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Abstract. A word w is called synchronizing (recurrent, reset, directable)
word of deterministic finite automaton (DFA) if w brings all states of the
automaton to an unique state. Černy conjectured in 1964 that every n-
state synchronizable automaton possesses a synchronizing word of length
at most (n − 1)2. The problem is still open.
It will be proved that the minimal length of synchronizing word is not
greater than (n − 1)2/2 for every n-state (n > 2) synchronizable DFA
with transition monoid having only trivial subgroups (such automata
are called aperiodic). This important class of DFA accepting precisely
star-free languages was involved and studied by Schŭtzenberger. So for
aperiodic automata as well as for automata accepting only star-free lan-
guages, the Černý conjecture holds true.
Some properties of an arbitrary synchronizable DFA and its transition
semigroup were established.
http://www.cs.biu.ac.il/∼trakht/syn.html
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Introduction

The natural problem of synchronization of DFA draws quite often the attention
and various aspects of this problem were touched upon the literature. The syn-
chronization makes the behavior of an automaton resistant against input errors
since, after detection of an error, a synchronizing word can reset the automaton
back to its original state, as if no error had occurred.
An important problem with a long story is the estimation of the shortest length
of synchronizing word of DFA. Best known as Černy’s conjecture, it was raised
independently by distinct authors. Jan Černy found in 1964 [1] an n-state au-
tomaton with minimal length synchronizing word of (n−1)2. He conjectured that
this is the maximum length of the shortest synchronizing word for any DFA with
n states. The conjecture is valid for big list of objects, but in general the question
still remains open. The best known upper bound is now equal to (n3 − n)/6 [3,
5, 7]. By now, this simple looking conjecture with rich and intriguing story of
investigations [4, 7, 10, 12] is one of the most longstanding open problems in the
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theory of finite automata.
The existence of some non-trivial subgroup in the transition semigroup of the
automaton is essential in many investigations of Černy conjecture [2, 7, 8]. We
use an opposite approach and consider transition semigroups without non-trivial
subgroups. This condition distinguishes a wide class of so-called aperiodic au-
tomata that, as shown by Schützenberger [11], accept precisely star-free lan-
guages (also known as languages of star height 0). Star-free languages play a
significant role in the formal language theory.
It will be established that the synchronizable DFA has a synchronizing word
of length not greater than (n − 1)2/2 (n > 2) for automata with transition
semigroup having only trivial subgroups (aperiodic automata) and therefore the
Černy conjecture holds true for such DFA.
The necessary and sufficient conditions of synchronizability of an arbitrary au-
tomaton are presented below in the following form:
An automaton with transition graph Γ is synchronizable iff Γ 2 has sink state.
(see also [1] for another wording). In the case of aperiodic automata holds:

An aperiodic automaton with sink state is synchronizable.
Some properties of an arbitrary synchronizable DFA were found by help of some
new concepts such as almost minimal SCC, m-cycle and set of 2-reset words.

Preliminaries

We consider a complete DFA A with the input alphabet Σ, the transition graph
Γ and the transition semigroup S. The elements of S let us consider as words
over Σ.
A maximal strongly connected component of a directed graph will be denoted
for brevity as SCC.
If there exists a path from the state p to q and the consecutive transitions of the
path are labelled by σ1, ..., σk then for the word s = σ1...σk let us write q = ps.
The state q is called sink if for every state p there exists a word s such that
ps = q.
The binary relation β is called stable if for any pair of states q,p and any σ ∈ Σ
from q β p follows qσ β pσ.
The graph Γ is complete if for every p ∈ Γ and every σ ∈ Σ the state pσ exists.
|s| - the length of the word s in alphabet Σ.
|P | - the size of the set of states of the automaton (of vertices of the graph) P .
Let Ps denote the mapping of the graph (of the automaton) P by help of s ∈ Σ∗.
The direct product Γ 2 of two copies of the transition graph Γ over an alphabet Σ
consists of pairs (p,q) and edges (p,q) → (pσ,qσ) labelled by σ. Here p,q ∈ Γ ,
σ ∈ Σ.
A word s ∈ Σ+ is called synchronizing (reset) word of an automaton with
transition graph Γ if |Γs| = 1.
A word w is called 2-reset word of the pair p,q if pw = qw and let us denote
by Syn(p,q) the set of all such words w.
Let φ be homomorphism of the DFA A. Suppose q ρ p iff qφ = pφ for the states



q and p from A. Then the relation ρ is a congruence on A. The ρ-class containing
the state q of A we denote by qρ. The quotient A/ρ is the automaton with the
set of states qρ and the transition function defined by the rule qρσ = qσρ for
any σ ∈ Σ.
An SCC M from Γ 2 will be called almost minimal if for every state (p,q)
∈ M and for every σ ∈ Σ such that pσ 6= qσ there exists a word s such that
(pσ,qσ)s = (p,q). For every (p,q) ∈ M suppose p and q ∈ Γ (M).
Let us define a relation ≻M for almost minimal SCC M . Suppose p ≻M q if
(p,q) ∈ M and let ≻M be the transitive closure of this relation. Let ºM be the
reflexive closure and ρM be equivalent closure of the relation ≻M .
Let M be almost minimal SCC. A non-trivial sequence of states p1,p2, ...pn =
p1 such that (pi,pi+1) for i = 1, ..., n−1 (n > 1) belong to M let as call t-cycle.
A t-cycle of minimal length let as call m-cycle.

1 The graph Γ
2

Lemma 1 The relation ºM for any almost minimal SCC M ∈ Γ 2 is stable.
The equivalent closure ρM of the relation ≻M is a congruence.
If R is a class of the relation ρM then for any word w the set Rw is a subset of
a class of the relation ρM .

Proof. In the case u ºM v there exist a sequence of states u = p1, ...,pn = v

such that for every integer i < n (pi,pi+1) belongs to the almost minimal SCC
M . One has (pis,pi+1s) ∈ M or pis = pi+1s and therefore pis ºM pi+1s.
Consequently, us ºM vs.
Suppose u ρM v. Then there exist a sequence of states u = p1, ...,pn = v

such that for every integer i < n at least one of the states (pi+1,pi), (pi,pi+1)
belongs to the almost minimal SCC M . Therefore in the sequence of states
us = p1s, ...,pns = vs for any two distinct neighbors pis,pi+1s the state
(pis,pi+1s) or its dual belongs to M . Consequently, us ρM vs. Therefore for a
class R of the relation ρM and for any word w the set Rw is a subset of some
class of the relation ρM .

From the definitions of the almost minimal SCC and the relation ≻M follows

Proposition 2 If r ≻M q and for some word s one has rs 6∈ Γ (M) or qs 6∈
Γ (M), then rs = qs.

Proposition 3 Synchronizing word of Γ synchronizes also Γ/ρM for any M .

Synchronizing word of Γ is 2-reset word for any pair of states and therefore
unites every pair of states from different ρM -classes in one sink state.

The following lemma can be also reduced from [1]:

Lemma 4 An automaton A with transition graph Γ is synchronizable if and
only if Γ 2 has a sink state.



Proof. Let s be synchronizing word of A. Then the unique pair of the set Γ 2s is
a sink of Γ 2.
Conversely, the components of a sink of Γ 2 obviously are equal. Let (t, t) be a
sink. For any pair (p,q), there exists a word s such that (p,q)s = (t, t), that is,
ps = qs = t. Some product of such words s taken for all pairs of distinct states
from Γ is a synchronizing word of the graph Γ .

Lemma 5 Let M be almost minimal SCC of Γ 2. Suppose that for some word
s the state qs is either a maximal element of the order ≻M or qs 6∈ Γ (M).
Then for any state t such that t ºM q holds ts = qs. The word s unites all
ancestors of q.

Proof. By Lemma 1, ts ≻M qs or qs = ts. The case ts ≻M qs is excluded
because the state qs is a maximal state. In the case qs 6∈ Γ (M) also ts = qs by
Proposition 2. Thus the word s is a common synchronizing word for set of all
states t such that t ºM q.

Theorem 1 Let M be almost minimal SCC of Γ 2 of n-state synchronizable
automaton with transition graph Γ over an alphabet Σ and let the relation ρM

define homomorphic image Γ/ρM of size r. Let the word u syncronize the au-
tomaton Γ/ρM and let the word v syncronize the ρM -class containing Γu. Sup-
pose that the length of the word v is not greater [less] than c(n− r)(n− 1) where
c is some coefficient.
Then the automaton has synchronizing word in alphabet Σ of length not greater
[less] than c(n − 1)2.

Proof. For r = 1 the statement of the theorem is a tautology, so let us assume
r > 1. So |Γ (M)| > 1 and the relation ρM is not trivial. Any synchronizing word
of Γ synchronizes also the quotient Γ/ρM (Proposition 3) of size less than n. The
graph Γ has a synchronizing word uv. In view of r > 1, we can use induction,
assuming |u| ≤ c(|Γ/ρM | − 1)2 = c(r − 1)2. So |uv| ≤ c(r − 1)2 + c(n− r)(n− 1)
and in view of
c(r − 1)2 + c(n − r)(n − 1) = c((r − 1)2 + (n − 1)2 − (n − 1)(r − 1)) = c((n −
1)2 − (r − 1)(n − r)) < c(n − 1)2

one has |uv| < c(n − 1)2. So the length of uv in the case r < n or |v| <
c(n − r)(n − 1) is less than c(n − 1)2.

Lemma 6 For any word w, Syn(p,q) ⊆ Syn(r, t) implies Syn(pw,qw) ⊆
Syn(rw, tw). The relation Syn(p,q) is a stable binary relation.

Proof. Suppose word u ∈ Syn(pw,qw). Therefore the word wu synchronizes the
pair of states p,q. From Syn(p,q) ⊆ Syn(r, t) follows that the word wu synchro-
nizes the pair of states r, t and rwu = twu. Thus the word u from Syn(pw,qw)
synchronizes also the pair (rw, tw), whence Syn(pw,qw) ⊆ Syn(rw, tw).

Lemma 7 Let R be ρM -class and r be the number of ρM - classes of almost
minimal SCC M of n-state (n > 2) automaton with strongly connected graph
Γ . Suppose the relation ≻M is a partial order.
Then |Rs| = 1 for some word s ∈ Σ∗ of length not greater than (n− r)(n−1)/2.



Proof. The ρM -class R is defined by a state from M , therefore |R| > 1. Let
Max be the set of all maximal and Min be the set of all minimal states from R
according to the order ≻M . Both sets Max and Min are not empty in view of
|R| > 1. |Max| ∩ |Min| = ∅ because the anti-reflexive relation ≻M is a partial
order. Without loss of generality, let us assume that |Max| ≥ |Min|. Then
|Min| ≤ (n − r)/2.
For any minimal state q ∈ R there exists a word w of length not greater than
n − 1 that maps the state q in Max. By Lemma 5 the word w maps q in Max
together with all its ancestors. The number of minimal states can be reduced
to zero by help of at most |Min| words of length n − 1. The ρM -class without
minimal elements is one-element, |Min| ≤ (n− r)/2, whence for some word s of
length not greater than (n − 1)(n − r)/2 holds |Rs| = 1.

2 Transition semigroup of automaton

For definitions of D- and H-class, ideal, left ideal, idempotent and right zero see
[6].

Lemma 8 Let Γ be strongly connected graph of synchronizing automaton with
transition semigroup S. Suppose Γa = Γb for reset words a and b.
Then a = b. Any reset word is an idempotent.

Proof. The elements a and b from S induce equal mappings on the set of states
of Γ . S can be embedded into the semigroup of all functions on the set of states
under composition [6]. Therefore a = b in S. Γa = Γa2, whence a = a2 for any
reset word a and the element a ∈ S is an idempotent.

Lemma 9 Let Γ be strongly connected graph of synchronizable automaton with
transition semigroup S. Suppose eSe is a group for some idempotent e.
Then every element s from eSe is a reset word and |Γs| = 1.

Proof. Suppose two states p and q belong to Γs. The automaton is synchroniz-
able, whence there exists a word t ∈ S such that pt = qt. The states p and q

belong to Γs, therefore pe = p, qe = q and pet = qet. It implies pete = qete.
The element ete belongs to the group eSe with unit e and has an inverse in
this group. Consequently, pe = qe. The states p and q belong to Γs = Γse. So
pe = p, qe = q, whence p = q in spite of our assumption.

Lemma 10 Let Γ be strongly connected graph of synchronizable n-state automa-
ton with transition semigroup S.
Then S contains n distinct reset words and they form a D-class Dr of S. Dr is
an ideal of S and a subsemigroup of right zeroes, subgroups of Dr are trivial.

Proof. For every state p from synchronizable automaton with strongly connected
transition graph by Lemma 8 there exists at most one reset word s such that
Γs = p. Γ is strongly connected, consequently for any state q there exists a
word t such that pt = q. Then Γst = q and st is also a reset word. So for any



state there exists its reset word and all these reset words of distinct states are
distinct. Thus there are at least n reset words. From Γs = p follows Γus = p

for every word u ∈ S, whence by Lemma 8 us = s, and in particular ts = s.
Because for every t ∈ S st is also reset word and ts = s the set of all reset words
is an ideal in S.
For two states p and q the corresponding reset words are s and st. So the
second word belongs to the left ideal generated by the first. The states p and q

are arbitrary, whence all reset words create the same left ideal and belong to one
D-class Dr. All words from D-class Dr are reset words because from |Γs| = 1
follows |Γvsu| = 1 for any words u and v. Distinct reset words map Γ on distinct
states, so in view of Lemma 8 |Dr| = n.
Any H-class of D-class Dr is a group with one idempotent [6] and consists of
reset words. By lemma 8 any reset word is an idempotent. Therefore any H-class
is trivial and in view of Lemma 9 the set of reset words Dr is a semigroup of
right zeroes.

Corollary 11 Let Γ be transition graph of synchronizable n-state automaton
with transition semigroup S. Let Γ have sink strongly connected maximal sub-
graph T of size k.
Then S contains k distinct reset words and they all are idempotents, form a sub-
semigroup of right zeroes and an ideal of S. The difference between the minimal
lengths of two distinct reset words is less than k.

Proof. Any reset word of Γ is also a reset word of T . Therefore there are only k
distinct reset word and by Lemma 10 they are idempotents, form an ideal of S
and a subsemigroup of right zeroes.
Any reset word u maps Γ on some state p of T . Any other reset word v such
that Γv = q can be obtained as a product ut for t such that pt = q. |t| < k,
whence |v| − |u| < k.

3 The state outside t-cycle

Lemma 12 Let M be almost minimal SCC from Γ 2 having some t-cycle. Then
for any state (q,p) ∈ M the states q and p are consecutive states of t-cycle and
even of m-cycle.
If the states r, s of m-cycle are not consecutive then the state (r, s) of Γ 2 does
not belong to M .

Proof. A t-cycle of minimal length exists because Γ 2 is finite. Let the states q1,p1

be consecutive states of m-cycle C of length m from almost minimal SCC M of
Γ 2. So (q1,p1) ∈ M . For any state (q,p) from strongly connected component
M there exists a word w such that (q1,p1)w = (q,p). The word w maps m-cycle
C on some t-cycle of length j not greater than m. Because p 6= q holds j > 1.
Therefore j = m and the states q,p are consecutive states of m-cycle Cw.
If the state (r, s) ∈ M but the states r, s are not consecutive states of m-
cycle from M then M contains a t-cycle with length less the length of m-cycle.
Contradiction.



Theorem 2 Let the transition graph Γ of an n-state (n > 2) synchronizable
automaton be strongly connected and let M be almost minimal SCC of Γ 2.
Suppose some state p from Γ does not belong to t-cycle of M .
Then the automaton has reset word of length not greater than (n − 1)2/2.

Proof. The ρM -class R is defined by a state from M , therefore |R| > 1.
Suppose first that p 6∈ Γ (M). Then there exists a word w of length not greater
than n − |R| ≤ n − 2 that maps some state from R on p. In virtue of Lemma 1
the class Rw is out of Γ (M) and therefore the definition of ρM - class implies
Rw = p. So |Rw| = 1 and |w| ≤ n − 2.
Let the relation ρM define homomorphic image Γ/ρM of size r. Let the word
u synchronize the automaton Γ/ρM . One can suppose by induction that |u| ≤
(r − 1)2/2. The ρM -class R = Γu can be mapped on p by word w. So
|uw| ≤ n − 2 + (r − 1)2/2 = (n − 1)2/2 − (n − 1)2/2 + n − 2 + (r − 1)2/2 =
0.5((n− 1)2 − (n− 1)2 + (r − 1)2 + 2n− 4) = 0.5((n− 1)2 + (r − n)(r + n− 2) +
2(n + r − 2) − 2r) = 0.5((n − 1)2 + (r − n + 2)(r + n − 2) − 2r).
In view of r ≤ n − 2 one has |uw| < ((n − 1)2/2.
Let us suppose now that any such p ∈ Γ (M). If there exists t-cycle in M then
by Lemma 12 any state from Γ (M) belongs to t-cycle. It contradicts to our
assumption that p does not belong to t-cycle. Therefore we can suppose absence
of t-cycles in M . The relation ≻M is a partial order in such case.
Γ is strongly connected, therefore all its states belong to Γ (M). Hence r =
|Γ/ρM | is the number of ρM - classes from M . By Lemma 7 any ρM - class can
be synchronized by a word w of length (n − r)(n − 1)/2 or less. By induction,
Γ/ρM can be synchronized by a word u of length (r−1)2/2. So for synchronizing
word uw holds
|uw| ≤ (r−1)2/2+(n−r)(n−1)/2 = 0.5((n−1)2−(n−1)2+(r−1)2+(n−r)(n−
1)) = 0.5((n−1)2+(r−n)(r+n−2)−(r−n)(n−1)) = 0.5((n−1)2+(r−n)(r−1)) ≤
(n − 1)2/2
So in any case there exists a synchronizing word of length not greater than
(n − 1)2/2.

4 Aperiodic strongly connected DFA

Let us recall that the transition semigroup S of aperiodic automaton is finite and
aperiodic [11] and the semigroup satisfies identity xn = xn+1 for some suitable
n. So for any state p ∈ Γ , any s ∈ S and for some suitable k holds psk = psk+1.

Lemma 13 Let A be an aperiodic automaton. Then the existence of sink state
in A is equivalent to the existence of synchronizing word.

Proof. It is clear that, for any DFA, the existence of a synchronizing word implies
the existence of a sink.
Now suppose that A has at least one sink. For any state p and any sink p0, there
exists an element s from the transition semigroup S such that ps = p0. The semi-
group S is aperiodic, whence for some positive integer m we have sm = sm+1.



Therefore psm = psm+1 = p0sm, whence the element sm brings both p and p0

to the same state p0sm which is a sink again. We repeat the process reducing
the number of states on each step. Then some product of all elements of the
form sm arising on each step brings all states of the automaton to some sink.
Thus, we obtain in this way a synchronizing word.

Let us go to the key lemma of the proof.

Lemma 14 Let a DFA with the transition graph Γ be aperiodic.
Then the graph Γ has no t-cycle, the quasi-order ºM for any almost minimal
SCC M is a partial order and no state belongs to t-cycle.

Proof. Suppose the states p1 ≻M p2, ..,pm−1 ≻M pm = p1 form t-cycle of the
minimal size m for some almost minimal SCC M .
Let us establish that m > 2. Indeed, p1 6= p2 by the definition of the relation
≻M , whence m > 1. If m = 2 then two states (p1,p2) and (p2,p1) belong
to common SCC. For some element u from transition semigroup S, we have
(p1,p2)u = (p2,p1). Therefore p1u = p2, p2u = p1, whence p1u

2 = p1 6= p1u.
It implies p1u

2k = p1 6= p1u = p1u
2k+1 for any integer k. However, semigroup

S is finite and aperiodic and therefore for some k holds u2k = u2k+1, whence
p1u

2k = p1u
2k+1. Contradiction.

Thus we can assume that m > 2 and suppose that the states p1,p2,p3 are
distinct. For some element s ∈ S and for the states p1, p2, p3 from considered
t-cycle holds (p1,p2)s = (p2,p3). We have

p2 = p1s, p3 = p1s
2

For any word v ∈ S and any state (pi,pi+1) from M by Lemma 1 piv ºM pi+1v.
Therefore for any word v ∈ S the non one-element sequence of states p1v, ...,pmv
forms t-cycle of minimal size m. It is also true for v = si for any integer i.
The states p1,p1s,p1s

2 are distinct. Let us notice that in aperiodic finite semi-
group for some l holds sl 6= sl+1 = sl+2. Therefore there exists such maximal
integer k ≤ l such that p1s

k 6= p1s
k+1 = p1s

k+2 and in the t-cycle p1s
k,

p2s
k = p1s

k+1, p3s
k = p1s

k+2,..., pmsk holds p1s
k 6= p2s

k = p3s
k. So the

cardinality of the obtained t-cycle is greater than one and less than m. Contra-
diction.

Corollary 15 Let M be almost minimal SCC of aperiodic DFA with transition
graph Γ . Then the relation ≻M is anti-reflexive.

Theorem 3 Let the transition graph Γ of an n-state (n > 2) synchronizable
automaton be strongly connected.
Then the automaton has reset word of length not greater than (n − 1)2/2.

Proof. The case of state outside t-cycle follows from the Theorem 2. In opposite
case all states belong to Γ (M) of some almost minimal SCC M and therefore
the number r of ρM - classes of almost minimal SCC M is equal to |Γ/ρM |. By
Lemma 14 the relation ρ defines a partial order. Now by Lemma 7 any ρM -class
can be synchronized by word of length (n − r)(n − 1)/2. Theorem 1 for c = 1/2
finishes the proof.



5 The general case of aperiodic DFA

Lemma 16 Let Γ be transition graph of synchronizable n-state (n > 2) DFA
with transition semigroup without non-trivial subgroups. Suppose that SCC Γ1 of
Γ has no ingoing edges from another SCC and |Γ1| ≤ n−2. Then the automaton
has synchronizing word of length not greater than (n − 1)2/2.

Proof. Let us denote |Γ \ Γ1| = r. So |Γ1| = n − r and r > 1. By [9] (theorem
6.1), a word of length (n− r)(n− r +1)/2 maps Γ in Γ \Γ1. If r = 2 then Γ \Γ1

has reset word of length 1 and Γ has reset word of length 1+ (n− 2)(n− 1)/2 =
(n − 1)2/2 + (3 − n)/2 ≤ (n − 1)2/2 because n > 2. In the case r > 2 one can
assume by induction that the graph Γ \ Γ1 has reset word of length (r − 1)2/2.
Therefore Γ has reset word v of length (n − r)(n − r + 1)/2 + (r − 1)2/2. Now
from n > r > 1 and equality
(n−r)(n−r+1)+(r−1)2 = (n−r)2+n−r+(r−1)2+2(n−r)(r−1)−2(n−r)(r−1)
= (n − r + r − 1)2 + n − r − 2(n − r)(r − 1) = (n − 1)2 − (n − r)(2r − 3)
follows that the length of v is not greater than (n − 1)2/2.

Lemma 17 Let Γ be transition graph of synchronizable n-state (n > 2) DFA
with transition semigroup without non-trivial subgroups. Suppose that Γ is a
union of SCC Γ0 of size n−1 and sink p. Then the automaton has synchronizing
word of length not greater than (n − 1)2/2.

Proof. Γ has only two SCC, Γ0 and {p}. For any state t ∈ Γ0 there exists
a word u(t) of minimal length such that tu(t) = p. If we form a reset word
s = s1...sn−1 such that si = u(t) for t ∈ Γ0s1...si−1 with minimal u(t) (as in [9])
then |s| ≤ n(n − 1)/2 = Cn. Our aim is to reduce the length |s| to (n − 1)2/2.
Let us denote Ci = i(i− 1)/2. For reset word s1...sn−1 suppose Si = s1...si. Let
us denote Γi = Γ0 ∩ Γ0Si. The size of Γi is at most n − 1 − i. For any state
q there exists a letter α such that q 6= qα and there exists a minimal integer
k such that qαk = qαk+1. For letter σ with maximal value of such k suppose
si = σ for i ≤ k. So |Sk| = k.
Let us go now to the values of i after k. If in Γi either there exists a state t

with u(t) ≤ i or two states q and qβj for some β then let us take as si+1 such
u(t) or βi. From j ≤ k ≤ i and u(t) ≤ i follows |si+1| ≤ i. Therefore |Si+1| ≤

k +
∑i

j=k+1
j = k +

∑i

j=1
j −

∑k

j=1
j = k + i(i+1)/2− k(k +1)/2 ≤ Ci+1 −Ck.

If |Γ1Si| < n − 1 − i then let si+1 be empty word. So |Si+1| ≤ Ci+1 − Ck. Thus
|Si| ≤ Ci < (i − 1)2/2 for i > k

For reset word Sn−1 one has |Sn−1| < (n − 1)2/2.
Now remains only the case of Γi without pairs of states q and qβj for some
letter β and with u(t) > i for all states t ∈ Γi. The existence of the state with
u(t) > i implies the existence of at least |u(t)| − 1 ≥ i states q on the path to
p and of at least i states r with u(r) ≤ i. Therefore there are at most n − i − 1
states t with u(t) > i. Obviously, all these states belong to Γi.
For any such t with u(t) > i there exists a letter α such that t 6= tα. Hence
tα 6∈ Γi and u(tα) ≤ i. Therefore u(t) ≤ i + 1 for all t ∈ Γi and the maximal
value of u(t) in Γ1 is i+1. So n− 1− i states of Γi can be mapped in p by word



v of length at most (n − 1 − i)(i + 1).
Therefore Siv is a reset word and
|Siv| ≤ (n−1−i)(i+1)+Ci−Ck = (n−1−i)(i+1)+i(i−1)/2−Ck = (n−1)(i+
1)− i2 − i+ i2/2− 0.5i−Ck = (n− 1)(i+1)− 0.5i2 − i− 0.5+0.5− 0.5i−Ck =
(n − 1)2/2 − (n − 1)2/2 + (n − 1)(i + 1) − (i + 1)2/2 + 0.5 − 0.5i − Ck =
(n − 1)2/2 − (n − 2 − i)2/2 − 0.5(i − 1) − Ck ≤ (n − 1)2/2.

Theorem 4 Synchronizable n-state DFA (n > 2) with transition semigroup
having only trivial subgroups has synchronizing word of length not greater than
(n − 1)2/2.

Proof. Let the transition graph Γ of the automaton have SCC C of cardinality
r with sink. By Theorem 3 for Γ = C the assertion of the theorem is true. So
let Γ have several SCC. In the case Γ has more than two SCC or r > 1, a
synchronizing word of length not greater than (n−1)2/2 exists by Lemma 16. In
the case of two SCC and r = 1 the graph Γ by Lemma 17 also has synchronizing
word of length not greater than (n − 1)2/2. Thus a word of length not greater
than (n − 1)2/2 synchronizes the automaton.

Corollary 18 The Černy conjecture holds true for DFA with transition semi-
group having only trivial subgroups.
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Math.-Fyz. Čas., 14(1964) 208-215.

2. L.Dubuc, Sur le automates circulaires et la conjecture de Černy, RAIRO Inform.
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