
Journal of Artificial Intelligence Research 30 (2007) 321–359 Submitted 11/06; published 10/07

New Inference Rules for Max-SAT

Chu Min Li chu-min.li@u-picardie.fr

LaRIA, Université de Picardie Jules Verne

33 Rue St. Leu, 80039 Amiens Cedex 01, France

Felip Manyà felip@iiia.csic.es

IIIA, Artificial Intelligence Research Institute

CSIC, Spanish National Research Council

Campus UAB, 08193 Bellaterra, Spain

Jordi Planes jplanes@diei.udl.es

Computer Science Department, Universitat de Lleida

Jaume II, 69, 25001 Lleida, Spain

Abstract

Exact Max-SAT solvers, compared with SAT solvers, apply little inference at each
node of the proof tree. Commonly used SAT inference rules like unit propagation produce
a simplified formula that preserves satisfiability but, unfortunately, solving the Max-SAT
problem for the simplified formula is not equivalent to solving it for the original formula.
In this paper, we define a number of original inference rules that, besides being applied
efficiently, transform Max-SAT instances into equivalent Max-SAT instances which are
easier to solve. The soundness of the rules, that can be seen as refinements of unit resolution
adapted to Max-SAT, are proved in a novel and simple way via an integer programming
transformation. With the aim of finding out how powerful the inference rules are in practice,
we have developed a new Max-SAT solver, called MaxSatz, which incorporates those rules,
and performed an experimental investigation. The results provide empirical evidence that
MaxSatz is very competitive, at least, on random Max-2SAT, random Max-3SAT, Max-
Cut, and Graph 3-coloring instances, as well as on the benchmarks from the Max-SAT
Evaluation 2006.

1. Introduction

In recent years there has been a growing interest in developing fast exact Max-SAT
solvers (Alber, Gramm, & Niedermeier, 2001; Alsinet, Manyà, & Planes, 2003b, 2005;
de Givry, Larrosa, Meseguer, & Schiex, 2003; Li, Manyà, & Planes, 2005; Xing & Zhang,
2004; Zhang, Shen, & Manyà, 2003) due to their potential to solve over-constrained NP-
hard problems encoded in the formalism of Boolean CNF formulas. Nowadays, Max-SAT
solvers are able to solve a lot of instances that are beyond the reach of the solvers developed
just five years ago. Nevertheless, there is yet a considerable gap between the difficulty of the
instances solved with current SAT solvers and the instances solved with the best performing
Max-SAT solvers.

The motivation behind our work is to bridge that gap between complete SAT solvers
and exact Max-SAT solvers by investigating how the technology previously developed for
SAT (Goldberg & Novikov, 2001; Li, 1999; Marques-Silva & Sakallah, 1999; Zhang, 1997;
Zhang, Madigan, Moskewicz, & Malik, 2001) can be extended and incorporated into Max-

c©2007 AI Access Foundation. All rights reserved.

Li, Manyà & Planes

SAT. More precisely, we focus the attention on branch and bound Max-SAT solvers based on
the Davis-Putnam-Logemann-Loveland (DPLL) procedure (Davis, Logemann, & Loveland,
1962; Davis & Putnam, 1960).

One of the main differences between SAT solvers and Max-SAT solvers is that the former
make an intensive use of unit propagation at each node of the proof tree. Unit propagation,
which is a highly powerful inference rule, transforms a SAT instance φ into a satisfiability
equivalent SAT instance φ′ which is easier to solve. Unfortunately, solving the Max-SAT
problem for φ is, in general, not equivalent to solving it for φ′; i.e., the number of unsatisfied
clauses in φ and φ′ is not the same for every truth assignment. For example, if we apply
unit propagation to the CNF formula φ = {x1, x̄1 ∨ x2, x̄1 ∨ ¬x2, x̄1 ∨ x3, x̄1 ∨ ¬x3}, we
obtain φ′ = {✷,✷}, but φ and φ′ are not equivalent because any interpretation satisfying
¬x1 unsatisfies one clause of φ and two clauses of φ′. Therefore, if we want to compute an
optimal solution, we cannot apply unit propagation as in SAT solvers.

We proposed in a previous work (Li et al., 2005) to use unit propagation to compute
lower bounds in branch and bound Max-SAT solvers instead of using unit propagation to
simplify CNF formulas. In our approach, we detect disjoint inconsistent subsets of clauses
via unit propagation. It turns out that the number of disjoint inconsistent subsets detected
is an underestimation of the number of clauses that will become unsatisfied when the current
partial assignment is extended to a complete assignment. That underestimation plus the
number of clauses unsatisfied by the current partial assignment provides a good performing
lower bound, which captures the lower bounds based on inconsistency counts that most of
the state-of-the-art Max-SAT solvers implement (Alsinet, Manyà, & Planes, 2003a; Alsinet
et al., 2003b; Borchers & Furman, 1999; Wallace & Freuder, 1996; Zhang et al., 2003), as
well as other improved lower bounds (Alsinet, Manyà, & Planes, 2004; Alsinet et al., 2005;
Xing & Zhang, 2004, 2005).

On the one hand, the number of disjoint inconsistent subsets detected is just a conser-
vative underestimation for the lower bound, since every inconsistent subset φ increases the
lower bound by one independently of the number of clauses of φ unsatisfied by an optimal
assignment. However, an optimal assignment can violate more than one clause of an incon-
sistent subset. Therefore, we should be able to improve the lower bound based on counting
the number of disjoint inconsistent subsets of clauses.

On the other hand, despite the fact that good quality lower bounds prune large parts of
the search space and accelerate dramatically the search for an optimal solution, whenever
the lower bound does not reach the best solution found so far (upper bound), the solver
continues exploring the search space below the current node. During that search, solvers
often redetect the same inconsistencies when computing the lower bound at different nodes.
Basically, the problem with lower bound computation methods is that they do not simplify
the CNF formula in such a way that the unsatisfied clauses become explicit. Lower bounds
are just a pruning technique.

To overcome the above two problems, we define a set of sound inference rules that
transform a Max-SAT instance φ into a Max-SAT instance φ′ which is easier to solve. In
Max-SAT, an inference rule is sound whenever φ and φ’ are equivalent.

Let us see an example of inference rule: Given a Max-SAT instance φ that contains
three clauses of the form l1, l2, l̄1 ∨ l̄2, where l1, l2 are literals, we replace φ with the CNF

322

New Inference Rules for Max-SAT

formula

φ′ = (φ− {l1, l2, l̄1 ∨ l̄2}) ∪ {✷, l1 ∨ l2}.

Note that the rule detects a contradiction from l1, l2, l̄1 ∨ l̄2 and, therefore, replaces these
clauses with an empty clause. In addition, the rule adds the clause l1 ∨ l2 to ensure the
equivalence between φ and φ′. For any assignment containing either l1 = 0, l2 = 1, or
l1 = 1, l2 = 0, or l1 = 1, l2 = 1, the number of unsatisfied clauses in {l1, l2, l̄1 ∨ l̄2} is 1,
but for any assignment containing l1 = 0, l2 = 0, the number of unsatisfied clauses is 2.
Note that even when any assignment containing l1 = 0, l2 = 0 is not the best assignment
for the subset {l1, l2, l̄1 ∨ l̄2}, it can be the best for the whole formula. By adding l1 ∨ l2,
the rule ensures that the number of unsatisfied clauses in φ and φ′ is also the same when
l1 = 0, l2 = 0.

That inference rule adds the new clause l1 ∨ l2, which may contribute to another con-
tradiction detectable via unit propagation. In this case, the rule allows to increase the
lower bound by 2 instead of 1. Moreover, the rule makes explicit a contradiction among
l1, l2, l̄1 ∨ l̄2, so that the contradiction does not need to be redetected below the current
node.

Some of the inference rules defined in the paper are already known in the litera-
ture (Bansal & Raman, 1999; Niedermeier & Rossmanith, 2000), others are original for
Max-SAT. The new rules were inspired by different unit resolution refinements applied in
SAT, and were selected because they could be applied in a natural and efficient way. In a
sense, we can summarize our work telling that we have defined the Max-SAT counterpart
of SAT unit propagation.

With the aim of finding out how powerful the inference rules are in practice, we have
designed and implemented a new Max-SAT solver, called MaxSatz, which incorporates those
rules, as well as the lower bound defined in a previous work (Li et al., 2005), and performed
an experimental investigation. The results provide empirical evidence that MaxSatz is very
competitive, at least, on random Max-2SAT, random Max-3SAT, Max-Cut, and Graph
3-coloring instances, as well as on the benchmarks from the Max-SAT Evaluation 20061.

The structure of the paper is as follows. In Section 2, we give some preliminary defini-
tions. In Section 3, we describe a basic branch and bound Max-SAT solver. In Section 4, we
define the inference rules and prove their soundness in a novel and simple way via an integer
programming transformation. We also give examples to illustrate that the inference rules
may produce better quality lower bounds. In Section 5, we present the implementation of
the inference rules in MaxSatz. In Section 6, we describe the main features of MaxSatz. In
Section 7, we report on the experimental investigation. In Section 8, we present the related
work. In Section 9, we present the conclusions and future work.

2. Preliminaries

In propositional logic a variable xi may take values 0 (for false) or 1 (for true). A literal li
is a variable xi or its negation x̄i. A clause is a disjunction of literals, and a CNF formula
φ is a conjunction of clauses. The length of a clause is the number of its literals. The size
of φ, denoted by |φ|, is the sum of the length of all its clauses.

1. http://www.iiia.csic.es/˜maxsat06

323

Li, Manyà & Planes

An assignment of truth values to the propositional variables satisfies a literal xi if xi
takes the value 1 and satisfies a literal x̄i if xi takes the value 0, satisfies a clause if it
satisfies at least one literal of the clause, and satisfies a CNF formula if it satisfies all the
clauses of the formula. An empty clause, denoted by ✷, contains no literals and cannot be
satisfied. An assignment for a CNF formula φ is complete if all the variables occurring in
φ have been assigned; otherwise, it is partial.

The Max-SAT problem for a CNF formula φ is the problem of finding an assignment
of values to propositional variables that minimizes the number of unsatisfied clauses (or
equivalently, that maximizes the number of satisfied clauses). Max-SAT is called Max-
kSAT when all the clauses have k literals per clause. In the following, we represent a CNF
formula as a multiset of clauses, since duplicated clauses are allowed in a Max-SAT instance.

CNF formulas φ1 and φ2 are equivalent if φ1 and φ2 have the same number of unsatisfied
clauses for every complete assignment of φ1 and φ2.

3. A Basic Max-SAT Solver

The space of all possible assignments for a CNF formula φ can be represented as a search
tree, where internal nodes represent partial assignments and leaf nodes represent complete
assignments. A basic branch and bound algorithm for Max-SAT explores the search tree in
a depth-first manner. At every node, the algorithm compares the number of clauses unsat-
isfied by the best complete assignment found so far —called upper bound (UB)— with the
number of clauses unsatisfied by the current partial assignment (#emptyClauses) plus an
underestimation of the minimum number of non-empty clauses that will become unsatisfied
if we extend the current partial assignment into a complete assignment (underestimation).

The sum #emptyClauses + underestimation is a lower bound (LB) of the minimum
number of clauses unsatisfied by any complete assignment extended from the current partial
assignment. Obviously, if LB ≥ UB, a better solution cannot be found from this point in
search. In that case, the algorithm prunes the subtree below the current node and backtracks
to a higher level in the search tree.

If LB < UB, the algorithm tries to find a possible better solution by extending the
current partial assignment by instantiating one more variable; which leads to the creation
of two branches from the current branch: the left branch corresponds to assigning the new
variable to false, and the right branch corresponds to assigning the new variable to true. In
that case, the formula associated with the left (right) branch is obtained from the formula
of the current node by deleting all the clauses containing the literal x̄ (x) and removing all
the occurrences of the literal x (x̄); i.e., the algorithm applies the one-literal rule.

The solution to Max-SAT is the value that UB takes after exploring the entire search
tree.

Figure 1 shows the pseudo-code of a basic solver for Max-SAT. We use the following
notations:

• simplifyFormula(φ) is a procedure that simplifies φ by applying sound inference rules.

• #emptyClauses(φ) is a function that returns the number of empty clauses in φ.

324

New Inference Rules for Max-SAT

Input: max-sat(φ, UB) : A CNF formula φ and an upper bound UB

1: φ← simplifyFormula(φ);
2: if φ = ∅ or φ only contains empty clauses then
3: return #emptyClauses(φ);
4: end if
5: LB ← #emptyClauses(φ) + underestimation(φ,UB);
6: if LB ≥ UB then
7: return UB;
8: end if
9: x← selectVariable(φ);

10: UB ← min(UB,max-sat(φx̄, UB));
11: return min(UB,max-sat(φx, UB));
Output: The minimal number of unsatisfied clauses of φ

Figure 1: A basic branch and bound algorithm for Max-SAT

• LB is a lower bound of the minimum number of unsatisfied clauses in φ if the current
partial assignment is extended to a complete assignment. We assume that its initial
value is 0.

• underestimation(φ,UB) is a function that returns an underestimation of the minimum
number of non-empty clauses in φ that will become unsatisfied if the current partial
assignment is extended to a complete assignment.

• UB is an upper bound of the number of unsatisfied clauses in an optimal solution.
We assume that its initial value is the total number of clauses in the input formula.

• selectVariable(φ) is a function that returns a variable of φ following an heuristic.

• φx (φx̄) is the formula obtained by applying the one-literal rule to φ using the literal
x (x̄).

State-of-the-art Max-SAT solvers implement the basic algorithm augmented with pow-
erful inference techniques, good quality lower bounds, clever variable selection heuristics,
and efficient data structures.

We have recently defined (Li et al., 2005) a lower bound computation method in which
the underestimation of the lower bound is the number of disjoint inconsistent subsets that
can be detected using unit propagation. The pseudo-code is shown in Figure 2.

Example 1 Let φ be the following CNF formula:

{x1, x2, x3, x4, x̄1 ∨ x̄2 ∨ x̄3, x̄4, x5, x̄5 ∨ x̄2, x̄5 ∨ x2}.

With our approach we are able to establish that the number of disjoint inconsistent
subsets of clauses in φ is at least 3. Therefore, the underestimation of the lower bound is 3.
The steps performed are the following ones:

325

Li, Manyà & Planes

Input: underestimation(φ, UB) : A CNF formula φ and an upper bound UB

1: underestimation← 0;
2: apply the one-literal rule to the unit clauses of φ (unit propagation) until an empty

clause is derived;
3: if no empty clause can be derived then
4: return underestimation;
5: end if
6: φ← φ without the clauses that have been used to derive the empty clause;
7: underestimation := underestimation+ 1;
8: if underestimation+#emptyClauses(φ) ≥ UB then
9: return underestimation;

10: end if
11: go to 2;
Output: the underestimation of the lower bound for φ

Figure 2: Computation of the underestimation using unit propagation

1. φ = {x4, x̄4, x5, x̄5 ∨ x̄2, x̄5 ∨ x2}, the first inconsistent subset detected using unit
propagation is {x1, x2, x3, x̄1 ∨ x̄2 ∨ x̄3}, and underestimation = 1.

2. φ = {x5, x̄5∨x̄2, x̄5∨x2}, the second inconsistent subset detected using unit propagation
is {x4, x̄4}, and underestimation = 2.

3. φ = ∅, the third inconsistent subset detected using unit propagation is {x5, x̄5∨ x̄2, x̄5∨
x2}, and underestimation = 3. Since φ is empty, the algorithm stops.

4. Inference Rules

We define the set of inference rules considered in the paper. They were inspired by different
unit resolution refinements applied in SAT, and were selected because they could be applied
in a natural and efficient way. Some of them are already known in the literature (Bansal &
Raman, 1999; Niedermeier & Rossmanith, 2000), others are original for Max-SAT.

Before presenting the rules, we define an integer programming transformation of a CNF
formula used to establish the soundness of the rules. The method of proving soundness is
novel in Max-SAT, and provides clear and short proofs.

4.1 Integer Programming Transformation of a CNF Formula

Assume that φ = {c1, ..., cm} is a CNF formula with m clauses over the variables x1, ..., xn.
Let ci (1 ≤ i ≤ m) be xi1 ∨ ...∨xik ∨ x̄ik+1

∨ ...∨ x̄ik+r
. Note that we put all positive literals

in ci before the negative ones.

We consider all the variables in ci as integer variables taking values 0 or 1, and define
the integer transformation of ci as

Ei(xi1 , ..., xik , xik+1
, ..., xik+r

) = (1− xi1)...(1 − xik)xik+1
...xik+r

326

New Inference Rules for Max-SAT

Obviously, Ei has value 0 iff at least one of the variables xij ’s (1 ≤ j ≤ k) is instantiated
to 1 or at least one of the variables xis ’s (k + 1 ≤ s ≤ k + r) is instantiated to 0. In other
words, Ei=0 iff ci is satisfied. Otherwise Ei=1.

A literal l corresponds to an integer denoted by l itself for our convenience. The intention
of the correspondence is that the literal l is satisfied if the integer l is 1 and is unsatisfied if
the integer l is 0. So if l is a positive literal x, the corresponding integer l is x, l̄ is 1-x=1-l,
and if l is a negative literal x̄, l is 1-x and l̄ is x=1-(1-x)=1-l. Consequently, l̄=1-l in any
case.

We now generically write ci as l1∨ l2∨ ...∨ lk+r. Its integer programming transformation
is

Ei = (1− l1)(1− l2)...(1 − lk+r).

The integer programming transformation of a CNF formula φ = {c1, ..., cm} over the
variables x1, ..., xn is defined as

E(x1, ..., xn) =
m
∑

i=1

Ei (1)

That integer programming transformation was used (Huang & Jin, 1997; Li & Huang,
2005) to design a local search procedure, and is called pseudo-Boolean formulation by Boros
and Hammer (2002). Here, we extend it to empty clauses: if ci is empty, then Ei=1.

Given an assignment A over the variables x1, ..., xn, the value of E is the number of
unsatisfied clauses in φ. If A satisfies all clauses in φ, then E = 0. Obviously, the minimum
number of unsatisfied clauses of φ is the minimum value of E .

Let φ1 and φ2 be two CNF formulas, and let E1 and E2 be their integer programming
transformations. It is clear that φ1 and φ2 are equivalent if, and only if, E1=E2 for every
complete assignment for φ1 and φ2.

4.2 Inference Rules

We next define the inference rules and prove their soundness using the previous integer
programming transformation. In the rest of the section, φ1, φ2 and φ′ denote CNF formulas,
and E1, E2, and E

′ their integer programming transformations. To prove that φ1 and φ2 are
equivalent, we prove that E1 = E2.

Rule 1 (Bansal & Raman, 1999) If φ1={l1 ∨ l2 ∨ ... ∨ lk, l̄1 ∨ l2 ∨ ... ∨ lk} ∪ φ′, then
φ2={l2 ∨ ... ∨ lk} ∪ φ′ is equivalent to φ1.

Proof 1

E1 = (1− l1)(1− l2)...(1 − lk) + l1(1− l2)...(1 − lk) + E
′

= (1− l2)...(1 − lk) + E
′

= E2 �

General case resolution does not work in Max-SAT (Bansal & Raman, 1999). Rule 1
establishes that resolution works when two clauses give a strictly shorter resolvent.

327

Li, Manyà & Planes

Rule 1 is known in the literature as replacement of almost common clauses. We pay
special attention to the case k=2, where the resolvent is a unit clause, and to the case k=1,
where the resolvent is the empty clause. We describe this latter case in the following rule:

Rule 2 (Niedermeier & Rossmanith, 2000) If φ1={l, l̄}∪φ
′, then φ2={✷}∪φ

′ is equivalent
to φ1.

Proof 2 E1=1-l+ l+E ′=1+ E ′=E2 �

Rule 2, which is known as complementary unit clause rule, can be used to replace two
complementary unit clauses with an empty clause. The new empty clause contributes to
the lower bounds of the search space below the current node by incrementing the number
of unsatisfied clauses, but not by incrementing the underestimation, which means that this
contradiction does not have to be redetected again. In practice, that simple rule gives rise
to considerable gains.

The following rule is a more complicated case:

Rule 3 If φ1={l1, l̄1 ∨ l̄2, l2} ∪ φ′, then φ2={✷, l1 ∨ l2} ∪ φ′ is equivalent to φ1.

Proof 3

E1 = 1− l1 + l1l2 + 1− l2 + E
′

= 1 + 1− l1 + l2(l1 − 1) + E ′

= 1 + 1− l1 − l2(1− l1) + E
′

= 1 + (1− l1)(1 − l2) + E
′

= E2 �

Rule 3 replaces three clauses with an empty clause, and adds a new binary clause to
keep the equivalence between φ1 and φ2.

Pattern φ1 was considered to compute underestimations by Alsinet et al. (2004) and Shen
and Zhang (2004); and is also captured by our method of computing underestimations based
on unit propagation (Li et al., 2005). Larrosa and Heras mentioned (2005) that existential
directional arc consistency (de Givry, Zytnicki, Heras, & Larrosa, 2005) can capture this
rule. Note that underestimation computation methods by Alsinet et al. and Shen and
Zhang do not add any additional clause as in our approach, they just detect contradictions.

Let us define a rule that generalizes Rule 2 and Rule 3. Before presenting the rule, we
define a lemma needed to prove its soundness.

Lemma 1 If φ1={l1, l̄1 ∨ l2} ∪ φ
′ and φ2={l2, l̄2 ∨ l1} ∪ φ

′, then φ1 and φ2 are equivalent.

Proof 4

E1 = 1− l1 + l1(1− l2) + E
′

= 1− l1 + l1 − l1l2 + E
′

= 1− l2 + l2 − l1l2 + E
′

= 1− l2 + (1− l1)l2 + E
′

= E2 �

328

New Inference Rules for Max-SAT

Rule 4 If φ1={l1, l̄1∨l2, l̄2∨l3, ..., l̄k∨lk+1, l̄k+1}∪φ
′, then φ2={✷, l1∨ l̄2, l2∨ l̄3, ..., lk∨

l̄k+1} ∪ φ′ is equivalent to φ1.

Proof 5 We prove the soundness of the rule by induction on k. When k=1, φ1 = {l1, l̄1 ∨
l2, l̄2}∪φ

′. By applying Rule 3, we get {✷, l1∨ l̄2}∪φ
′, which is φ2 when k = 1. Therefore,

φ1 and φ2 are equivalent.
Assume that Rule 4 is sound for k = n. Let us prove that it is sound for k = n+ 1. In

that case:

φ1 = {l1, l̄1 ∨ l2, l̄2 ∨ l3, ..., l̄n ∨ ln+1, l̄n+1 ∨ ln+2, l̄n+2} ∪ φ′.

By applying Lemma 1 to the last two clauses of φ1 (before φ′), we get

{l1, l̄1 ∨ l2, l̄2 ∨ l3, ..., l̄n ∨ ln+1, l̄n+1, ln+1 ∨ l̄n+2} ∪ φ′.

By applying the induction hypothesis to the first n+1 clauses of the previous CNF formula,
we get

{✷, l1 ∨ l̄2, l2 ∨ l̄3, ..., ln ∨ l̄n+1, ln+1 ∨ l̄n+2} ∪ φ′,

which is φ2 when k = n + 1. Therefore, φ1 and φ2 are equivalent and the rule is sound.
�

Rule 4 is an original inference rule. It captures linear unit resolution refutations in
which clauses and resolvents are used exactly once. The rule simply adds an empty clause,
eliminates two unit clauses and the binary clauses used in the refutation, and adds new
binary clauses that are obtained by negating the literals of the eliminated binary clauses.
So, all the operations involved can be performed efficiently.

Rule 3 and Rule 4 make explicit a contradiction, which does not need to be redetected in
the current subtree. So, the lower bound computation becomes more incremental. Moreover,
the binary clauses added by Rule 3 and Rule 4 may contribute to compute better quality
lower bounds either by acting as premises of an inference rule or by being part of an
inconsistent subset of clauses, as is illustrated in the following example.

Example 2 Let φ={x1, x̄1∨ x̄2, x3, x̄3∨x2, x4, x̄1∨ x̄4, x̄3∨ x̄4}. Depending on the ordering
in which unit clauses are propagated, unit propagation detects one of the following three
inconsistent subsets of clauses: {x1, x̄1 ∨ x̄2, x3, x̄3 ∨ x2}, {x1, x4, x̄1 ∨ x̄4}, or {x3, x4, x̄3 ∨
x̄4}. Once an inconsistent subset is detected and removed, the remaining set of clauses is
satisfiable. Without applying Rule 3 and Rule 4, the lower bound computed is 1, because the
underestimation computed using unit propagation is 1.

Note that Rule 4 can be applied to the first inconsistent subset {x1, x̄1 ∨ x̄2, x3, x̄3 ∨ x2}.
If Rule 4 is applied, a contradiction is made explicit and the clauses x1 ∨x2 and x3 ∨ x̄2 are
added. So, φ becomes {✷, x1 ∨ x2, x3 ∨ x̄2, x4, x̄1 ∨ x̄4, x̄3 ∨ x̄4}. It turns out that φ − {✷}
is an inconsistent set of clauses detectable by unit propagation. Therefore, the lower bound
computed is 2.

If the inconsistent subset {x1, x4, x̄1 ∨ x̄4} is detected, Rule 3 can be applied. Then, a
contradiction is made explicit and the clause x1∨x4 is added. So, φ becomes {✷, x1∨x4, x̄1∨
x̄2, x3, x̄3∨x2, x̄3∨ x̄4}. It turns out that φ−{✷} is an inconsistent set of clauses detectable
by unit propagation. Therefore, the lower bound computed is 2.

329

Li, Manyà & Planes

Similarly, if the inconsistent subset {x3, x4, x̄3 ∨ x̄4} is detected and Rule 3 is applied,
the lower bound computed is 2.

We observe that, in this example, Rule 3 and Rule 4 not only make explicit a contradic-
tion, but also allow to improve the lower bound.

Unit propagation needs at least one unit clause to detect a contradiction. A drawback
of Rule 3 and Rule 4 is that they consume two unit clauses for deriving just one contra-
diction. A possible situation is that, after branching, those two unit clauses could allow
unit propagation to derive two disjoint inconsistent subsets of clauses, as we show in the
following example.

Example 3 Let φ={x1, x̄1∨x2, x̄1∨x3, x̄2∨ x̄3∨x4, x5, x̄5∨x6, x̄5∨x7, x̄6∨ x̄7∨x4, x̄1∨ x̄5}.
Rule 3 replaces x1, x5, and x̄1 ∨ x̄5 with an empty clause and x1 ∨ x5. After that, if x4
is selected as the next branching variable and is assigned 0, there is no unit clause in φ

and no contradiction can be detected via unit propagation. The lower bound is 1 in this
situation. However, if Rule 3 was not applied before branching, φ has two unit clauses
after branching. In this case, the propagation of x1 allows to detect the inconsistent subset
{x1, x̄1 ∨ x2, x̄1 ∨ x3, x̄2 ∨ x̄3}, and the propagation of x5 allows to detect the inconsistent
subset {x5, x̄5 ∨ x6, x̄5 ∨ x7, x̄6 ∨ x̄7}. So, the lower bound computed after branching is 2.

On the one hand, Rule 3 and Rule 4 add clauses that can contribute to detect additional
conflicts. On the other hand, each application of Rule 3 and Rule 4 consumes two unit
clauses, which cannot be used again to detect further conflicts. The final effect of these two
factors will be empirically analyzed in Section 7.

Finally, we present two new rules that capture unit resolution refutations in which
(i) exactly one unit clause is consumed, and (ii) the unit clause is used twice in the linear
derivation of the empty clause.

Rule 5 If φ1={l1, l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3} ∪ φ
′, then φ2={✷, l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3} ∪ φ

′ is
equivalent to φ1.

Proof 6

E1 = 1− l1 + l1(1− l2) + l1(1− l3) + l2l3 + E
′

= 1− l1 + l1 − l1l2 + l1 − l1l3 + l2l3 + E
′

= 1 + l2l3 − l1l2l3 + l1 − l1l2 − l1l3 + l1l2l3 + E
′

= 1 + (1− l1)l2l3 + l1(1− l2 − l3 + l2l3) + E
′

= 1 + (1− l1)l2l3 + l1(1− l2)(1− l3) + E
′

= E2 �

We can combine a linear derivation with Rule 5 to obtain Rule 6:

Rule 6 If φ1={l1, l̄1 ∨ l2, l̄2 ∨ l3, ..., l̄k ∨ lk+1, l̄k+1 ∨ lk+2, l̄k+1 ∨ lk+3, l̄k+2 ∨ l̄k+3} ∪ φ′,
then φ2={✷, l1 ∨ l̄2, l2 ∨ l̄3, ..., lk ∨ l̄k+1, lk+1 ∨ l̄k+2 ∨ l̄k+3, l̄k+1 ∨ lk+2 ∨ lk+3} ∪ φ′ is
equivalent to φ1.

330

New Inference Rules for Max-SAT

Proof 7 We prove the soundness of the rule by induction on k. When k=1,

φ1 = {l1, l̄1 ∨ l2, l̄2 ∨ l3, l̄2 ∨ l4, l̄3 ∨ l̄4} ∪ φ′.

By Lemma 1, we get

{l1 ∨ l̄2, l2, l̄2 ∨ l3, l̄2 ∨ l4, l̄3 ∨ l̄4} ∪ φ′.

By Rule 5, we get

{l1 ∨ l̄2, ✷, l2 ∨ l̄3 ∨ l̄4, l̄2 ∨ l3 ∨ l4} ∪ φ′,

which is φ2 when k = 1. Therefore, φ1 and φ2 are equivalent.

Assume that Rule 6 is sound for k = n. Let us prove that it is sound for k = n+ 1. In
that case:

φ1 = {l1, l̄1 ∨ l2, l̄2 ∨ l3, ..., l̄n+1 ∨ ln+2, l̄n+2 ∨ ln+3, l̄n+2 ∨ ln+4, l̄n+3 ∨ l̄n+4} ∪ φ′.

By Lemma 1, we get

{l1 ∨ l̄2, l2, l̄2 ∨ l3, ..., l̄n+1 ∨ ln+2, l̄n+2 ∨ ln+3, l̄n+2 ∨ ln+4, l̄n+3 ∨ l̄n+4} ∪ φ′.

By applying the induction hypothesis, we get

{l1 ∨ l̄2, ✷, l2 ∨ l̄3, ..., ln+1 ∨ l̄n+2, ln+2 ∨ l̄n+3 ∨ l̄n+4, l̄n+2 ∨ ln+3 ∨ ln+4} ∪ φ′,

which is φ2 when k = n + 1. Therefore, φ1 and φ2 are equivalent and the rule is sound.
�

Similarly to Rule 3 and Rule 4, Rule 5 and Rule 6 make explicit a contradiction, which
does not need to be redetected in subsequent search. Therefore, the lower bound compu-
tation becomes more incremental. Moreover, they also add clauses which can improve the
quality of the lower bound, as illustrated in the following example.

Example 4 Let φ={x1, x̄1 ∨ x2, x̄1 ∨ x3, x̄2 ∨ x̄3, x4, x1 ∨ x̄4, x̄2 ∨ x̄4, x̄3 ∨ x̄4}. Depending
on the ordering in which unit clauses are propagated, unit propagation can detect one of the
following inconsistent subsets: {x1, x̄1 ∨ x2, x̄1 ∨ x3, x̄2 ∨ x̄3}, {x4, x1 ∨ x̄4, x̄2 ∨ x̄4, x̄1 ∨ x2},
{x4, x1∨x̄4, x̄3∨x̄4, x̄1∨x3}, in which Rule 5 is applicable. If Rule 5 is not applied, the lower
bound computed using the underestimation function of Figure 2 is 1, since the remaining
clauses of φ are satisfiable once the inconsistent subset of clauses is removed. Rule 5 allows
to add two ternary clauses contributing to another contradiction. For example, Rule 5
applied to {x1, x̄1 ∨ x2, x̄1 ∨ x3, x̄2 ∨ x̄3} adds to φ clauses x1 ∨ x̄2 ∨ x̄3 and x̄1 ∨ x2 ∨ x3,
which, with the remaining clauses of φ ({x4, x1 ∨ x̄4, x̄2 ∨ x̄4, x̄3 ∨ x̄4}), give the second
contradiction detectable via unit propagation. So the lower bound computed using Rule 5
is 2.

In contrast to Rule 3 and Rule 4, Rule 5 and Rule 6 consume exactly one unit clause for
deriving an empty clause. Since a unit clause can be used at most once to derive a conflict
via unit propagation, Rule 5 and Rule 6 do not limit the detection of further conflicts via
unit propagation.

331

Li, Manyà & Planes

5. Implementation of Inference Rules

In this section, we describe the implementation of all the inference rules presented in Sec-
tion 4. We suppose that the CNF formula is loaded and, for every literal ℓ, a list of clauses
containing ℓ is constructed. The application of a rule means that some clauses in φ1 are
removed from the CNF formula, new clauses in φ2 are inserted into the formula, and the
lower bound is increased by 1. Note that in all the inference rules selected in our approach,
φ2 contains fewer literals and fewer clauses than φ1, so that new clauses of φ2 can be inserted
in the place of the removed clauses of φ1 when an inference rule is applied. Therefore, we
do not need dynamic memory management and the implementation can be faster.

Rule 1 for k=2 and Rule 2 can be applied using a matching algorithm (see, e.g., Cormen,
Leiserson, Rivest, & Stein, 2001, for an efficient implementation) over the lists of clauses.
The first has a time complexity of O(m), where m is the number of clauses in the CNF
formula. The second has a time complexity of O(u), where u is the number of unit clauses
in the CNF formula. These rules are applied at every node, before any lower bound com-
putation or application of other inference rules. Rule 1 (k=2) is applied as many times as
possible to derive unit clauses before applying Rule 2.

The implementation of Rule 3, Rule 4, Rule 5, and Rule 6 is entirely based on unit
propagation. Given a CNF formula φ, unit propagation constructs an implication graph
G (see, e.g., Beame, Kautz, & Sabharwal, 2003), from which the applicability of inference
rules is detected. In this section, we first describe the construction of the implication graph,
and then describe how to determine the applicability of Rule 3, Rule 4, Rule 5, and Rule 6.
Then, we analyze the complexity, termination and (in)completeness of the application of
the rules. Finally we discuss the extension of the inference rules to weighted Max-SAT and
their implementation.

5.1 Implication Graph

Given a CNF formula φ, Figure 3 shows how unit propagation constructs an implication
graph whose nodes are literals.

Note that every node in G corresponds to a different literal, where ℓ and ℓ̄ are considered
as different literals. When the CNF formula contains several copies of a unit clause ℓ, the
algorithm adds just one node with label ℓ.

Example 5 Let φ={x1, x1, x̄1∨x2, x̄1∨x3, x̄2∨x̄3∨x4, x5, x̄5∨x6, x̄5∨x7, x̄6∨x̄7∨x̄4, x̄5∨x8}.
UnitPropagation constructs the implication graph of Figure 4, in which we add a special
node ✷ to highlight the contradiction.

G is always acyclic because every added edge connects a new node. It is well known
that the time complexity of unit propagation is O(|φ|), where |φ| is the size of φ (see, e.g.,
Freeman, 1995).

We associate clause c=ℓ̄1∨ℓ̄2∨...∨ℓ̄k−1∨ℓk with node ℓk if node ℓk is added into G because
of c. Note that node ℓk does not have any incoming edge if and only if c is unit (k=1), and
the node has only one incoming edge if and only if c is binary (k=2). Once G is constructed,
if G contains both ℓ and ℓ̄ for some literal ℓ (i.e., unit propagation deduces a contradiction),
it is easy to identify all nodes from which there exists a path to ℓ or ℓ̄ in G; i.e., the clauses

332

New Inference Rules for Max-SAT

Input: UnitPropagation(φ) : φ is a CNF formula not containing the complementary unit
clauses ℓ and ℓ̄ for any literal ℓ
initialize G as the empty graph
add a node labeled with ℓ for every literal ℓ in a unit clause c of φ
repeat

if ℓ1, ℓ2, ..., ℓk−1 are nodes of G, c = ℓ̄1 ∨ ℓ̄2 ∨ ... ∨ ℓ̄k−1 ∨ ℓk is a clause of φ, and ℓk is
not a node of G, then

add into G a node labeled with ℓk
add into G a directed edge from node ℓi to ℓk for every i (1 ≤ i < k)

end if
until no more nodes can be added or there is a literal ℓ such that both ℓ and ℓ̄ are nodes
of G
Return G

Output: Implication graph G of φ

Figure 3: Unit propagation for constructing implication graphs

x1

x2

x3

x4

x5

x6

x7

x̄4

x8

Figure 4: Example of implication graph

333

Li, Manyà & Planes

c1 c2 c3 c4

c5 c6 c7

x1 x2 x3 x4

x5 x6 x̄4

Figure 5: Example of implication graph

implying ℓ or ℓ̄. All these clauses constitute an inconsistent subset S of φ. In the above
example, clauses x1, x̄1∨x2, x̄1∨x3 and x̄2∨ x̄3∨x4 imply x4, and clauses x5, x̄5∨x6, x̄5∨x7
and x̄6 ∨ x̄7 ∨ x̄4 imply x̄4. Clause x̄5 ∨ x8 does not contribute to the contradiction. The
inconsistent subset S is {x1, x̄1 ∨ x2, x̄1 ∨ x3, x̄2 ∨ x̄3 ∨ x4, x5, x̄5 ∨ x6, x̄5 ∨ x7, x̄6 ∨ x̄7 ∨ x̄4}.

5.2 Applicability of Rule 3, Rule 4, Rule 5, and Rule 6

We assume that unit propagation deduces a contradiction and, therefore, the implication
graph G contains both ℓ and ℓ̄ for some literal ℓ. Let Sℓ be the set of all nodes from which
there exists a path to ℓ, let Sℓ̄ be the set of all nodes from which there exists a path to
ℓ̄, and let S=Sℓ ∪ Sℓ̄. As a clause is associated with each node in G, we also use S, Sℓ,
and Sℓ̄ to denote the set of clauses associated with the nodes in S, Sℓ, and Sℓ̄, respectively.
Lemma 2 and Lemma 3 are used to detect the applicability of Rule 3, Rule 4, Rule 5, and
Rule 6.

Lemma 2 Rule 3 and Rule 4 are applicable if

1. in Sℓ (resp. Sℓ̄), there is one unit clause and all the other clauses are binary,

2. nodes in Sℓ (resp. Sℓ̄) form an implication chain starting at the unit clause and ending
at ℓ (resp. ℓ̄),

3. Sℓ ∩ Sℓ̄ is empty.

Proof 8 Starting from the node corresponding to the unit clause in Sℓ (resp. Sℓ̄), and
following in parallel the two implication chains, we have φ1 in Rule 3 or Rule 4 by writing
down the clause corresponding to each node. �

Example 6 Let φ be the following CNF formula containing clauses c1 to c7: {c1 : x1, c2 :
x̄1 ∨ x2, c3 : x̄2 ∨ x3, c4 : x̄3 ∨ x4, c5 : x5, c6 : x̄5 ∨ x6, c7 : x̄6 ∨ x̄4}. Unit propaga-
tion constructs the implication graph shown in Figure 5, which contains the complementary
literals x4 and x̄4.

Rule 4 is applicable because ℓ=x4, Sℓ={x1(c1), x2(c2), x3(c3), x4(c4)}, and
Sℓ̄={x5(c5), x6(c6), x̄4(c7)}. It is easy to verify that the three conditions of Lemma 2 are
satisfied.

Remark: φ can be rewritten as {c1 : x1, c2 : x̄1 ∨ x2, c3 : x̄2 ∨ x3, c4 : x̄3 ∨ x4, c7 :
x̄4 ∨ x̄6, c6 : x6 ∨ x̄5, c5 : x5} to be compared with φ1 in Rule 4.

334

New Inference Rules for Max-SAT

c1 c2 c3

c4

c5

x1 x2 x3 x̄4

x4

Figure 6: Example of implication graph

The application of Rule 3 and Rule 4 consists of replacing every binary clause c in S

with a binary clause obtained by negating every literal of c, removing the two unit clauses
of S from φ, and incrementing #emptyClauses(φ) by 1.

Lemma 3 Rule 5 and Rule 6 are applicable if

1. in S=Sℓ ∪ Sℓ̄, there is one unit clause and all the other clauses are binary; i.e., all
nodes in S, except for the node corresponding to the unit clause, have exactly one
incoming edge in G.

2. Sℓ ∩ Sℓ̄ is non-empty and contains k (k >0) nodes forming an implication chain of
the form ℓ1 → ℓ2 → · · · → ℓk, where ℓk is the last node of the chain.

3. (Sℓ ∪ Sℓ̄)-(Sℓ ∩ Sℓ̄) contains exactly three nodes : ℓ, ℓ̄, and a third one. Let ℓk+1 be
the third literal,

if ℓk+1 ∈ Sℓ, then G contains the following implications

ℓk → ℓk+1 → ℓ

ℓk → ℓ̄

if ℓk+1 ∈ Sℓ̄, then G contains the following implications

ℓk → ℓ

ℓk → ℓk+1 → ℓ̄

Proof 9 Assume, without loss of generality, that ℓk+1 ∈ Sℓ; the case ℓk+1 ∈ Sℓ̄ is symmet-
ric. The implication chain formed by the nodes of Sℓ ∩ Sℓ̄ corresponds to the clauses {ℓ1,
ℓ̄1 ∨ ℓ2, . . . , ℓ̄k−1 ∨ ℓk}, which, together with the three clauses {ℓ̄k ∨ ℓk+1, ℓ̄k+1 ∨ ℓ, ℓ̄k ∨ ℓ̄}
corresponding to ℓk → ℓk+1 → ℓ and ℓk → ℓ̄, give φ1 in Rule 5 or Rule 6. �

Example 7 Let φ be the following CNF formula containing clauses c1 to c5: {c1 : x1, c2 :
x̄1∨x2, c3 : x̄2∨x3, c4 : x̄2∨x4, c5 : x̄3∨ x̄4}. Unit propagation constructs the implication
graph shown in Figure 6, which contains the complementary literals x4 and x̄4.

We have Sx4
={x1(c1), x2(c2), x4(c4)} and Sx̄4

={x1(c1), x2(c2), x3(c3), x̄4(c5)}. The
nodes in Sx4

∩ Sx̄4
obviously form an implication chain: x1 → x2. (Sx4

∪ Sx̄4
)-(Sx4

∩
Sx̄4

)={x3(c3), x4(c4), x̄4(c5)}. G contains x2 → x3 → x̄4 and x2 → x4. Rule 6 is applicable.

The application of Rule 5 and Rule 6 consists of removing the unit clause of Sℓ ∪ Sℓ̄

from φ, replacing each binary clause c in Sℓ ∩ Sℓ̄ with a binary clause obtained from c by
negating the two literals of c, replacing the three binary clauses in (Sℓ ∪ Sℓ̄)-(Sℓ ∩ Sℓ̄) with
two ternary clauses, and incrementing #emptyClauses(φ) by 1.

335

Li, Manyà & Planes

5.3 Complexity, Termination, and (In)Completeness of Rule Applications

In our branch and bound algorithm for Max-SAT, we combine the application of the infer-
ence rules and the computation of the underestimation of the lower bound. Given a CNF
formula φ, function underestimation uses unit propagation to construct an implication
graph G. Once G contains two nodes ℓ and ℓ̄ for some literal ℓ, G is analyzed to determine
whether some inference rule is applicable. If some rule is applicable, it is applied and φ is
transformed into an equivalent Max-SAT instance. Otherwise, all clauses contributing to
the contradiction are removed from φ, and the underestimation is incremented by 1. This
procedure is repeated until unit propagation cannot derive more contradictions. Finally, all
removed clauses, except those removed or replaced due to inference rule applications, are
reinserted into φ. The underestimation, together with the new φ, is returned.

It is well known that unit propagation can be implemented with a time complexity linear
in the size of φ (see, e.g., Freeman, 1995). The complexity of determining the applicability
of the inference rules using Lemma 2 and Lemma 3 is linear in the size of G, bounded by
the number of literals in φ, if we assume that the graph is represented by doubly-linked
lists. The application of an inference rule is obviously linear in the size of G. So, the whole
time complexity of function underestimation with inference rule applications is O(d ∗ |φ|),
where d is the number of contradictions that function underestimation is able to detect
using unit propagation. Observe that the factor d is needed because the application of the
rules inserts new clauses in the place of the removed clauses.

Since every inference rule application reduces the size of φ, function underestimation

with inference rule applications has linear space complexity, and it always terminates. Recall
that new clauses added by the inference rules can be stored in the place of the old ones.
The data structures for loading φ can be statically and efficiently maintained.

We have proved that the inference rules are sound. The following example shows that
the application of the rules is not necessarily complete in our implementation, in the sense
that not all possible applications of the inference rules are necessarily done.

Example 8 Let φ={x1, x3, x4, x̄1 ∨ x̄3 ∨ x̄4, x̄1 ∨ x̄2, x2}. Unit propagation may discover
the inconsistent subset S={x1, x3, x4, x̄1 ∨ x̄3 ∨ x̄4}. In this case, no inference rule is ap-
plicable to S. Then, the underestimation of the lower bound is incremented by 1, and φ

becomes {x̄1 ∨ x̄2, x2}. Unit propagation cannot detect more contradictions in φ, and func-
tion underestimation stops after reinserting {x1, x3, x4, x̄1 ∨ x̄3 ∨ x̄4} into φ. The value
1 is returned, together with the unchanged φ. Note that Rule 3 is applicable to the subset
{x1, x̄1 ∨ x̄2, x2} of φ, but is not applied.

Actually, function underestimation only applies Rule 3 if unit propagation detects the
inconsistent subset {x1, x̄1 ∨ x̄2, x2} instead of {x1, x3, x4, x̄1 ∨ x̄3 ∨ x̄4}. The detection of
an inconsistent subset depends on the ordering in which unit clauses are propagated in unit
propagation. In this example, the inconsistent subset {x1, x̄1 ∨ x̄2, x2} is discovered if unit
clause x2 is propagated before x3 and x4. Further study is needed to define orderings for
unit clauses that maximize the application of inference rules.

Observe that our algorithm is deterministic, and always computes the same lower bound
if the order of clauses is not changed.

336

New Inference Rules for Max-SAT

5.4 Inference Rules for Weighted Max-SAT

The inference rules presented in this paper can be naturally extended to weighted Max-SAT.
In weighted Max-SAT, every clause is associated with a weight and the problem consists
of finding a truth assignment for which the sum of the weights of unsatisfied clauses is
minimum. For example, the weighted version of Rule 3 could be

Rule 7 If φ1={(l1, w1), (l̄1 ∨ l̄2, w2), (l2, w3)}∪φ
′, then φ2={(✷, w), (l1 ∨ l2, w), (l1, w1−

w), (l̄1 ∨ l̄2, w2 − w), (l2, w3 − w)} ∪ φ′ is equivalent to φ1

where w1, w2 and w3 are positive integers representing the clause weight, and w=min(w1,
w2, w3). Mandatory clauses, that have to be satisfied in any optimal solution, are specified
with the weight ∞. Note that if w 6=∞, ∞-w=∞ and if w=∞, no optimal solution can be
found and the solver should backtrack. Clauses with weight 0 are removed. Observe that φ1

can be rewritten as φ11 ∪ φ12, where φ11={(l1, w), (l̄1 ∨ l̄2, w), (l2, w)}, and φ12={(l1, w1 −
w), (l̄1 ∨ l̄2, w2 − w), (l2, w3 −w)} ∪ φ′. Then, the weighted inference rule is equivalent to
the unweighted version applied w times to the (unweighted) clauses of φ11.

Similarly, the weighted version of Rule 4 could be

Rule 8 If φ1={(l1, w1) (l̄1 ∨ l2, w2), (l̄2 ∨ l3, w3), . . . , (l̄k ∨ lk+1, wk+1), (l̄k+1, wk+2)}∪φ
′,

then φ2={(✷, w), (l1 ∨ l̄2, w), (l2 ∨ l̄3, w), . . . , (lk ∨ l̄k+1, w), (l1, w1 − w), (l̄1 ∨ l2, w2 −
w), (l̄2 ∨ l3, w3 − w), . . . , (l̄k ∨ lk+1, wk+1 − w), (l̄k+1, wk+2 − w)} ∪ φ′ is equivalent to φ1

where w=min(w1, w2, . . . , wk+2). Observe that φ1 can also be rewritten as φ11 ∪ φ12, with
φ11={(l1, w) (l̄1 ∨ l2, w), (l̄2 ∨ l3, w), . . . , (l̄k ∨ lk+1, w), (l̄k+1, w)}, The weighted version of
Rule 4 is equivalent to the unweighted Rule 4 applied w times to the (unweighted) clauses
of φ11.

The current implementation of the inference rules can be naturally extended to weighted
inference rules. If an inconsistent subformula is detected and a rule is applicable (clause
weights are not considered in the detection of the inconsistent subformula and of the ap-
plicability of the rule, provided that clauses with weight 0 have been discarded), then φ11

and φ12 are separated after computing the minimal weight w of all clauses in the detected
inconsistent subformula, and the rule is applied to φ11. The derived clauses and clauses in
φ12 can be used in subsequent reasoning.

6. MaxSatz: a New Max-SAT Solver

We have implemented a new Max-SAT solver, called MaxSatz, that incorporates the lower
bound computation method based on unit propagation defined in Section 3, and applies the
inference rules defined in Section 4. The name of MaxSatz comes from the fact that the
implementation of our algorithm incorporates most of the technology that was developed
for the SAT solver Satz (Li & Anbulagan, 1997b, 1997a).

MaxSatz incorporates the lower bound based on unit propagation, and applies Rule 1,
Rule 2, Rule 3, Rule 4, Rule 5, and Rule 6. In addition, MaxSatz applies the following
techniques:

• Pure literal rule: If a literal only appears with either positive polarity or negative
polarity, we delete the clauses containing that literal.

337

Li, Manyà & Planes

• Empty-Unit clause rule (Alsinet et al., 2003a): Let neg1(x) (pos1(x)) be the number of
unit clauses in which x is negative (positive). If #emptyClauses(φ)+neg1(x) ≥ UB,
then we assign x to false. If #emptyClauses(φ) + pos1(x) ≥ UB, then we assign x

to true.

• Dominating Unit Clause (DUC) rule (Niedermeier & Rossmanith, 2000): If the num-
ber of clauses in which a literal x (x̄) appears is not greater than neg1(x) (pos1(x)),
then we assign x to false (true).

• Variable selection heuristic: Let neg2(x) (pos2(x)) be the number of binary clauses
in which x is negative (positive), and let neg3(x) (pos3(x)) be the number of clauses
containing three or more literals in which x is negative (positive). We select the
variable x such that (neg1(x)+4∗neg2(x)+neg3(x))*(pos1(x)+4∗pos2(x)+pos3(x))
is the largest. The fact that binary clauses are counted four times more than other
clauses was determined empirically.

• Value selection heuristic: Let x be the selected branching variable. If neg1(x) + 4 ∗
neg2(x) + neg3(x) < pos1(x) + 4 ∗ pos2(x) + pos3(x), set x to true. Otherwise set x
to false. This heuristics was also determined empirically.

In this paper, in order to compare the inference rules defined, we have used three sim-
plified versions of MaxSatz:

• MaxSat0: does not apply any inference rule defined in Section 4.

• MaxSat12: applies rules 1 and 2, but not rules 3, 4, 5 and 6.

• MaxSat1234: applies rules 1, 2, 3 and 4, but not rules 5 and 6.

Actually, MaxSatz corresponds to MaxSat123456 in our terminology. MaxSat12 corre-
sponds to an improved version of the solver UP (Li et al., 2005), using a special ordering
for propagating unit clauses in unit propagation. MaxSat12 maintains two queues during
unit propagation: Q1 and Q2. When MaxSat12 starts the search for an inconsistent sub-
formula via unit propagation, Q1 contains all the unit clauses of the CNF formula under
consideration (more recently derived unit clauses are at the end of Q1), and Q2 is empty.
The unit clauses derived during the application of unit propagation are stored in Q2, and
unit propagation does not use any unit clause from Q1 unless Q2 is empty. Intuitively, this
ordering prefers unit clauses which were non-unit clauses before starting the application of
unit propagation. This way, the derived inconsistent subset contains, in general, less unit
clauses. The unit clauses which have not been consumed will contribute to detect further
inconsistent subsets. Our experimental results (Li, Manyà, & Planes, 2006) show that the
search tree size of MaxSat12 is substantially smaller than that of UP, and MaxSat12 is
substantially faster than UP. MaxSat0, Maxsat1234, and MaxSatz use the same ordering
as MaxSat12 for propagating unit clauses in unit propagation.

The source code of MaxSat0, MaxSat12, MaxSat1234, and MaxSatz can be found at
http://web.udl.es/usuaris/m4372594/jair-maxsatz-solvers.zip, and at http://www.laria.u-
picardie.fr/˜cli/maxsatz.tar.gz.

338

New Inference Rules for Max-SAT

7. Experimental Results

We report on the experimental investigation performed for unweighted Max-SAT in order
to evaluate the inference rules defined in Section 4, and to compare MaxSatz with the
best performing state-of-the-art solvers that were publicly available when this paper was
submitted. The experiments were performed on a Linux Cluster with processors 2 GHz
AMD Opteron with 1 Gb of RAM.

The structure of this section is as follows. We first describe the solvers and benchmarks
that we have considered. Then, we present the experimental evaluation of the inference
rules. Finally, we show the experimental comparison of MaxSatz with other solvers.

7.1 Solvers and Benchmarks

MaxSatz was compared with the following Max-SAT solvers:

• BF2 (Borchers & Furman, 1999): a branch and bound Max-SAT solver which uses
MOMS as dynamic variable selection heuristic and does not consider underestimations
in the computation of the lower bound. It was developed by Borchers and Furman in
1999.

• AGN3 (Alber et al., 2001): a branch and bound Max-2SAT solver. It was developed
by Alber, Gramm and Niedermeier in 1998.

• AMP4 (Alsinet et al., 2003b): a branch and bound Max-SAT solver based on BF that
incorporates a lower bound of better quality and the Jeroslow-Wang variable selection
heuristic (Jeroslow & Wang, 1990). It was developed by Alsinet, Manyà and Planes
and presented at SAT-2003.

• toolbar5 (de Givry et al., 2003; Larrosa & Heras, 2005): a Max-SAT solver whose
inference was inspired in soft arc consistency properties implemented in weighted CSP
solvers. It was developed by de Givry, Larrosa, Meseguer and Schiex and was first
presented at CP-2003. We used version 2.2 with default parameters.

• MaxSolver6 (Xing & Zhang, 2004): a branch and boundMax-SAT solver that applies a
number of efficient inference rules. It was developed by Xing and Zhang and presented
at CP-2004. We used the second release of this solver.

• Lazy7 (Alsinet et al., 2005): a branch and bound Max-SAT solver with lazy data
structures and a static variable selection heuristic. It was developed by Alsinet, Manyà
and Planes and presented at SAT-2005.

2. Downloaded in October 2004 from http://infohost.nmt.edu/˜borchers/satcodes.tar.gz
3. Downloaded in October 2005 from http://www-fs.informatik.uni-tuebingen.de/˜gramm/
4. Available at http://web.udl.es/usuaris/m4372594/software.html
5. Downloaded in October 2005 from http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
6. Downloaded in October 2005 from http://cic.cs.wustl.edu/maxsolver/
7. Available at http://web.udl.es/usuaris/m4372594/software.html

339

Li, Manyà & Planes

• UP8 (Li et al., 2005): a branch and bound Max-SAT solver with the lower bound
computation method based on unit propagation (cf. Section 3). It was developed by
Li, Manyà and Planes and presented at CP-2005.

We used as benchmarks randomly generated Max-2SAT instances and Max-3SAT in-
stances, graph 3-coloring instances9, as well as Max-Cut instances10. We also considered the
unweighted Max-SAT benchmarks submitted to the Max-SAT Evaluation 2006, including
Max-Cut, Max-Ones, Ramsey numbers, and random Max-2SAT and Max-3SAT instances.

We generated Max-2SAT instances and Max-3SAT instances using the generator mwff.c
developed by Bart Selman, which allows for duplicated clauses. For Max-Cut, we first
generated a random graph of m edges in which every edge is randomly selected among
the set of all possible edges. If the graph is not connected, it is discarded. If the graph
is connected, we used the encoding of Shen and Zhang (2005) to encode the Max-Cut
instance into a CNF: we created, for each edge (xi, xj), exactly two binary clauses (xi ∨xj)
and (x̄i ∨ x̄j). If φ is the collection of such binary clauses, then the Max-Cut instance has
a cut of weight k iff the Max-SAT instance has an assignment under which m+ k clauses
are satisfied.

For graph 3-coloring, we first used Culberson’s generator to generate a random k-
colorable graph of type IID (independent random edge assignment, variability=0) with
k vertices and a fixed edge density. We then used Culberson’s converter to SAT with stan-
dard conversion and three colors to generate a Max-SAT instance: for each vertex xi and
for each color j ∈ {1, 2, 3}, a propositional variable xij is defined meaning that vertex i is
colored with color j. For each vertex xi, four clauses are added to encode that the vertex
is colored with exactly one color: xi1 ∨ xi2 ∨ xi3, x̄i1 ∨ x̄i2, x̄i1 ∨ x̄i3, and x̄i2 ∨ x̄i3; and, for
each edge (xi, xj), three clauses are added to encode that vertex xi and vertex xj do not
have the same color: x̄i1 ∨ x̄j1, x̄i2 ∨ x̄j2, and x̄i3 ∨ x̄j3.

In random Max-2SAT and Max-3SAT instances, clauses are entirely independent to each
other and do not have structure. In the graph 3-coloring instances and Max-Cut instances
used in this paper, clauses are not independent and have structure. For example, in a
Max-Cut instance, every time we have a clause xi ∨ xj, we also have the clause x̄i ∨ x̄j ;
the satisfaction of these two clauses means that the corresponding edge is in the cut. In a
graph 3-coloring instance, every time we have a ternary clause xi1 ∨ xi2 ∨ xi3 encoding that
vertex i is colored with at least a color, we also have three binary clauses x̄i1∨ x̄i2, x̄i1∨ x̄i3,
and x̄i2 ∨ x̄i3 encoding that vertex i cannot be colored with two or more colors. Max-
Cut instances only contain binary clauses, but graph 3-coloring instances contain a ternary
clause for every vertex in the graph. While we can derive an optimal cut from an optimal
assignment of a Max-SAT encoding of any Max-Cut instance, an optimal assignment of a
Max-SAT encoding of a 3-coloring instance may assign more than one color to some vertices.

8. Available at http://web.udl.es/usuaris/m4372594/software.html
9. Given an undirected graph G = (V,E), where V = {x1, . . . , xn} is the set of vertices and E is the set

of edges, and a set of three colors, the graph 3-coloring problem is the problem of coloring every vertex
with one of the three colors in such a way that, for each edge (xi, xj) ∈ E, vertex xi and vertex xj do
not have the same color.

10. Given an undirected graph G = (V,E), let wxi,xj
be the weight associated with each edge (xi, xj) ∈ E.

The weighted Max-Cut problem is to find a subset S of V such that W (S,S) =
∑

xi∈S,xj∈S wxi,xj
is

maximized, where S = V − S. In this paper, we set weight wxi,xj
= 1 for all edges.

340

New Inference Rules for Max-SAT

The Max-Cut and Ramsey numbers instances from the Max-SAT Evaluation 2006 con-
tain different structures. For example, the underlying graphs in the Max-Cut instances
have different origins such as fault diagnosis problems, coding theory problems, and graph
clique problems. Max-2SAT and Max-3SAT instances from the evaluation do not contain
duplicated clauses.

We computed an initial upper bound with a local search solver for each instance. We
did not provide any parameter to any solver except the instance to be solved and the initial
upper bound. In other words, we used the default values for all the parameters. The
instances from the Max-SAT Evaluation 2006 were solved in the same conditions as in the
evaluation; i.e., no initial upper bound was provided to the solvers, and the maximum time
allowed to solve an instance was 30 minutes.

7.2 Evaluation of the Inference Rules

In the first experiment performed to evaluate the impact of the inference rules of Section 4,
we solved sets of 100 random Max-2SAT instances with 50 and 100 variables; the number
of clauses ranged from 400 to 4500 for 50 variables, and from 400 to 1000 for 100 variables.
The results obtained are shown in Figure 7. Along the horizontal axis is the number of
clauses, and along the vertical axis is the mean time (left plot), in seconds, needed to solve
an instance of a set, and the mean number of branches of the proof tree (right plot). Notice
that we use a log scale to represent both run-time and branches.

We observe that the rules are very powerful for Max-2SAT and the gain increases as
the number of variables and the number of clauses increase. For 50 variables and 1000
clauses (the clause to variable ratio is 20), MaxSatz is 7.6 times faster than MaxSat1234;
and for 100 variables and 1000 clauses (the clause to variable ratio is 10), MaxSatz is 9.2
times faster than MaxSat1234. The search tree of MaxSatz is also substantially smaller
than that of MaxSat1234. Rule 5 and Rule 6 are more powerful than Rule 3 and Rule 4 for
Max-2SAT. The intuitive explanation is that MaxSatz and MaxSat1234 detect many more
inconsistent subsets of clauses containing one unit clause than subsets containing two unit
clauses, so that Rule 5 and Rule 6 can be applied many more times than Rule 3 and Rule 4
in MaxSatz.

Recall that, on the one hand, every application of Rule 3 and Rule 4 consumes two
unit clauses but only produces one empty clause, limiting unit propagation in detecting
more conflicts in subsequent search. On the other hand, Rule 3 and Rule 4 add clauses
which may contribute to detect further conflicts. Depending on the number of clauses (or
more precisely, the clause to variable ratio) in a formula, these two factors have different
importance. When there are relatively few clauses, unit propagation relatively does not
easily derive a contradiction from a unit clause, and the binary clauses added by Rule 3 and
Rule 4 are relatively important for deriving additional conflicts and improving the lower
bound, which explains why the search tree of MaxSat1234 is smaller than the search tree
of MaxSat12 for instances with 100 variables and less than 600 clauses. On the contrary,
when there are many clauses, unit propagation easily derives a contradiction from a unit
clause, so that the two unit clauses consumed by Rule 3 and Rule 4 would probably allow to
derive two disjoint inconsistent subsets of clauses. In addition, the binary clauses added by
Rule 3 and Rule 4 are relatively less important for deriving additional conflicts, considering

341

Li, Manyà & Planes

the large number of clauses in the formula. In this case, the search tree of MaxSat1234
is larger than the search tree of MaxSat12. However, in both cases, MaxSat1234 is faster
that MaxSat12, meaning that the incremental lower bound computation due to Rule 3 and
Rule 4 is very effective, since the redetection of many conflicts is avoided thanks to Rule 3
and Rule 4.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 2000 3000 4000

tim
e

(lo
gs

ca
le

)

number of clauses

Max-2SAT - 50 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000 2000 3000 4000
br

an
ch

es
 (

lo
g

sc
al

e)

number of clauses

Max-2SAT - 50 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 0.01

 0.1

 1

 10

 100

 1000

 10000

 400 500 600 700 800 900 1000

tim
e

(lo
gs

ca
le

)

number of clauses

Max-2SAT - 100 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 400 500 600 700 800 900 1000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-2SAT - 100 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

Figure 7: Comparison among MaxSat12, MaxSat1234 and MaxSatz on random Max-2SAT in-
stances.

Rule 5 and Rule 6 do not limit unit propagation in detecting more conflicts, since their
application produces one empty clause and consumes just one unit clause, which allows to
derive at most one conflict in any case. The added ternary clauses allow to improve the
lower bound, so that the search tree of MaxSatz is substantially smaller than the search
tree of MaxSat1234. The incremental lower bound computation due to Rule 5 and Rule 6
also contributes to the time performance of MaxSatz. For example, while the search tree of
MaxSatz for instances with 50 variables and 2000 clauses is about 11.5 times smaller than
the search tree of MaxSat1234, MaxSatz is 14 times faster than MaxSat1234.

In the second experiment, we solved random Max-3SAT instances instead of random
Max-2SAT instances. We solved instances with 50 and 70 variables; the number of clauses
ranged from 400 to 1200 for 50 variables, and from 500 to 1000 for 70 variables. The results
obtained are shown in Figure 8.

342

New Inference Rules for Max-SAT

 0.1

 1

 10

 100

 1000

 400 600 800 1000 1200

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3SAT - 50 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 1000

 10000

 100000

 1e+06

 1e+07

 400 600 800 1000 1200

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-3SAT - 50 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 1

 10

 100

 1000

 10000

 500 600 700 800 900 1000

tim
e

(lo
gs

ca
le

)

number of clauses

Max-3SAT - 70 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 10000

 100000

 1e+06

 1e+07

 1e+08

 500 600 700 800 900 1000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-3SAT - 70 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

Figure 8: Comparison among MaxSat12, MaxSat1234 and MaxSatz on random Max-3SAT in-
stances.

Although the rules do not involve ternary clauses, they are also powerful for Max-3SAT.
Similarly to Max-2SAT, Rule 3 and Rule 4 slightly improve the lower bound when there
are relatively few clauses, but do not improve the lower bound when the number of clauses
increases. They improve the time performance thanks to the incremental lower bound
computation they allowed. The gain increases as the number of clauses increases. For
example, for problems with 70 variables, when the number of clauses is 600, MaxSat1234
is 36% faster than MaxSat12 and, when the number of clauses is 1000, the gain is 44%.
Rule 5 and Rule 6 improve both the lower bound and the time performance of MaxSatz.
The gain increases as the number of clauses increases.

In the third experiment we considered the Max-Cut problem for graphs with 50 vertices
and a number of edges ranging from 200 to 800. Figure 9 shows the results of comparing
the inference rules on Max-Cut instances. We observe that the rules allow us to solve
the instances much faster. Similarly to random Max-2SAT, Rule 3 and Rule 4 do not
improve the lower bound when there are many clauses, but improve the time performance
due to the incremental lower bound computation they allowed. Rule 5 and Rule 6 are more
powerful than Rule 3 and Rule 4 for these instances, which only contain binary clauses but
have some structure. In addition, the reduction of the tree size due to Rule 5 and Rule 6
contributes to the time performance of MaxSatz more than the incrementality of the lower
bound computation, as for random Max-2SAT. For example, the search tree of MaxSatz
for instances with 800 edges is 40 times smaller than the search tree of MaxSat1234, and
MaxSatz is 47 times faster.

343

Li, Manyà & Planes

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 200 300 400 500 600 700 800

tim
e

(lo
g

sc
al

e)

number of edges

Max-Cut - 50 nodes

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 200 300 400 500 600 700 800

br
an

ch
es

 (
lo

g
sc

al
e)

number of edges

Max-Cut - 50 nodes

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

Figure 9: Experimental results for Max-Cut

In the fourth experiment we considered graph 3-coloring instances with 24 and 60 ver-
tices, and with density of edges ranging from 20% to 90%. Figure 10 shows the results of
comparing the inference rules on graph 3-coloring instances. We observe that Rule 1 and
Rule 2 are not useful for these instances; the tree size of MaxSat0 and MaxSat12 is almost
the same, and MaxSat12 is slower than MaxSat0. On the contrary, other rules are very
useful for these instances, especially because they allow to reduce the search tree size by
deriving better lower bounds.

 1e-04

 0.001

 0.01

 0.1

 20 30 40 50 60 70 80 90

tim
e

(lo
g

sc
al

e)

% of edges

Graph 3-coloring 24 nodes

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 10

 100

 1000

 10000

 20 30 40 50 60 70 80 90

B
ra

nc
he

s
(lo

g
sc

al
e)

% of edges

Graph 3-coloring 24 nodes

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 1

 10

 100

 1000

 10000

 20 30 40 50 60 70 80 90

tim
e

(lo
g

sc
al

e)

% of edges

Graph 3-coloring 60 nodes

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 100000

 1e+06

 1e+07

 1e+08

 20 30 40 50 60 70 80 90

B
ra

nc
he

s
(lo

g
sc

al
e)

% of edges

Graph 3-coloring 60 nodes

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

Figure 10: Experimental results for Graph 3-Coloring

Note that Rule 3 and Rule 4 have more impact than Rule 5 and Rule 6 on reducing
the cost of solving the instances. This is probably due to the fact that two unit clauses are
needed to detect a contradiction, so that Rule 3 and Rule 4 are applied many more times.

344

New Inference Rules for Max-SAT

Also note that the instances with 60 vertices become easier to solve when the density of the
graph is high.

In the fifth experiment, we compared different inference rules on the benchmarks sub-
mitted to the Max-SAT Evaluation 2006. Solvers ran in the same conditions as in the
evaluation. In Table 1, the first column is the name of the benchmark set, the second
column is the number of instances in the set, and the rest of columns display the average
time, in seconds, needed by each solver to solve an instance (the number of solved instances
in brackets). The maximum time allowed to solve an instance was 30 minutes.

In is clear that MaxSat12 is better than MaxSat0, MaxSat1234 is better than MaxSat12,
and MaxSatz is better than MaxSat1234. For example, MaxSatz solves three MAXCUT
johnson instances within the time limit, while the other solvers only solve two instances.
The average time for MaxSatz to solve one of these three instances is 44.46 seconds, the
third instance needing more time to be solved than the other two instances.

Set Name #Instances MaxSat0 MaxSat12 MaxSat1234 MaxSatz

MAXCUT brock 12 471.01(10) 277.12(12) 225.11(12) 14.01(12)
MAXCUT c-fat 7 1.92 (5) 3.11 (5) 2.84 (5) 0.07(5)
MAXCUT hamming 6 39.42(2) 29.43(2) 29.48(2) 171.30(3)
MAXCUT johnson 4 14.91(2) 8.57 (2) 7.21 (2) 44.46(3)
MAXCUT keller 2 512.66(2) 213.64(2) 163.26(2) 6.82(2)
MAXCUT p hat 12 72.16(9) 286.09(12) 226.24(12) 16.81(12)
MAXCUT san 11 801.95(7) 305.75(7) 245.70(7) 258.65(11)
MAXCUT sanr 4 323.67(3) 134.74(3) 107.76(3) 71.00(4)
MAXCUT max cut 40 610.28(35) 481.48(40) 450.05(40) 7.18(40)
MAXCUT SPINGLASS 5 0.22 (2) 0.19 (2) 0.15 (2) 0.14(2)
MAXONE 45 0.03 (45) 0.03 (45) 0.03 (45) 0.03(45)
RAMSEY 48 8.93 (34) 8.42 (34) 7.80 (34) 7.78(34)
MAX2SAT 100VARS 50 95.01(50) 11.30(50) 8.14 (50) 1.25(50)
MAX2SAT 140VARS 50 153.28(49) 51.76(50) 34.14(50) 6.94(50)
MAX2SAT 60VARS 50 1.35 (50) 0.08 (50) 0.06 (50) 0.02(50)
MAX2SAT DISCARDED 180 126.98(162) 71.85(173) 68.97(175) 22.72(180)
MAX3SAT 40VARS 50 11.52(50) 3.33 (50) 2.52 (50) 1.92(50)
MAX3SAT 60VARS 50 167.17(50) 72.72(50) 52.14(50) 40.27(50)

Table 1: Evaluation of the rules with benchmarks from the MAX-SAT Evaluation 2006.

7.3 Comparison of MaxSatz with Other Solvers

In the first experiment, that we performed to compare MaxSatz with other state-of-the-art
Max-SAT solvers, we solved sets of 100 random Max-2SAT instances with 50, 100 and 150
variables; the number of clauses ranged from 400 to 4500 for 50 variables, from 400 to
1000 for 100 variables, and from 300 to 650 for 150 variables. The results of solving such
instances with BF, AGN, AMP, Lazy, toolbar, MaxSolver, UP and MaxSatz are shown in
Figure 11. Along the horizontal axis is the number of clauses, and along the vertical axis is
the mean time, in seconds, needed to solve an instance of a set. When a solver needed too
much time to solve the instances at a point, it was stopped and the corresponding point is
not shown in the figure. That is why for 50 variable instances, BF has only one point in
the figure (for 400 clauses); and for 100 variable instances, BF and AMP also have only one
point in the figure (for 400 clauses). The version of MaxSolver we used limits the number
of clauses to 1000 in the instances to be solved. We ran it for instances up to 1000 clauses.

We see dramatic differences on performance between MaxSatz and the rest of solvers
in Figure 11. For the hardest instances, MaxSatz is up to two orders of magnitude faster

345

Li, Manyà & Planes

than the second best performing solvers (UP). For those instances, MaxSatz needs 1 second
to solve an instance while solvers like MaxSolver and toolbar are not able to solve these
instances after 10,000 seconds.

In the second experiment, we solved random Max-3SAT instances instead of random
Max-2SAT instances. The results obtained are shown in Figure 12. We did not consider
AGN because it can only solve Max-2SAT instances. We solved instances with 50, 70 and
100 variables; the number of clauses ranged from 500 to 1200 for 50 variables, from 500
to 1000 for 70 variables, and from 450 to 800 for 100 variables. For 70 variables, AMP
has only one point in the figure (for 500 clauses) and BF is too slow. For 100 variables,
we compared only the two best solvers. Once again, we observe dramatic differences on
the performance profile of MaxSatz and the rest of solvers. Particularly remarkable are
the differences between MaxSatz and toolbar (the second best performing solver on Max-
3SAT), where we see that MaxSatz is up to 1,000 times faster than toolbar on the hardest
instances.

In the third experiment, we considered the Max-Cut problem of graphs with 50 vertices
and a number of edges ranging from 200 to 700. Figure 13 shows the results obtained. BF
has only one point in the figure (for 200 edges). MaxSolver solved instances up to 500 edges
(1000 clauses). We observe that MaxSatz is superior to the rest of solvers.

In the fourth experiment, we considered the 3-coloring problem of graphs with 24 and
60 vertices, and a density of edges ranging from 20% to 90%. AGN was not considered
because it can only solve Max-2SAT instances. For 60 vertices, we only compared the three
best solvers, of which MaxSolver is a different version not limiting the number of clauses
of the instance to be solved. Figure 14 shows the comparative results for different solvers.
MaxSatz is the best performing solver, and UP and MaxSolver are substantially better than
the rest of solvers.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 200 300 400 500 600 700

tim
e

(lo
g

sc
al

e)

number of edges

Max-Cut - 50 nodes

BF
AMP
AGN
Lazy

toolbar
MaxSolver

UP
MaxSatz

Figure 13: Experimental results for Max-Cut

346

New Inference Rules for Max-SAT

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 2000 3000 4000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 50 variables

BF
AMP
AGN
Lazy

toolbar
MaxSolver

UP
MaxSatz

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 400 500 600 700 800 900 1000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 100 variables

BF
AMP
AGN
Lazy

toolbar
MaxSolver

UP
MaxSatz

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 300 400 500 600

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 150 variables

BF
AMP
AGN
Lazy

toolbar
MaxSolver

UP
MaxSatz

Figure 11: Experimental results for 50-variable, 100-variable and 150-variable random Max-
2SAT instances.

347

Li, Manyà & Planes

 0.1

 1

 10

 100

 1000

 10000

 600 800 1000 1200

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3SAT - 50 variables

BF
AMP
Lazy

toolbar
MaxSolver

UP
MaxSatz

 1

 10

 100

 1000

 10000

 500 600 700 800 900 1000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3SAT - 70 variables

AMP
Lazy

toolbar
MaxSolver

UP
MaxSatz

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 500 600 700 800

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3SAT - 100 variables

toolbar
MaxSatz

Figure 12: Experimental results for 50-variable, 70-variable and 100-variable random Max-
3SAT instances.

348

New Inference Rules for Max-SAT

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 20 30 40 50 60 70 80 90

tim
e

(lo
g

sc
al

e)

% of edges

Graph 3-coloring 24 nodes

BF
AMP
Lazy

MaxSolver
toolbar

UP
MaxSatz

 1

 10

 100

 1000

 10000

 100000

 20 30 40 50 60 70 80 90

tim
e

(lo
g

sc
al

e)

% of edges

Graph 3-coloring 60 nodes

MaxSolver
UP

MaxSatz

Figure 14: Experimental results for Graph 3-Coloring

In the fifth experiment, we compared the Max-SAT solvers on the benchmarks submitted
to the Max-SAT Evaluation 2006. Solvers ran in the same conditions as in the evaluation.
In Table 2, the first column is the name of the benchmark set, the second column is the
number of instances of the set, and the rest of columns display the average time, in seconds,
needed by each solver to solve an instance within a time limit of 30 minutes (the number of
instances solved within the time limit in brackets). A dash means that the corresponding
solver cannot solve the set of instances. It is clear that MaxSatz is the best performing
solver for all the sets.

8. Related Work

The simplest method to compute a lower bound consists of just counting the number of
clauses unsatisfied by the current partial assignment (Borchers & Furman, 1999). One step
forward is to incorporate an underestimation of the number of clauses that will become
unsatisfied if the current partial assignment is extended to a complete assignment. The
most basic method was defined by Wallace and Freuder (1996):

LB(φ) = #emptyClauses(φ) +
∑

x occurs in φ

min(ic(x), ic(x̄))

349

L
i,
M
a
n
y
à
&

P
l
a
n
e
s

Set Name #Instances BF AMP AGN toolbar Lazy MaxSolver UP MaxSatz

MAXCUT brock 12 (0) 545.81(1) 856.65(8) 470.23(12) 159.28 (12) 380.09(2) 629.85(9) 14.01(12)
MAXCUT c-fat 7 6.06 (1) 1.95 (3) 32.70(5) 42.84(5) 13.23 (4) 41.58(3) 7.19 (5) 0.07(5)
MAXCUT hamming 6 (0) 636.04(1) 159.99(1) 145.84(2) 265.35 (2) (0) 294.89(2) 171.30(3)
MAXCUT johnson 4 (0) 394.17(2) 92.90(2) 11.07(2) 13.50 (2) 1.34 (1) 29.42(2) 44.46(3)
MAXCUT keller 2 (0) 197.15(1) 39.36(1) 255.39(2) 348.75 (2) (0) 615.54(2) 6.82 (2)
MAXCUT DIMACS p hat 12 605.44(2) 107.79(8) 16.11(8) 235.60(11) 259.33 (10) 14.00(8) 140.23(9) 16.81(12)
MAXCUT san 11 (0) 563.19(1) 72.35(2) 568.09(7) 956.54 (5) 283.34(2) 812.47(5) 258.65(11)
MAXCUT sanr 4 (0) 428.18(1) 909.32(3) 234.89(3) 410.53 (3) 138.32(1) 538.10(3) 71.00(4)
MAXCUT max cut 40 (0) (0) 1742.79(3) 736.34(18) 1027.21 (7) (0) 623.03(13) 7.18(40)
MAXCUT SPINGLASS 5 0.21 (1) 0.13 (1) 12.70(2) 5.72 (2) 0.05 (1) 570.68(2) 0.86 (2) 0.14(2)
MAXONE 45 0.02 (21) 0.03 (45) - 35.35(44) 278.58 (26) 0.06 (45) 0.31 (45) 0.03 (45)
RAMSEY ram k 48 8.53 (30) 38.44(30) - 4.14(27) 10.48 (25) 0.20 (20) 19.65(25) 7.78 (34)
MAX2SAT 100VARS 50 0.14 (10) 143.23(11) 185.69(30) 244.05(34) 273.44 (22) 532.47(16) 192.34(48) 1.25 (50)
MAX2SAT 140VARS 50 0.08 (10) 91.93(12) 126.34(28) 262.30(26) 217.12 (17) 168.42(18) 75.57(39) 6.94 (50)
MAX2SAT 60VARS 50 1.92 (3) 514.02(44) 6.34 (50) 2.01 (50) 26.44 (50) 81.82(50) 0.94 (50) 0.02 (50)
MAX2SAT DISCARDED 180 357.65(28) 439.54(76) 99.70(108) 178.23(116) 85.08 (87) 308.58(73) 166.29(149) 22.72(180)
MAX3SAT 40VARS 50 170.49(22) 202.18(50) - 10.19 (50) 69.72 (50) 66.34(49) 60.50(50) 1.92(50)
MAX3SAT 60VARS 50 4.07 (16) 168.00(25) - 361.95(43) 242.40 (28) 139.03(22) 166.76(37) 40.27(50)

Table 2: Experimental results for benchmarks from the MAX-SAT Evaluation 2006.

3
5
0

New Inference Rules for Max-SAT

where φ is the CNF formula associated with the current partial assignment, and ic(x) (ic(x̄))
—inconsistency count of x (x̄)— is the number of unit clauses of φ that contain x̄ (x).

The underestimation of the lower bound can be improved by applying to binary clauses
the Directional Arc Consistency (DAC) count defined by Wallace (1995) for Max-CSP. The
DAC count of a value of the variable x in φ is the number of variables which are inconsistent
with that value of x. For example, if φ contains clauses x ∨ y, x ∨ ȳ, and x̄ ∨ y, the value
0 of x is inconsistent with y. Note that value 0 of y is also inconsistent with x. These
two inconsistencies are not disjoint and cannot be summed. Wallace defined a direction
from x to y, so that only the inconsistency for value 0 of x is counted. After defining a
direction between every pair of variables sharing a constraint, one computes the DAC count
for all values of x by checking all variables to which a direction from x is defined. The
underestimation considering the DAC count of Wallace is as follows:

∑

x occurs in φ

(min(ic(x), ic(x̄)) +min(dac(x), dac(x̄))

where dac(x) (dac(x̄)) is the DAC count of the value 1(0) of x. Wallace statically defined
all directions, so that dac(x) and dac(x̄) can be computed in a preprocessing step for every
x and do not need to be recomputed during search. This is improved by Larrosa, Meseguer
and Schiex (1999) by introducing reversible DAC, which searches for better directions to
obtain a better lower bound at every node of the search tree. An improvement of DAC
counts is the additional incorporation of inconsistencies contributed by disjoint subsets of
variables, based on particular variable partitions (Larrosa & Meseguer, 2002).

Inconsistent and DAC counts deal with unit and binary clauses. Lower bounds dealing
with longer clauses include star rule (Shen & Zhang, 2004; Alsinet et al., 2004) and UP (Li
et al., 2005).

In the star rule, the underestimation of the lower bound is the number of disjoint
inconsistent subformulas of the form {l1, . . . , lk, l̄1 ∨ · · · ∨ l̄k}. The star rule, when k = 1, is
equivalent to the inconsistency counts of Wallace and Freuder.

UP subsumes the inconsistent count method based on unit clauses and the star rule. Its
effectiveness for producing a good lower bound can be illustrated with the following example:
let φ be a CNF formula containing the clauses x1, x̄1∨x2, x̄1∨x3, x̄2∨x̄3∨x4, x5, x̄5∨x6, x̄5∨
x7, x̄6 ∨ x̄7 ∨ x̄4. UP easily detects that inconsistent subset with 8 clauses and 7 variables,
in time linear in the size of the formula. Note that this subset is not detected by any of the
lower bounds described above, except for the variable partition based approach of Larrosa
and Meseguer (2002) in the case that the 7 variables are in the same partition.

We mention two more lower bound computation methods. One is called LB4 and was
defined by Shen and Zhang (2004). It is similar to UP but restricted to Max-2SAT instances
and using a static variable ordering. Another is based on linear programming and was
defined by Xing and Zhang (2005).

Regin et al. (2001) suggested to use arc consistency, instead of unit propagation, to detect
disjoint inconsistent subsets of constraints in weighted constraint networks. However, to the
best of our knowledge, this idea has not been incorporated in any lower bound computation
method implemented by the Constraint Programming community.

A good lower bound computation method has a dramatic impact on the performance of
a Max-SAT solver. Another approach to speed up a Max-SAT solver consists of applying

351

Li, Manyà & Planes

inference rules to transform a Max-SAT instance φ into an equivalent but simpler Max-SAT
instance φ′. Inference rules that have proven to be useful in practice include: (i) the pure
literal rule (Alsinet et al., 2003b; Xing & Zhang, 2004; Li et al., 2005; Zhang et al., 2003);
(ii) the dominating unit clause rule, first proposed by Niedermeier and Rossmanith (2000),
and later applied in several solvers (Alsinet et al., 2004; Xing & Zhang, 2004; Li et al.,
2005); (iii) the almost common clause rule, first proposed by Bansal and Raman (1999) and
restated as Rule 1 in this paper. The rule was extended to weighted Max-SAT byAlsinet
et al. (2004); was called neighborhood resolution by Larrosa and Heras (2005); and used as a
preprocessing technique by Alsinet et al. (2004), Shen and Zhang (2005), and Li et al. (2005);
(iv) the complementary unit clause rule (Niedermeier & Rossmanith, 2000), restated as Rule
2 in this paper; and (v) the coefficient-determining unit propagation rule (Xing & Zhang,
2005) based on integer programming.

The inference rules presented in this paper simplify a Max-SAT formula φ and allow
to improve the lower bound computation, since they all transform a Max-SAT formula φ

into a simpler and equivalent formula containing more empty clauses. Their soundness
(i.e., the fact that they transform a formula into an equivalent one) can be proved in several
ways, including (i) checking all possible variable assignments, (ii) using integer programming
as done in Section 4, and (iii) using soft local consistency techniques defined for Weighted
Constraint Networks (WCN); Max-SAT can be defined as a subcase of WCN where variables
are Boolean and only unit costs are used.

Soft local consistency techniques for WCN are based on two basic equivalence preserving
transformations called projection and extension (Schiex, 2000; Cooper & Schiex, 2004).
Given a Max-SAT instance, projection replaces two binary clauses x ∨ y and x ∨ ȳ with
the unit clause x, which is Rule 1 for k=2. Extension is the inverse operation of projection
and replaces a unit clause x with two binary clauses x ∨ y and x ∨ ȳ for a selected variable
y. If the projection operation is rather straightforward for a SAT or Max-SAT instance,
the extension operation is very ingenious. To see this, note that Rule 3 can be proved or
applied with an extension followed by a projection:

l1, l̄1 ∨ l̄2, l2 = l1 ∨ l2, l1 ∨ l̄2, l̄1 ∨ l̄2, l2

= l1 ∨ l2, l̄2, l2

= l1 ∨ l2,✷

Lemma 1 can also be proved using an extension followed by a projection:

l1, l̄1 ∨ l2 = l1 ∨ l̄2, l1 ∨ l2, l̄1 ∨ l2

= l1 ∨ l̄2, l2

The extension operation cannot be used in an unguided way because it may cancel a
previous projection. One way to guide its use is to define an ordering between variables to
enforce directional arc consistency (Cooper, 2003; Cooper & Schiex, 2004). Directional arc
consistency allows to concentrate weights on the same variables by shifting weights from
earlier variables to later ones in a given ordering. For example if x1 < x2 in a given variable
ordering, one can extend unit clause x1 to x1∨x2, x1∨ x̄2, but cannot extend unit clause x2

352

New Inference Rules for Max-SAT

to x1 ∨ x2, x̄1 ∨ x2, allowing unit clauses to be concentrated on variable x2. Nevertheless,
how to define the variable ordering to efficiently exploit as much as possible the power of
soft arc consistency techniques in the lower bound computation remains an open problem.

The approach with inference rules for Max-SAT presented in this paper does not need
any predefined ordering among variables, since rule applications combining several projec-
tion and extension operations are entirely guided by unit propagation.

The projection and extension operations can be extended to constraints involving more
than two variables to achieve high-order consistency in WCN (Cooper, 2005). For a Max-
SAT instance, the extended projection and extension operations can be stated using Rule 1
for k>2. For the two formulas φ1 and φ2 in Rule 1, replacing φ1 with φ2 is a projection and
φ2 with φ1 is an extension. Given a unit clause x and three variables x, y, z, the extension
of the unit clause x to the set of three variables can be done as follows : replacing x by
x ∨ y and x ∨ ȳ, and then x ∨ y and x ∨ ȳ by x ∨ y ∨ z, x ∨ y ∨ z̄, x ∨ ȳ ∨ z and x ∨ ȳ ∨ z̄.

Rule 5 can be proved or applied by extending the four clauses of φ1 to ternary clauses on
the three variables of l1, l2 and l3, and then applying the projection operation to obtain φ2.

Larrosa et al. (2007), based on a logical approach, independently and in parallel with
our work, defined and implemented a chain resolution rule and a cycle resolution rule for
weighted Max-SAT. These two rules are extensions of Rules 2-RES and 3-RES presented,
also independently and in parallel with our work (Heras & Larrosa, 2006).

The chain resolution could be stated as follows:

(l1, u1),
(l̄i ∨ li+1, ui+1)1≤i<k,

(l̄k, uk+1)

=

(li,mi −mi+1)1≤i≤k,

(l̄i ∨ li+1, ui+1 −mi+1)1≤i<k,

(li ∨ l̄i+1,mi+1)1≤i<k,

(l̄k, uk+1 −mk+1),
(✷,mk+1)

where, for 1≤i≤k+1, ui is the weight of the corresponding clause, mi=min(u1, u2, . . . , ui),
and all variables in the literals are different. The weight of a mandatory clause is denoted
by ⊤, and the subtraction − is extended so that ⊤ − ui=⊤. The chain resolution rule is
equivalent to Rule 4 if it is applied to unweighted Max-SAT. The main difference between
the chain resolution rule and the weighted version of Rule 4 presented in Section 5.4 is
that the chain resolution shifts a part of the weight from unit clause (l1,m1 −mk+1), that
is derived in the weighted version of Rule 4, to create unit clauses (li,mi − mi+1)1<i≤k,
(l1,m1 −mk+1) itself becoming (l1,m1 −m2).

The cycle resolution rule could be stated as follows:

{

(l̄i ∨ li+1, ui)1≤i<k,

(l̄1 ∨ l̄k, uk)

}

=

(l̄1 ∨ li,mi−1 −mi)2≤i≤k,

(l̄i ∨ li+1, ui −mi)2≤i<k,

(l̄1 ∨ li ∨ l̄i+1,mi)2≤i<k,

(l1 ∨ l̄i ∨ li+1,mi)2≤i<k,

(l̄1 ∨ l̄k, uk −mk),
(l̄1,mk)

When a subset of binary clauses have a cyclic structure, the cycle resolution rule allows
to derive a unit clause. Note that the detection of the cyclic structure appears rather time-
consuming if it is applied at every node of a search tree and that 2×(k-2) new ternary

353

Li, Manyà & Planes

clauses have to be inserted. So, Larrosa et al. apply the cycle resolution rule in practice
only for the case k=3, which is similar to Rule 5, when applied to unweighted Max-SAT.
The cycle resolution rule applied to unweighted Max-SAT for k=3 can replace Rule 5 and
Rule 6 in MaxSatz, but with the following differences compared with Rule 5 and Rule 6:

• the application of Rule 5 and Rule 6 is entirely based on inconsistent subformulas
detected by unit propagation. The detection of the applicability of Rule 5 and Rule 6 is
easy and has very low overhead, since the inconsistent subformulas are always detected
in MaxSatz to compute the lower bound (with or without Rule 5 and Rule 6). Every
application of Rule 5 or Rule 6 allows to increment the lower bound by 1.

• the cycle resolution rule needs an extra detection of the cyclic structure, but allows
to derive a unit clause from the cyclic structure. The derived unit clause could then
be used in a unit propagation, and possibly could allow to detect an inconsistent
subformula and increase the lower bound by 1.

It would be an interesting future research topic to implement the cycle resolution rule in
MaxSat1234 (i.e., MaxSatz without Rule 5 and Rule 6) to evaluate the overhead of detecting
the cyclic structure and the usefulness of the unit clauses and the ternary clauses derived
using the cycle resolution rule, and to compare the implemented solver with MaxSatz. It
would be also interesting to compare the chain resolution rule and the cycle resolution rule
with the weighted inference rules presented in Section 5.4.

A more general Max-SAT resolution rule, where the conclusions were not in clausal
form, was defined by Larrosa and Heras (2005). Independently, Bonet et al. (2006, 2007)
and Heras and Larrosa (2006) defined a version of the rule with the conclusions in clausal
form. Bonet et al. (2006, 2007) also proved that this rule is complete for Max-SAT. Recently,
Ansótegui et al. (2007b, 2007a) have shown that Max-SAT resolution for many-valued CNF
formulas provides a logical framework for the global and local consistency properties defined
for WCN.

9. Conclusions and Future Work

One of the main drawbacks of state-of-the-art Max-SAT solvers is the lack of suitable
inference techniques that allow to detect as much contradictions as possible and to simplify
the formula at each node of the search tree. Existing approaches put the emphasis on
computing underestimations of good quality, but the problem with underestimations is
that the same contradictions are computed once and again. Furthermore, it turns out
that UP , one of the currently best performing underestimations consisting of detecting
disjoint inconsistent subsets of clauses in a CNF formula via unit propagation, is still too
conservative. To make the computation of lowers more incremental and to improve the
underestimation, we have defined a number of original inference rules for Max-SAT that,
based on derived contradictions by unit propagation, transform a Max-SAT instance into
an equivalent Max-SAT instance which is easier to solve. The rules were carefully selected
taking into account that they should be applied efficiently. Since all these rules are based
on contradiction detection, they should be particularly useful for hard Max-SAT instances
containing many contradictions.

354

New Inference Rules for Max-SAT

With the aim of finding out how powerful the inference rules are in practice, we have
developed a new Max-SAT solver, called MaxSatz, which incorporates those rules, and
performed an experimental investigation. The results of comparing MaxSatz with inference
rules and MaxSatz without inference rules provide empirical evidence of the usefulness
of these rules in making lower bound computation more incremental and in improving
the quality of lower bounds. The results of comparing MaxSatz with a large selection of
the solvers available at the time of submitting this paper provide empirical evidence that
MaxSatz, at least for the instances solved, is faster than the other solvers. We observed gains
of several orders of magnitude for the hardest instances. Interestingly, for the benchmarks
used, the second best solver was generally different: UP for Max-2SAT, toolbar for Max-
3SAT, MaxSolver for Max-Cut, and MaxSolver and UP for graph 3-coloring. So, MaxSatz
is more robust than the rest of solvers. It is worth mentioning that MaxSatz, enhanced with
a lower bound based on failed literal detection (Li et al., 2006), was the best performing
solver for unweighted Max-SAT instances in the Max-SAT Evaluation 2006. The second and
third best performing solvers were, respectively, improved versions of toolbar and Lazy11.

As future work we plan to study the orderings of unit clauses in unit propagation to
maximize the application of inference rules, and to define new inference rules for ternary
clauses. We are extending the results of this paper to weighted Max-SAT, which is more
suitable for modeling problems such as maximum clique, set covering and combinatorial
auctions, as well as constraint satisfaction problems such as hard instances of Model RB (Xu,
Boussemart, Hemery, & Lecoutre, 2005; Xu & Li, 2006). We are also adapting the results
of this paper to the partial Max-SAT solvers developed by Argelich and Manyà (2005, 2006,
2007).

Acknowledgments

Research partially supported by projects TIN2004-07933-C03-03 and TIN2006-15662-C02-
02 funded by the Ministerio de Educación y Ciencia. The first author was partially sup-
ported by National 973 Program of China under Grant No. 2005CB321900. The second
author was supported by a grant Ramón y Cajal. Finally, we would like to thank the referees
for their detailed comments and suggestions.

References

Alber, J., Gramm, J., & Niedermeier, R. (2001). Faster exact algorithms for hard problems:
A parameterized point of view. Discrete Mathematics, 229 (1–3), 3–27.

Alsinet, T., Manyà, F., & Planes, J. (2003a). Improved branch and bound algorithms for
Max-2-SAT and weighted Max-2-SAT. In Proceedings of the Catalonian Conference
on Artificial Intelligence (CCIA-03), P. Mallorca, Spain, Vol. 100 of Frontiers in
Artificial Intelligence and Applications, pp. 435–442. IOS Press.

11. See http://www.iiia.csic.es/˜maxsat06 for details. Note that the results of the Max-SAT Evaluation
2006 can be compared with the results of this paper because they were obtained with the same cluster
under the same conditions.

355

Li, Manyà & Planes

Alsinet, T., Manyà, F., & Planes, J. (2003b). Improved branch and bound algorithms for
Max-SAT. In Proceedings of the 6th International Conference on the Theory and
Applications of Satisfiability Testing (SAT-03), Portofino, Italy, pp. 408–415.

Alsinet, T., Manyà, F., & Planes, J. (2004). A Max-SAT solver with lazy data struc-
tures. In Proceedings of the 9th Ibero-American Conference on Artificial Intelligence
(IBERAMIA-04), Puebla, México, LNCS 3315, pp. 334–342. Springer.

Alsinet, T., Manyà, F., & Planes, J. (2005). Improved exact solver for weighted Max-
SAT. In Proceedings of the 8th International Conference on Theory and Applications
of Satisfiability Testing (SAT-05), St. Andrews, Scotland, LNCS 3569, pp. 371–377.
Springer.

Ansótegui, C., Bonet, M. L., Levy, J., & Manyà, F. (2007a). Inference rules for high-order
consistency in weighted CSP. In Proceedings of the 22nd National Conference on
Artificial Intelligence (AAAI-07), Vancouver, Canada, pp. 167–172. AAAI Press.

Ansótegui, C., Bonet, M. L., Levy, J., & Manyà, F. (2007b). The logic behind weighted CSP.
In Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI-07), Hyderabad, India, pp. 32–37. AAAI Press.

Argelich, J., & Manyà, F. (2005). Solving over-constrained problems with SAT technology.
In Proceedings of the 8th International Conference on Theory and Applications of
Satisfiability Testing (SAT-05), St. Andrews, Scotland, LNCS 3569, pp. 1–15. Springer.

Argelich, J., & Manyà, F. (2006). Exact Max-SAT solvers for over-constrained problems.
Journal of Heuristics, 12 (4–5), 375–392.

Argelich, J., & Manyà, F. (2007). Partial Max-SAT solvers with clause learning. In Proceed-
ings of the 10th International Conference on Theory and Applications of Satisfiability
Testing (SAT-07), Lisbon, Portugal, LNCS 4501, pp. 28–40. Springer.

Bansal, N., & Raman, V. (1999). Upper bounds for MaxSat: Further improved. In Proceed-
ings of 10th International Symposium on Algorithms and Computation (ISAAC-99),
Chennai, India, LNCS 1741, pp. 247–260. Springer.

Beame, P., Kautz, H., & Sabharwal, A. (2003). Understanding the power of clause learning.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI-03), Acapulco, México, pp. 94–99. Morgan Kaufman.

Bonet, M. L., Levy, J., & Manyà, F. (2006). A complete calculus for Max-SAT. In Proceed-
ings of the 9th International Conference on Theory and Applications of Satisfiability
Testing (SAT-06), Seattle, USA, LNCS 4121, pp. 240–251. Springer.

Bonet, M. L., Levy, J., & Manyà, F. (2007). Resolution for Max-SAT. Artificial Intelligence,
171, 606–618.

Borchers, B., & Furman, J. (1999). A two-phase exact algorithm for MAX-SAT and weighted
MAX-SAT problems. Journal of Combinatorial Optimization, 2, 299–306.

Boros, E., & Hammer, P. (2002). Pseudo-Boolean optimization. Discrete Applied Mathe-
matics, 123, 155–225.

Cooper, M. C. (2003). Reduction operations in fuzzy or valued constraint satisfaction. Fuzzy
Sets and Systems, 134, 311–342.

356

New Inference Rules for Max-SAT

Cooper, M. C. (2005). High-order consistency in valued constraint satisfaction. Constraints,
10, 283–305.

Cooper, M. C., & Schiex, T. (2004). Arc consistency for soft constraints. Artificial Intelli-
gence, 154 (1–2), 199–227.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to Algorithms
(second edition). MIT Press.

Davis, M., Logemann, G., & Loveland, D. (1962). A machine program for theorem-proving.
Communications of the ACM, 5, 394–397.

Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory. Journal
of the ACM, 7 (3), 201–215.

de Givry, S., Larrosa, J., Meseguer, P., & Schiex, T. (2003). Solving Max-SAT as weighted
CSP. In Proceedings of 9th International Conference on Principles and Practice
of Constraint Programming (CP-03), Kinsale, Ireland, LNCS 2833, pp. 363–376.
Springer.

de Givry, S., Zytnicki, M., Heras, F., & Larrosa, J. (2005). Existential arc consistency: Get-
ting closer to full arc consistency in weighted csps. In Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-05), Edinburgh, Scotland,
pp. 84–89.

Freeman, J. W. (1995). Improvements to Propositional Satisfiability Search Algorithms.
Ph.D. thesis, Department of Computer and Information Science, University of Penn-
sylvania, PA, USA.

Goldberg, E., & Novikov, Y. (2001). BerkMin: A fast and robust SAT solver. In Proceedings
of Design, Automation and Test in Europe (DATE-02), Paris, France, pp. 142–149.
IEEE Computer Society.

Heras, F., & Larrosa, J. (2006). New inference rules for efficient Max-SAT solving. In Pro-
ceedings of the 21st National Conference on Artificial Intelligence (AAAI-06), Boston,
USA. AAAI Press.

Huang, W. Q., & Jin, R. C. (1997). Solar: A learning from human algorithm for solving
SAT. Science in China (Series E), 27 (2), 179–186.

Jeroslow, R. G., & Wang, J. (1990). Solving propositional satisfiability problems. Annals
of Mathematics and Artificial Intelligence, 1, 167–187.

Larrosa, J., & Heras, F. (2005). Resolution in Max-SAT and its relation to local consistency
in weighted CSPs. In Proceedings of the 19th International Joint Conference on Arti-
ficial Intelligence (IJCAI-05), Edinburgh, Scotland, pp. 193–198. Morgan Kaufmann.

Larrosa, J., Heras, F., & de Givry, S. (2007). A logical approach to efficient Max-SAT
solving. Artificial Intelligence, (in press).

Larrosa, J., & Meseguer, P. (2002). Partition-based lower bound for Max-CSP. Constraints,
7 (3–4), 407–419.

Larrosa, J., Meseguer, P., & Schiex, T. (1999). Maintaining reversible DAC for Max-CSP.
Artificial Intelligence, 107 (1), 149–163.

357

Li, Manyà & Planes

Li, C. M. (1999). A constraint-based approach to narrow search trees for satisfiability.
Information Processing Letters, 71, 75–80.

Li, C. M., & Anbulagan (1997a). Heuristics based on unit propagation for satisfiability
problems. In Proceedings of 15th the International Joint Conference on Artificial
Intelligence (IJCAI-97), Nagoya, Japan, pp. 366–371. Morgan Kaufmann.

Li, C. M., & Anbulagan (1997b). Look-ahead versus look-back for satisfiability problems.
In Proceedings of the 3rd International Conference on Principles of Constraint Pro-
gramming (CP-97), Linz, Austria, LNCS 1330, pp. 341–355. Springer.

Li, C. M., & Huang, W. Q. (2005). Diversification and determinism in local search for
satisfiability. In Proceedings of the 8th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT-05), St. Andrews, Scotland, LNCS 3569, pp.
158–172. Springer.

Li, C. M., Manyà, F., & Planes, J. (2005). Exploiting unit propagation to compute lower
bounds in branch and bound Max-SAT solvers. In Proceedings of the 11th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP-05),
Sitges, Spain, LNCS 3709, pp. 403–414. Springer.

Li, C. M., Manyà, F., & Planes, J. (2006). Detecting disjoint inconsistent subformulas for
computing lower bounds for Max-SAT. In Proceedings of the 21st National Conference
on Artificial Intelligence (AAAI-06), Boston, USA, pp. 86–91. AAAI Press.

Marques-Silva, J. P., & Sakallah, K. A. (1999). GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48 (5), 506–521.

Niedermeier, R., & Rossmanith, P. (2000). New upper bounds for maximum satisfiability.
Journal of Algorithms, 36, 63–88.

Régin, J. C., Petit, T., Bessière, C., & Puget, J. F. (2001). New lower bounds of constraint
violations for over-constrained problems. In 7th International Conference on Princi-
ples and Practice of Constraint Programming (CP-01), Paphos, Cyprus, LNCS 2239,
pp. 332–345. Springer.

Schiex, T. (2000). Arc consistency for soft constraints. In Proceedings of the 6th Inter-
national Conference on Principles of Constraint Programming (CP-00), Singapore,
LNCS 1894, pp. 411–424. Springer.

Shen, H., & Zhang, H. (2004). Study of lower bound functions for max-2-sat. In Proceedings
of the National Conference on Artificial Intelligence (AAAI-04), San Jose, USA, pp.
185–190. AAAI Press.

Shen, H., & Zhang, H. (2005). Improving exact algorithms for max-2-sat. Annals of Math-
ematics and Artificial Intelligence, 44, 419–436.

Wallace, R. J. (1995). Directed arc consistency preprocessing. In Constraint Processing,
Selected Papers, LNCS 923, pp. 121–137. Springer.

Wallace, R. J., & Freuder, E. (1996). Comparative studies of constraint satisfaction and
Davis-Putnam algorithms for maximum satisfiability problems. In Johnson, D., &
Trick, M. (Eds.), Cliques, Coloring and Satisfiability, Vol. 26, pp. 587–615. American
Mathematical Society.

358

New Inference Rules for Max-SAT

Xing, Z., & Zhang, W. (2004). Efficient strategies for (weighted) maximum satisfiability. In
Proceedings of the 10th International Conference on Principles and Practice of Con-
straint Programming (CP-04), Toronto, Canada, LNCS 3258, pp. 690–705. Springer.

Xing, Z., & Zhang, W. (2005). An efficient exact algorithm for (weighted) maximum satis-
fiability. Artificial Intelligence, 164 (2), 47–80.

Xu, K., Boussemart, F., Hemery, F., & Lecoutre, C. (2005). A simple model to generate
hard satisfiable instances. In Proceedings of 19th International Joint Conference on
Artificial Intelligence (IJCAI-05), Edinburgh, Scotland, pp. 337–342.

Xu, K., & Li, W. (2006). Many hard examples in exact phase transitions. Theoretical
Computer Science, 355, 291–302.

Zhang, H. (1997). SATO: An efficient propositional prover. In Proceedings in the Conference
on Automated Deduction (CADE-97), pp. 272–275.

Zhang, H., Shen, H., & Manyà, F. (2003). Exact algorithms for MAX-SAT. Electronic
Notes in Theoretical Computer Science, 86 (1).

Zhang, L., Madigan, C., Moskewicz, M., & Malik, S. (2001). Efficient conflict driven learning
in a Boolean satisfiability solver. In International Conference on Computer Aided
Design (ICCAD-01), San Jose, USA, pp. 279–285.

359

