a thorough study of oscillatory Couette flows between two parallel 

smooth walls, using DSMC solutions. Hadjiconstantinou [11] extended the work 

of [10] to include a second-order slip-flow boundary treatment. A plane 

oscillatory Couette flow was considered also by [13], where an analytical 

solution in the hydrodynamic regime was obtained. A critical analysis of 

theoretical and experimental data on the slip and jump coefficients available in 



  

the open literature was presented in [21]. Tang et al [14] analyzed the effects of 

the Stokes and Knudsen numbers, the coefficient of tangential momentum 

accommodation of an oscillating Couette flow and the Stokes second problem 

by using lattice simulation. Based on the linearized Boltzmann equation a 

detailed numerical solution for a wide range of gas rarefaction and oscillatory 

frequency was proposed by [16]. Taheri et al [17] utilized the linearized Navier-

-Stokes--Fourier equations and regularized 13-moment equations to present the 

rarefaction effects in the plane oscillatory Couette flow. problems. Non-planar 

effects in an oscillatory cylindrical gas flow have been studied in [18], where an 

incompressible viscous flow model and the Direct Simulation Monte Carlo 

method were used to predict the velocity and shear stress profiles within the 

whole range of Knudsen number. The energy generation as a consequence of 

dissipation cannot be neglected even in the case of oscillating with moderate 

amplitude of the driven wall velocity. Recently the incompressible Navier-

Stokes-Fourier (NSF) equations in the cylindrical polar coordinate reference 

frame were employed in [15], while the simultaneous effects of viscous 

dissipation and rarefaction phenomenon were taken into account. Analytical 

solutions for the gas and liquid velocity and temperature distribution were found 

in [28] for steady state one-dimensional microchannel cylindrical Couette flow 

between a shaft and a concentric cylinder. 

In a previous paper [29] we presented numerical analysis of the 

continuum model of nonisothermal oscillatory cylindrical Couette gas flow in 

the slip regime. Our analysis was based on the continuum Navier--Stokes (NS) 

equations for compressible fluid completed with the equations of continuity and 

energy transport. Note also that nonstationary velocity, temperature and density 

variations were considered. Here we extend our previous investigations. 

Analyzing an oscillatory cylindrical Couette flow we present new results for the 

stress and heat flux at the gas-cylinder wall interface, and they turn to be 

important gas flow characteristics. We also calculate and discuss numerical 



  

results found for the drag and heat flux variations, regarding different oscillation 

frequencies and Knudsen numbers that change within limits relatively wider 

than those specified in [29]. Along with harmonic (smooth) oscillations we 

consider the other limit case of stepwise (impulse) oscillations of the rotating 

cylinder. Yet, an arbitrary periodic movement of the rotating cylinder may find 

room between the two limit cases - the harmonic and the stepwise ones. Two 

cases of boundary conditions at the inner cylinder wall employed to solve the 

energy transfer equation are investigated. The first one corresponds to constant 

wall temperature of the inner cylinder and the second one - to an adiabatically 

insulated inner cylinder. The latter requirement might be important in the case of 

insulated cylindrical system without temperature control of the inner cylinder. A 

part of the results obtained for harmonic oscillations of the inner cylinder have 

been compared to the numerical data, obtained in the paper [18] by the DSMC 

method. In the case of harmonically oscillating inner cylinder a drag phase delay 

[10] with respect to the wall velocity is established and investigated. Noticeable 

heat flux variations in the gas flow are observed when the adiabatic insulated 

inner cylinder is investigated. The previously observed and established fact of 

low speeds selfsimilarity of the macroscopic flow characteristics is numerically 

confirmed also for drag and heat flux variations, too. The selfsimilarity with 

respect to the wall velocity amplitude variations allows prediction of low speed 

effects such as drag and heat transfer. 

 

2. Problem formulation  

 The mathematical model outlined in the subsections below (2.1 an 2.2) 

and containing the transport equations and the correspondingly boundary 

conditions, is set forth in [29]. 

2.1. Continuum model 

We study a rarefied hard sphere gas flow between two coaxial cylinders 

(one dimensional, axis-symmetric problem). The inner cylinder has radius1R and 



  

peripheral velocity1V , the outer - 2R  and 2V , respectively. The continuous model 

is based on the Navier–Stokes (NS) equations for compressible fluid, completed 

with the equations of continuity, the ideal gas low and energy transport. For 

details see [1], [11], [29]. 

The following standard notations are used: ρ for the density and T for the 

temperature, where V is the velocity vector. u and v are the velocity components 

along axis r and ϕ , P is the pressure, ( )trfvuTP ,,,,, =ρ , zjriji ,;,,, ϕϕτ ==  are 

the stress tensor components and Φ is the dissipation function [19]. 

 For a perfect monatomic hard sphere gas, the viscosity and heat transfer 

coefficients read as [20]: 

(1) ( ) πρµµ µµ 16

5
,000 === CTVlCT . 

(2) ( ) πρλλ λλ 32

15
,000 === CTVlCT . 

The model equations are normalized by using the following scales: for 

density 00 mn=ρ  (m is the molecular mass, n0 – the average number density), for 

velocity 00 2RTV =  - R is the gas constant, for length - distance between the 

cylinders 12 RRL −= , for time 00 VLt = , for temperature 0T - the wall temperature 

of both cylinders. The Knudsen number is Ll0Kn = , where the mean free path 

is 0l  and 35== VP ccγ  (cp and cv are the heat capacities at constant pressure and 

constant volume respectively). In this way, the characteristic number Kn and the 

constants µC  and λC  take part in the dimensionless model. For brevity, hereafter 

the same symbols r, t, ρ, P, T , u, v and 2,1, =iRi are used for the corresponding 

dimensionless variables and t is the dimensionless time.  

2.2 Boundary conditions 

Following [12] and [18] the first-order slip boundary conditions, imposed 

at both walls, can be written directly in dimensionless form as follows 
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(4) 0=u ,   

(5) 1Kn =
∂
∂±

r

T
T Tζ , 

at 2,1, == iRr i . The upper sign in (3) and (5) corresponds 1,1 Rri == and the 

lower one to 2,2 Rri == . For diffuse scattering we have used the viscous slip 

and temperature jump coefficients 1466.1=σA and 1904.2=Tζ , calculated in [22] 

and [23] respectively using the kinetic BGK equation  (see [24] for details). The 

same slip coefficients were used by [25], [26], [29]. Two types boundary 

conditions for the inner cylinder are used, when the outer one is at rest (i.e. 

02 =V ). 

- harmonic oscillations: 

(6) ( ) )sin(111 tVVtV ω∆+= , 

where  ω  is the dimensionless circular frequency (the forced frequency). 

- stepwise oscillations: 
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where  ....3,2,1,0=k  The dimensionless period of the oscillations PERt  is equal to: 

(8) ωπ /2=PERt  . 

In Eqs.(6), (7) 1V  is the mean wall velocity and 1V∆  - its amplitude. 

 We consider in the present study circular frequencies much larger than the 

molecular collision frequency. The characteristic parameter θ , used in [12], to 

characterize the speed of oscillation ωνθ m= , connects the intermolecular 

collision frequency mν  and the dimensional oscillation frequency ω . If 0→θ , 

the molecular collisions can be neglected. 

 It is convenient to introduce an additional dimensionless parameter, to 

describe the forced frequency influence, namely the Stokes number as given in 

[10], [18]: 



  

(9) 
ν

ωβ
2

dimt= . 

In Eq.(9) ω  is the dimensional circular frequency, dimt - the dimensional time and 

ν  is the kinematic viscosity. Using Eq.(1), the following relation between 

dimensionless circular frequency ω  and Stokes number β  can be written. 

(10) 2Knβω µC= .  

2.3. Wall shear stress (drag) definition 

 The wall shear stress or the drag is defined as dimensionless stress tensor 

component ϕτ r , expressing the viscous interaction between two neighboring thin 

“shells” of the gas medium: 

(11) ( )2
00/ Vrr ρττ ϕϕ = , 

where ϕτ r is the stress tensor component along the axisϕ , according to [19], 

written on the driven wall, in dimensional form. Accounting for the axis-

symmetric case and using the definitions in the previously section 2.1, the 

dimensionless stress tensor component ϕτ r  can be expressed through the 

dimensionless quantities Tv, : 
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2.4. Heat flux definition 

The heat transfer measure is the heat flux in the gas media on the wall, 

expressed as: 

(13) qTc
r

T
TCTc

r

T
q ppT 0000 Kn ρρλ λ −=

∂
∂−=

∂
∂−=   , 

where the dimensionless heat flux q  is  

(14) 
r

T
TCq

∂
∂−= Knλ , 

And λ  is the heat transfer coefficient defined in Eq.(3). 

 

 



  

2.5. Numerical solution  

 The transfer equations, together with the boundary conditions (3)-(7) 

written for u, v, with zero initial profiles, formulate the unsteady-state initial-

boundary value problem. The initial variations for density and temperature are 

constant i.e. ( ) ( ) 10,,10, ==== trTtrρ . 

 A central implicit finite difference scheme of second order of 

approximation is used to solve numerically the formulated problem [25], [26]. 

The numerical solution is described in [29]. 

 Everywhere in the calculations, the value 3.01 =∆V  of the velocity 

amplitude is used and 01 =V . The dimensionless cylinder radii are 2,1 21 == RR . 

The case corresponding to Kn=0.1 is chosen to be a characteristic one. This 

value of the Knudsen number is close to the upper limit for the slip flow regime 

[10], [11]. Hence, the numerical results for different Knudsen numbers (less or 

larger then Kn=0.1) are put together with those found for Kn=0.1. 

The difference value problem is solved starting from initial profiles for all 

unknown quantities and proceeding until the establishment of a steady 

oscillating regime. It takes commonly from about one or two periods (in the case 

of harmonic oscillations and relative small Stokes number - 4≤β ), to 16-24 

periods (in the case of stepwise oscillations and relative high Stokes number - 

32≥β ). Everywhere in the figures time evolution of the numerical results for 

( ) 120 ≤≤ πω t (where 0=t  is a reference time), for one period is shown after the 

establishment of steady oscillation. 

 

3 Numerical results: Wall shearstress 

3.1 Harmonic oscillations 

 Typical cases of harmonic oscillating inner cylinder, for two different 

Knudsen numbers are presented on Fig.1a, 1b, where the drag results obtained 



  

with NS model are compared against the corresponding DSMC results 

(calculated also for 3.01 =∆V ). 

   

   
Fig.1 Harmonic oscillations – drag, comparison NS –

DSMC, 4=β , 3.01 =∆V , 0.8862=ω  
-0.060179-0.075929, ,2,1 == dd ϕϕ  a) Kn=0.1 with phase delay,  b) Kn=0.2 with 

phase delay,  c) Kn=0.1 without phase delay,  d) Kn=0.2 without phase delay. 
 

The drag changes harmonically following the wall velocity change with 

negative sign as described in boundary condition Eq.(3). For both groups of 

results presented on Fig.1a, a phase delay can be observed i.e. the drag phase 

depends in relation to the wall velocity phase. The same results without the 

phase delay are plotted on fig.1b. The values of phase delay in both cases 

are  -0.075929,1 =dϕ and  -0.060179,2 =dϕ .  

 Applying the scales introduced in section 1, the dimensionless period is 

defined as Eq.(8), and a new dimensionless variable τ  can be introduced instead 

of dimensionless time t. 

(15) ( ) perttt ≤≤≤≤= 0,10,2/ τπωτ .  



  

More generalized results for drag variation for different values of 

Knudsen number and frequencies are shown on Figs. 2a and 2b. For that 

purpose the mean integral drag value is introduced: 

(16) ( )   ][
1

0

ττ dDragabsDragM ∫= , 

where pert  is the dimensionless oscillating period and   ϕτ rDrag = .  

The results, presented on Fig.2 are in agreement also with the analytical 

solution results, presented in Emerson et al [18], 

 

    
Fig.2 Drag dependencies. on Kn, a) for two fixed values of β  and b) Drag 

dependencies onβ , for three fixed Knudsen numbers  
 

 Following Park et al (2004) [10], the general representation of the velocity 

signal at any arbitrary coordinate r is expressed as: 

(17) ( ) )sin(, 1 ψω +∆= tVtrv ,  

where ψ  is the phase angle. From the slip boundary condition on the cylinder 

wall at 1Rr =  follows the connection: 

(18) ( )tRvtV
C

A
r ,)sin( 11 −∆= ωτ ϕ

µ

σ . 

In Eq.(18) the gas velocity can be expressed using Eq.(17) or using the 

numerical results for ( )tRv ,1 . As seen from numerical results, plotted on Fig.3a, 

the gas velocity variation on the wall shows also harmonic time dependence. 

The ϕτ r  variation according Eq.(18) is proportional to difference between both 



  

velocities (those of wall and gas). This difference is also presented on Fig.3a and 

the phase delay of the velocities difference with respect to the wall velocity is 

obvious. The change of the Knudsen and Stokes number cause only quantitative 

variation in the phase delay value. Let dϕ is the value of drag phase delay value 

close to the inner cylinder wall 1Rr =  

(19) ( )πωϕ 2/dd t=  , 

and dt  is the corresponding dimensionless delay time of drag variation toward to 

driven wall velocity. Note that the above described process is not observed in 

the case of stepwise oscillations (Fig3.b).  

   

Fig.3 Velocity variation on the driven cylinder 
wall, 0.8862,3.0,4,1.0Kn 1 ==∆== ωβ V , 

a) harmonic oscillations, b) stepwise oscillations 
 

 Fig.4a presents the relation of the drag phase delay corresponding to the 

case of harmonic oscillation for two fixed values of β  and three fixed values of 

Kn. The DSMC results calculated for 4=β  and presented on the same figure 

confirm the phase delay existing, and are in qualitative agreement with the NS 

results. The phase delay dependencies for three fixed Kn numbers and 642 ≤≤ β  

are plotted on Fig.4b. 

Hydrodynamic selfsimilarity  

Our previous paper [29] established and explained the hydrodynamic 

similarity between velocity profiles for wall amplitude values of 3.0,1 ≤∆ iV  to 



  

those calculated for wall amplitude values of 3.01 =∆V , (note that iV ,1∆ is the 

value of the velocity amplitude different from 0.3 and used in boundary 

condition Eq.(6) instead of 1V∆ ). 

   
Fig.4 Harmonic oscillations – drag phase delay a) for three fixed values of β , 

b).for three fixed values of Kn.  
 

The same fact is observed for the drag interaction between the gas media 

and the inner cylinder wall. Drag relation Eq.(12) written for 3.01 =∆V , can be 

modified for amplitude values of 3.0,1 <∆ iV  as follows: 
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For example on Fig.5 are compared the NS results, calculated for 2
,1 103.0 −⋅=∆ iV  

and scaled using Eq.(20), with NS results for 3.01 =∆V  and DSMC results 

(presented on Fig.1). The NS results after applying Eq.(20) for drag and phase 

delay in both cases are identical. The results confirm the hydrodynamic 

selfsimilarity again. 

4.2. Stepwise oscillations 

 The drag variation numerical results, for two cases with different Stokes 

numbers (different forced oscillation frequencies) are plotted on Fig.6.. The first 

case ( )4=β , corresponds to this on Fig.1a, but for stepwise oscillating inner 

cylinder. No phase delay is established, as explained in previous subsection.  



  

    
Fig.5 Selfsimilarity in drag dependencies for two different velocity amplitudes, 

harmonic oscillations a) with phase delay, b) without phase delay. 
 

The numerical results for mean integral drag dependence for three fixed 

values of Kn and Stokes numberβ  changing in the limits 1282 ≤≤ β , are 

presented on Fig.7.  

   
Fig.6 Stepwise oscillation: drag comparison for two forced frequencies, 

3.0,8,4,1.0Kn 1 =∆== Vβ   
 

   
Fig.7 Mean integral drag dependencies on β, for three Knudsen values, stepwise 

oscillations,  
 
 



  

Hydrodynamic selfsimilarity 

The hydrodynamic selfsimilarity discussed in the previous section can be 

observed also in the case of stepwise oscillation. Fig.8 shows comparison 

between the numerical results, calculated for 2
,1 103.0 −⋅=∆ iV , and scaled using 

Eq.(20) with the results calculated for 3.01 =∆V . The results confirm again the 

existence of hydrodynamic selfsimilarity. 

  
Fig.8 Selfsimilarity in drag variations, stepwise oscillations, a) 4,1.0Kn == β , 

b). 8,1,0Kn == β . 
 

4. Numerical results: Heat transfer "cylinder wall – gas media" 

In this section we analyze the energy transfer in a system "`cylinder wall--

gas media"' considering both cylinders -- the oscillating inner cylinder and the 

static outer one. Variations of the heat flux at the inner and outer cylinder walls, 

regarding one period in both cases of oscillations -- harmonic and stepwise, are 

shown on Fig.9. The results concern the same typical cases as those, shown in 

Fig.1a and 6. Visible difference between the heat flux variations on the outer 

cylinder wall is observed when the adiabatically insulated inner cylinder is 

investigated -- the line marked with 3. 

4.1. Hydrodynamic selsimilarity 

 The hydrodynamic selfsimilarity is valid also in the cases of heat transfer 

through cylinder wall. The heat flux dependence Eq.(15) written for 3.01 =∆V , 

can be modified for values of 3.0,1 <∆ iV  as follows:  
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Fig.9 Heat flux, selfsmilarity, 4,1.0Kn == β  , a)harmonic oscillations, b) 

stepwise oscillations. 
 

Note that iq  in Eq.(22) is the heatflux, calculated for veloctiy amplitude 

2
,1 103.0 −⋅=∆ iV , and scaled using Eq.(21). The second power of the velocity 

quotient can be explained by the quadratic dependence between heat energy and 

fluid velocity in the dissipation function.  

 Based on the numerical results found for drag and heat flux for both types 

of inner cylinder oscillations, we may confirm and extend the conclusion of 

[29], stating that in the case of oscillations with relatively small velocity 

amplitude, neither NS nor DSMC additional computations are needed. It is 

sufficient to use Eq.(20) or Eq.(21) to recalculate the results once found for drag 

or heat flux obtained at a moderate wall velocity amplitude 3.01 =∆V . Regarding 

both types of inner cylinder wall oscillations that approach adopted with some 

caution, can avoid a lot of unnecessary and time consuming calculations of the 

viscous drag and heat energy transfer in a system "cylinder wall -- gas media" 

system. 

As in Fig.9, Fig.10a, b shows the variation of the heat flux at the outer 

cylinder wall heat flux variations presented but on a larger scale. It is clearly 



  

seen that the period of variation of dimensionless heat flux 5.0=perτ is exactly 

twice smaller [26] then that of the driven wall velocity variation 1=perτ . 

   
Fig.10 Outer cylinder wall heat flux: 

1.7724   0.8862,,3.0,4,1.0Kn 1 ===∆== qV ωωβ  , a)harmonic oscillations, b) 

stepwise oscillations . 
 

 Using the Eq.(19) the dimensionless circular frequency of the heat flux is 

calculated as 1.7724=qω . This frequency is twice larger then the forced 

frequency 0.8862=ω . Such a correlation can be observed for Stokes number 

values 4≤β  and Knudsen numbers 0.1Kn ≤  at the slip regime, for both types of 

oscillations of the inner cylinder. As our numerical calculations show this 

frequency quotient does not depend on Kn or β  numbers within the above 

specified limits. This fact can be used to calculate the forced circular frequency 

in a system, where this frequency of the inner cylinder oscillations is unknown 

and can not be measured. 

4.2. Adiabatic insulated inner cylinder 

  The case of adiabatically insulated inner cylinder [29] is a case possibly 

more close to the reality then the case of an inner cylinder with constant 

temperature. The corresponding boundary condition at the driven cylinder wall, 

used instead of Eq.(5) is 

(22) 1,0 Rr
r

T ==
∂
∂ .  



  

The numerical results show difference in the temperature profiles in both cases 

[29], but this does not affect significantly the drag value at the oscillating 

cylinder wall. Hence, such results are not shown on the figures. Energy 

generated as a result of dissipation is transferred through the outer cylinder wall, 

only. The condition presented by Eq.(22) is applied, and the heat flux 

calculations at the outer cylinder wall are presented in Fig.9a for harmonic 

oscillations and in Fig.9b -for stepwise oscillations (denoted with 3). In both 

cases the heat energy transfer is about two times more intensive.  

Heat flux mean integral value 

 The heat flux mean integral value is defined similarly as the drag mean 

value: 

(23)    )(
1

0

ττ dqqM ∫=  

The plot of the mean integral value of the heat flux vs. Stokes number in 

the case of a harmonically oscillating inner cylinder is shown in Fig.11a. and in 

the case of stepwise oscillations – on Fig.11b The heat flux moduli at both 

cylinder walls are of the same order of magnitude. Our qualitative comparison to 

DSMC results found in [29] shows, that the numerical results of the NS model 

solution must be examined carefully for Knudsen numbers 0.2Kn ≥  and Stokes 

numbers 16≥β .  

4.3. Gas temperature at cylinder walls: frequency and phase delay 

The numerical results provide a twice larger circular frequency of the gas 

temperature variations at both cylinder walls [29]. That correlation between 

circular frequencies does not depend on the oscillations type and the phase delay 

value. Gas temperature variations at the wall of a harmonic oscillating inner 

cylinder with and without phase delay is shown in Fig.12. A phase delay with 

respect to the wall velocity of the inner cylinder wall is visible analyzing gas 

temperature variation at the inner and outer cylinder walls.  



  

 
Fig,11 Mean integral heat flux dependencies, a) harmonic oscillations, b) 

stepwise oscillations 
 

Analyzing the numerical results about a harmonically oscillating inner cylinder 

the following conclusions can be drawn: gas temperature at the inner cylinder 

wall has larger mean value and oscillates within relatively wider range as 

compared to the gas temperature at the outer cylinder wall. An opposite 

tendency is observed when analyzing the phase delay values. The thermal wave 

arising near the driven wall as a result of dissipation needs finite time to reach 

the outer cylinder wall. Let d,1ϕ  be the delay of the gas velocity phase close to 

the inner cylinder wall and d,2ϕ  - the delay of the gas velocity phase delay close 

to the outer cylinder wall, then  

(24) ( ) ( )πωϕπωϕ 2/;2/ ,2,2,1,1 dddd tt ==  , 

   
Fig.12 Gas temperature variations at the 

wall, 0.8862,3.0,4,1.0Kn 1 ==∆== ωβ v
V , harmonic oscillating inner cylinder  

0.023411,1 =dϕ , 0.10629,2 =dϕ . a) with phase delay, b) without phase delay. 

 



  

where d,1ϕ  and dt ,2  are the corresponding dimensionless delay times. The 

difference  

(25) ( )dddd ttt ,1,2,1,2

2 ϕϕ
ω
π −=−=∆  , 

is the dimensionless time needed for temperature wave to reach the outer 

cylinder wall. 

In the case of stepwise oscillating inner cylinder no phase delay of the gas 

temperature variation at the inner cylinder wall is observed. At the same time, 

the phase delay of the gas temperature variation at the outer cylinder wall is 

larger then that of the case with harmonically oscillating inner cylinder. 

   
Fig.13 Wall gas temperature variations, 3.0,4,1.0Kn 1 =∆== Vβ , stepwise 

oscillating inner cylinder, 0.,1 =dϕ , 0.23921,2 =dϕ a) with phase delay, b) without 

phase delay. 
 

6. Conclusions  

The NS model and the numerical solution found enable one to investigate 

numerically a cylindrical oscillatory Couette flow in two limit cases of 

oscillation of the active inner cylinder. The viscous interaction "`cylinder- gas"' 

is studied within relatively wide ranges of oscillating frequencies - Stokes 

number. The calculations confirm the existence of hydrodynamic selfsimilarity 

in drag and heat transfer in both cases of oscillation of the inner cylinder. It is 

also found that a phase delay of drag, wall gas temperature and heat flux 

variations exist in one hand and the driven wall velocity variation, in other hand. 

In the case of harmonically oscillating inner cylinder the drag phase delay with 



  

respect to the driven wall velocity is numerically investigated. Visible difference 

in heat flux variations within the gas flow are observed when studying an 

adiabatically insulated inner cylinder. 
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