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Abstract. This paper studies the problem of continuous time expected utility maximization of

consumption together with addictive habit formation in general incomplete semimartingale financial

markets. Introducing an auxiliary state processes and a modified dual space, we embed our original

problem into an auxiliary time-separable utility maximization problem with the shadow random

endowment. We establish existence and uniqueness of the optimal solution using convex duality

on the product space L0
+(Ω × [0, T ],O, P̄) by defining the primal value function as depending on

both the initial wealth and initial standard of living. We also provide market independent sufficient

conditions on both stochastic discounting processes of the habit formation process and on the utility

function for our original problem to be well posed and to modify the convex duality approach when

the auxiliary dual process is not necessarily integrable.

1. Introduction

During the past decades, the assumption of time-additivity of von Neumann-Morgenstern pref-

erences on consumption plan has been challenged due to its lack of consistency with many observed

empirical evidences. For instance, the celebrated magnitude of the equity premium (Mehra and

Prescott [24]) can not be reconciled with the time separable preference E[
∫ T

0 U (t, ct)dt] when the

instantaneous utility function U is only derived from the consumption rate. As an alternative

modeling tool, habit formation has attracted a lot of attention and has been actively investigated

in recent years. This new way to compare consumption stream is defined by E[
∫ T

0 U (t, ct, Zt)dt],

where the accumulative process Zt, called the standard of living, describes the consumption his-

tory impact. The habit forming preference is not only more prominently capable to explain many

empirical facts (Constantinides [5]), but also can intuitively reflect consumers’ rationality from

the psychological perspective. In contrast to the traditional time additive utilities, the concept of

habit formation characterizes the non-neglectable effect of past consumption patterns on current

and future economic decisions. It specifies that the utility of consumption at time t depends also

negatively on the history of consumption up to time t. In particular, an increase in consumption

today increases current utility but depresses all future utilities through the induced increase in

future standards of living.

The study of habit formation in modern economics dates back to Hicks [14], Ryder and Heal

[13]. More recently, the utility maximization problem with consumption habits in continuous time
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has been studied by Constantinides [5] to explain the equity premium puzzle. In complete Itô pro-

cesses markets, Detemple and Zapatero [10] and [11] employed martingale methods to the general

nonlinear habit formation utility optimization problem E[
∫ T

0 U (t, ct, Zt)dt] and established some re-

cursive stochastic differential equations for the consumption rate process ct. They derived a closed

form solution for the optimal consumption under preferences of the type E[
∫ T

0 U (t, ct−Zt)dt] when

U : [0,∞) × (0,∞) → R, i.e., the habit is assumed to be linear and addictive. Later, Schroder

and Skiadas [28] made an insightful observation that to solve the optimal portfolio selection with

utilities incorporating linear habit formation E[
∫ T

0 U (t, ct−Zt)dt] in the complete market is equiv-

alent to solving the time additive utility maximization E[
∫ T

0 U (t, c′t)dt] in the isomorphic complete

market without habit formation. This isomorphism is given by the relationship that the opti-

mal policies c′∗t = c∗t − Z∗
t holds true. They also gave the construction of the isomorphic market

based on the original market under some appropriate assumptions. Detemple and Karatzas [9]

further considered the linear non-addictive habits E[
∫ T

0 U (t, ct − Zt)dt], where instead they define

U : [0,∞)× (−∞,∞) → R. Their consumption ct is required to be non-negative but is allowed to

fall below the “the standard of living” index Zt that aggregates past consumption. They provided

a constructive proof for the existence of an optimal consumption, however, the market completeness

is still a key assumption. Egglezos and Karatzas [12] exploited the interplay between stochastic

partial differential equations and the utility maximization with linear addictive habit formation

by taking advantage of the first order condition in the non-Markovian complete market, therefore

obtaining some stochastic feedback formulae for the optimal portfolio and consumption policies.

Although significant progress has been made, it is still an open problem to investigate the existence

of optimal consumption policy under utility maximization for the habit-forming investor when the

financial market ceases to be complete, which consists one of the primary motivations of our present

work.

In the current article, we consider instead the general incomplete semimartingale framework,

and allow all the driving factors of habit formation index to be unbounded optional processes in

the given probabilistic setting. For the utility maximization problem with addictive consumption

habits, we will routinely assume the lower bound constraint on consumption rates called “the stan-

dard of living”, which is to say the marginal utility from the difference of consumption ct and the

“habit formation process” Zt is infinite at zero. In essence, this assumption requires the optimal

consumption rate ct shall never fall below the current standard of living Zt. The main challenge

in our problem lies in the fact that the intermediate utility function U (t, ct −Zt) depends both on

the current consumption rate and its past path integral due to the habit formation requirement.

To overcome this intrinsic path-dependent complexity, we propose to define the closely related

auxiliary processes c̃t = ct − Zt in the spirit of Market Isomorphism result by Schroder and Ski-

adas [28], and reduce our original path-dependent state constraint problem into a more natural

time separable utility maximization problem on the auxiliary product space. Using the properly

modified dual domain as well as treating the variables of the optimization problem both as the

initial capital and initial habit, we are able to embed our time separable auxiliary optimization

problem into an abstract utility maximization problem with the shadow random endowment, and

build the conjugate duality following the idea appeared in Hugonnier and Kramkov [16] for the
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optimal investment problem with non-traded contingent claims.

More precisely speaking, the time non-additive nature of the primal optimization problem pre-

vents us from applying Legendre transform to define the conjugate utility function merely on the

current state of the well-known supermartingale deflator process Yt ∈ Y. As a consequence, the

critical lower semi-continuity property with respect to Yt, which is a key step to show the existence

of the dual optimizer, may fail. On the contrary, our innovative transformation of path-dependent

optimization problem into the auxiliary optimization problem enables us to derive the auxiliary

dual problem in a very simple non path-dependent formulation. After which, we resort to work

on the carefully chosen auxiliary dual domain as a set of processes Γt instead of Yt. The negative

side although exists that the extra exogenous random term, i.e. wt and w̃t (see their definitions in

(3.10)), appears simultaneously due to the special structure of habit formation process Zt. Despite

of this drawback, we can still successfully embed this problem into the auxiliary utility maximiza-

tion problem by treating the extra random term as some shadow random endowment source in the

abstract space. On the other hand, we are facing the issue to apply the classical convex duality

results to the auxiliary processes c̃t and Γt due to the fact that the dual domain may not be a subset

of L1
+(Ω×[0, T ],O, P̄), because the auxiliary dual process Γt is defined via the unbounded stochastic

discounting factors αt and δt. To this end, we are interested in revising some classical proofs based

on space L1, and provide the market independent sufficient conditions on habit formation discount-

ing factors αt and δt, see Assumption (3.3) and (3.4), to guarantee the well-posedness of the Primal

optimization problem, as well as the Asymptotic Elasticity conditions on utility functions U both

at x → 0 and x → ∞, i.e., AE0[U ] < ∞ and AE∞[U ] < 1 (see Assumption (2.9) and (2.10)), for

the validity of several key assertions of our main results to hold true. To the best of our knowledge,

our paper is the first one which aims to solve the utility maximization problem with consumption

habit formation in continuous time framework in the general incomplete semimartingale financial

markets. However, we also refer the readers to the very recent work by Muraviev, [25] with additive

habit formation in the discrete time incomplete markets with random endowment.

We should also stress the present paper is our first step to study the utility maximization problem

with general nonlinear habit formation E[
∫ T

0 U (t, ct, Zt)dt] in incomplete semimartingale markets,

in the sense that the investor’s preference depends nonlinearly on both the current consumption

rate process ct and his past consumption path accumulative index Zt. This generalized nonlinear

habit formation problem includes the non-addictive linear habits considered earlier by Detemple

and Karatzas [9]. We intend to provide similar convex duality conclusions as well as some spe-

cific characterizations of the optimal consumption structures in the future research. Another main

motivation behind this work is the role it plays as a necessary step for the existence and unique-

ness for equilibrium in continuous-time incomplete markets, together with internal/external habit

formation or other time non-separable preferences, see Detemple and Zapatero [10] and Bank and

Riedel [1], [2] for examples in complete markets.

The convex duality approach plays an important role in the treatment of general utility maxi-

mization problems in the framework of incomplete markets. To list a very small subset of the ex-

isting literature in optimal investment and consumption problems, we refer to Karatzas, Lehoczky,

Shreve, and Xu [17], Kramkov and Schachermayer [21], [22], Cvitanic, Schachermayer and Wang
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[6], Karatzas and Žitković [18], Hugonnier and Kramkov [16], Žitković [29], [30], Kauppila [19] and

Larsen and Žitković [23].

The remainder of this paper is organized in the following way: Section 2 describes the financial

market and introduces the definition of consumption habit formation as well as poses the utility

maximization problem. In Section 3, we introduce some functional set-up on the product space,

and define the auxiliary process domain, we embed our original problem into an auxiliary abstract

utility maximization problem without habit formation, however, with the shadow random endow-

ment. Section 4 is devoted to the definition of the dual problem for the auxiliary optimization

problem and the formulation of the main theorems. Finally, Section 5 contains the proofs of our

main results.

2. Market Model

2.1. The Financial Market Model. We consider a financial market with d ∈ N risky assets

modeled by a d-dimensional semimartingale

(2.1) S = (S
(1)
t , . . . , S

(d)
t )t∈[0,T ]

on a given filtered probability space (Ω,F ,F = (Ft)0≤t≤T ,P), where the filtration F satisfies the

usual conditions and the maturity time is given by T . To simplify our notation, we take F = FT .

We make the standard assumption that there exists one riskless bond S
(0)
t ≡ 1,∀t ∈ [0, T ], which

amounts to consider S
(0)
t as the numéraire asset.

The portfolio process H = (H
(1)
t , . . . ,H

(d)
t )t∈[0,T ] is a predictable S-integrable process represent-

ing the number of shares of each risky asset held by the investor at time t ∈ [0, T ]. The accumulated

gains/losses process of the investor under his trading strategy H by time t is given by:

(2.2) XH
t = (H · S)t =

d∑

k=1

∫ t

0
H(k)

u dS(k)
u , t ∈ [0, T ],

2.2. Admissible Portfolios and Consumption Habits. The portfolio process (Ht)t∈[0,T ] is

called admissible if the gains/losses process XH
t is bounded below, which is to say, there exists a

constant bound a ∈ R such that XH
t ≥ a, a.s. for all t ∈ [0, T ].

Now, given the initial wealth x > 0, the agent will also choose an intermediate consumption

plan during the whole investment process, and we denote the consumption rate process by ct. The

resulting self-financing wealth process (W x,H,c
t )t∈[0,T ] is given by

(2.3) W x,H,c
t , x+ (H · S)t −

∫ t

0
csds, t ∈ [0, T ].

Apart from the wealth process, the associated index process of consumption history as Z· ≡ Z(·; c)

is defined in the following way:

dZt = (δtct − αtZt)dt,

Z0 = z,
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where the stochastic discounting factors αt and δt are assumed to be nonnegative optional processes

and the given real number z ≥ 0 is called “initial habit”.

Equivalently, we can write it as:

(2.4) Zt = ze−
∫ t

0
αvdv +

∫ t

0
δse

−
∫ t

s
αvdvcsds,

which is called “the standard of living” process and represents the “Habit Formation” of the investor,

an index as exponentially weighted average of agent’s past consumption integral. Here, these

stochastic discounting factors αt and δt measure, respectively, the persistence of the initial habits

level and the intensity of consumption history.

Throughout this paper, we make the assumption that the consumption habit is addictive, i.e.

ct ≥ Zt, ∀t ∈ [0, T ], which is to say, the investor’s current consumption rate shall never fall

below his “the standard of living” process. A consumption process (ct)t∈[0,T ] is defined to be (x, z)-

financeable if there exists an admissible portfolio process (Ht)t∈[0,T ] such that W x,H,c
t ≥ 0, ∀t ∈

[0, T ], a.s. and the addictive habit formation constraint ct ≥ Zt, ∀t ∈ [0, T ] a.s. holds. The class

of all (x, z)-financeable consumption rate processes will be denoted by A(x, z), for x > 0, z ≥ 0.

2.3. Absence of Arbitrage. A probability measure Q is called an equivalent local martin-

gale measure if it is equivalent to P and if XH
t is a local martingale under Q. We denote by M the

family of equivalent local martingale measures and in order to rule out the arbitrage opportunities

in the market, we assume that

(2.5) M 6= ∅.

We refer the readers to Delbaen and Schachermayer [7] and [8] for a detailed discussion on the

topic of arbitrage.

Define the RCLL process Y Q by

Y Q
t = E

[dQ
dP

∣∣∣Ft

]

for the Q ∈ M, then Y Q is called a equivalent local martingale measure density and we shall always

identify the equivalent local martingale measure Q with its density process Y Q, and hence denote

M also as the set of all equivalent local martingale density processes.

The celebrated Optional Decomposition Theorem, see Kramkov [20], enables us to characterize

the (x, z)-financeble consumption process in terms of linear inequalities with respect to Y Q
t ∈ M,

called Budget Constraint, and this serves as an important ingredient in the treatment of our

utility maximization problem via convex duality approach.

Proposition 2.1. The process (ct)t∈[0,T ] is (x, z)- financeable if and only if ct ≥ Zt, ∀t ∈ [0, T ]

and

(2.6) E

[ ∫ T

0
ctY

Q
t dt

]
≤ x, ∀Y Q

t ∈ M.
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2.4. The Utility Function. The individual investor’s preference is represented by a utility

function U : [0, T ] × (0,∞) → R, such that, for every x > 0, U (·, x) is continuous on [0, T ],

and for every t ∈ [0, T ], the function U (t, ·) is strictly concave, strictly increasing, continuously

differentiable and satisfies the Inada conditions:

(2.7) U ′(t, 0) , lim
x→0

U ′(t, x) = ∞, U ′(t,∞) , lim
x→∞

U ′(t, x) = 0.

where U ′(t, x) , ∂
∂x
U (t, x).

According to these assumptions, the inverse I (t, ·) : R+ → R+ of the function U ′(t, ·) exists for

every t ∈ [0, T ], and is continuous and strictly decreasing with:

(2.8) I (t, 0) , lim
x→0

I (t, x) = ∞, I (t,∞) , lim
x→∞

I (t, x) = 0.

The convex conjugate of the agents’ utility function, also known as the Legendre-Fenchel trans-

form, is defined as follows:

V (t, y) , sup
x>0

{U (t, x)− xy}, y > 0.

Under the Inada conditions (2.7), the conjugate of V (t, ·) is a continuously differentiable, strictly

decreasing and strictly convex function satisfying V ′(t, 0) = −∞, V ′(t,∞) = 0 and V (t, 0) =

U (t,∞), V (t,∞) = U (t, 0), see, for example, Karatzas, Lehoczky, Shreve, and Xu [17] for reference.

Follow Kramkov and Schachermayer [21], see also Karatzas and Žitković [18], we shall make

additional assumptions on U for future purposes:

Assumption 2.1.

Utility functions U satisfies the Reasonable Asymptotic Elasticity condition that

(2.9) AE∞[U ] = lim sup
x→∞

(
sup

t∈[0,T ]

xU ′(t, x)

U (t, x)

)
< 1,

and

(2.10) AE0[U ] = lim sup
x→0

(
sup

t∈[0,T ]

xU ′(t, x)

|U (t, x)|

)
< ∞.

Moreover, in order to get some inequalities uniformly in time t, we shall assume

(2.11) lim
x→∞

(
inf

t∈[0,T ]
U (t, x)

)
> 0,

and

(2.12) lim
x→0

(
sup

t∈[0,T ]
U (t, x)

)
< 0.

Remark 2.1. Many well known Utility functions satisfy Reasonable Asymptotic Elasticity Assump-

tions (2.9) and (2.10), for example, the discounted log utility function U (t, x) = e−βt log(x) or

discounted power utility function U (t, x) = e−βt xp

p
(p < 1 and p 6= 0), for a constant β > 0.
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Remark 2.2. The utility function U (t, x) satisfies Reasonable Asymptotic Elasticity Assumptions

(2.9) and (2.10) if and only if its affine transform a+bU (t, x) satisfies Reasonable Asymptotic Elas-

ticity Assumptions (2.9) and (2.10) for arbitrary constants a, b > 0. Hence, the adjoint Assumption

(2.11) and Assumption (2.12) are not restrictive.

The next technical result gives the equivalent characterization of the Reasonable Asymptotic

Elasticity condition AE∞[U ], which follows the similar proof of Lemma 6.3 of Kramkov and

Schachermayer [21], see also Proposition 3.7 of Karatzas and Žitković [18].

Lemma 2.1. Let U (t, x) be a utility function satisfying (2.9) and (2.11). In each of the subse-

quent assertions, the infimum of γ > 0 for which these assertions hold true equals the Reasonable

Asymptotic Elasticity AE∞[U ].

(i) There is x0 > 0 for all t ∈ [0, T ] s.t.

U (t, λx) < λγU (t, x) for λ > 1, x ≥ x0.

(ii) There is x0 > 0 for all t ∈ [0, T ] s.t.

U ′(t, x) < γ
U (t, x)

x
for x ≥ x0.

(iii) There is y0 > 0 for all t ∈ [0, T ] s.t.

V (t, µy) < µ
− γ

1−γV (t, y) for 0 < µ < 1, 0 < y ≤ y0.

(iv) There is y0 > 0 for all t ∈ [0, T ] s.t.

− V ′(t, y) <
( γ

1− γ

)V (t, y)

y
for 0 < y ≤ y0.

Corollary 2.1. Under Assumptions (2.10) and (2.12), we have AE0[U ] < ∞ if and only if

AE∞[V ] < 1, where we define

AE∞[V ] = lim sup
y→∞

(
sup

t∈[0,T ]

yV ′(t, y)

V (t, y)

)
< 1,

and hence similarly, we have each of the following assertions, the infimum of γ > 0 for which these

assertions hold true equals the Reasonable Asymptotic Elasticity AE∞[V ].

(i) There is y0 > 0 for all t ∈ [0, T ] s.t.

V (t, λy) > λγV (t, y) for λ > 1, y ≥ y0.

(ii) There is y0 > 0 for all t ∈ [0, T ] s.t.

V ′(t, y) > γ
V (t, y)

y
for y ≥ y0.

(iii) There is x0 > 0 for all t ∈ [0, T ] s.t.

U (t, µx) > µ− γ

1−γU (t, x) for 0 < µ < 1, 0 < x ≤ x0.

(iv) There is x0 > 0 for all t ∈ [0, T ] s.t.

− U ′(t, x) >
( γ

1− γ

)U (t, x)

x
for 0 < x ≤ x0.



8 XIANG YU

3. A New Characterization of Financeable Consumption Processes

3.1. Some Functional Set Up. In the spirit of Bouchard and Pham [3] who treats the wealth

dependent problem (see also Žitković [30] on consumption and endowment with stochastic clock),

let O denotes the σ-algebra of optional sets relative to the filtration (Ft)t∈[0,T ] and we define the

product measure dP̄ = dt× dP be the finite measure on the product space (Ω× [0, T ],O) :

(3.1) P̄[A] = EP
[ ∫ T

0
1A(t, ω)dt

]
, for A ∈ O.

We denote by L0(Ω × [0, T ],O, P̄) (L0 for short) the set of all random variables on the product

space Ω× [0, T ] under the product measure P̄ with respect to the optional σ-algebra O. And from

now on, we shall always identify the optional stochastic process (Yt)t∈[0,T ] with the random variable

Y ∈ L0(Ω× [0, T ],O, P̄). We also define the positive orthant L0
+(Ω× [0, T ],O, P̄) (L0

+ for short) the

set of elements Y = Y (t, ω) of L0 such that:

Y ≥ 0, P̄ a.s..

For any Y 1, Y 2 ∈ L0
+, we shall say that

Y 1 ≡ Y 2 if Y 1 = Y 2, P̄ a.s..

Endow L0
+ with the bilinear form valued in [0,∞] as:

〈
X,Y

〉
= E

[ ∫ T

0
XtYtdt

]
, for all X,Y ∈ L0

+.

We also define a partial ordering on L0
+ for convenience:

Y 1 � (≺)Y 2 ⇐⇒ Y 1 ≤ (<)Y 2, P̄ a.s..

3.2. Path-dependence Reduction by Auxiliary Processes. At this point, we are able to

define the set of all (x, z)-financeable consumption rate processes as a set of random variables on

the product space (Ω× [0, T ],O, P̄) and the Budget Constraint Proposition 2.1 states that:

A(x, z) ,
{
c ∈ L0

+ : ct ≥ Zt and Wt = x+

(H · S)t −

∫ t

0
csds ≥ 0,∀t ∈ [0, T ] and H is admissible

}

=
{
c ∈ L0

+ : ct ≥ Zt, ∀t ∈ [0, T ] and
〈
c, Y

〉
≤ x, ∀Y ∈ M

}
.

where process Zt is defined by (2.4). However, the family A(x, z) may be empty for some values

x > 0, z ≥ 0. We shall restrict ourselves to the effective domain H̄ which is defined as the union of

the interior of set such that A(x, z) is not empty and the one side boundary {x > 0, z = 0}:

(3.2) H̄ , int
{
(x, z) ∈ (0,∞)× [0,∞) : A(x, z) 6= ∅

}
∪ (0,∞)× {0}.
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We want the effective domain H̄ to include the special case of zero initial habit by z = 0.

Before we state the next result, we shall first impose some additional conditions on the stochas-

tic discounting factors αt and δt, which are essential for the well-posedness of our primal utility

optimization problem :

Assumption 3.1.

We assume the nonnegative optional processes αt and δt satisfy:

(3.3) sup
Y ∈M

E

[ ∫ T

0
e
∫ t

0
(δv−αv)dvYtdt

]
< ∞.

and there exists a constant x̄ > 0 such that

(3.4) E

[ ∫ T

0
U (t, x̄e−

∫ t

0
αvdv)dt

]
> −∞.

Remark 3.1. If stochastic discounting processes αt and δt are assumed to be bounded, Assumptions

(3.3) and (3.4) will be satisfied, and are redundant.

Remark 3.2. Assumption (3.3) is the well known super-hedging property of the random variable∫ T

0 e
∫ t

0
(δv−αv)dvdt in our original financial market. This assumption is basically equivalent to the

statement that for all z ≥ 0, there exists a x > 0, such that Ā(x, z) 6= ∅, as we will see below.

On the other hand, we make Assumption (3.4) to guarantee the existence of some (x, z) ∈ H̄ such

that the value function u(x, z) > −∞, which is always taken as granted in the utility maximization

problem with pure investment or consumption without habit formation. The acceptance of this

convention in the classical problem lies in the fact that there exists some strict positive constants

in the corresponding admissible space of wealth or consumption processes. However, this conven-

tion will be violated, due to the addictive habits constraint ct > Zt and the fact that stochastic

discounting factors are unbounded, hence our auxiliary dual process Γt (see its definition in (3.8))

is not necessary in L1. It is interesting to note, however, in the future we will see the process

w̃t , e−
∫ t

0
αvdv somehow plays the same role as the constant 1 to be a universal strictly positive

element in the corresponding admissible space by rescaling. And we remark here that one can also

take w̃t , e−
∫ t

0
αvdv as the abstract numeráre.

Lemma 3.1. Under Assumption (3.3), the effective domain H̄ can be rewritten explicitly as:

(3.5) H̄ =
{
(x, z) ∈ (0,∞)× [0,∞) : x > z sup

Y ∈M
E

[ ∫ T

0
e
∫ t

0
(δv−αv)dvYtdt

]}
.

By choosing (x, z) ∈ H̄, we can now define our Primal Utility Maximization Problem as:

(3.6) u(x, z) , sup
c∈A(x,z)

E

[ ∫ T

0
U (t, ct − Zt)dt

]
, (x, z) ∈ H̄.

Now, for fixed (x, z) ∈ H̄, and each (x, z)-financeable consumption rate process, we want to

generalize the Market Isomorphism idea by Schroder and Skiadas [28] in order to reduce the path
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dependency. We are ready to introduce the auxiliary process c̃t = ct − Zt, and define the auxiliary

set of A(x, z) as:

(3.7) Ā(x, z) ,
{
c̃ ∈ L0

+ : c̃t = ct − Zt, ∀t ∈ [0, T ], c ∈ A(x, z)
}
.

For each fixed (x, z) ∈ H̄, it is clear that there is one to one correspondence between sets A(x, z)

and Ā(x, z), and hence we have Ā(x, z) 6= ∅ for (x, z) ∈ H̄.

Let’s turn our attention to the set M of equivalent local martingale measures, and for each

Y ∈ M, according to Assumption (3.3) we can define the auxiliary optional process with respect

to Yt as:

(3.8) Γt , Yt + δtE
[ ∫ T

t

e
∫ s

t
(δv−αv)dvYsds

∣∣∣Ft

]
, ∀t ∈ [0, T ].

Let’s denote the set of all these auxiliary optional processes as:

(3.9) M̃ =
{
Γ ∈ L0

+ : Γt = Yt + δtE
[ ∫ T

t

e
∫ s

t
(δv−αv)dvYsds

∣∣∣Ft

]
, ∀t ∈ [0, T ], Y ∈ M

}
.

We remark again here that since stochastic discounting processes δt and αt are unbounded, under

Assumption (3.3), the auxiliary dual process Γ is well defined, but it is not necessarily in L1.

The following important equalities serve as critical ingredients in embedding our original utility

maximization problem into an auxiliary abstract optimization problem on the product space, for

which we are able to apply the convex duality approach:

Proposition 3.1. Under Assumption (3.3), for each nonnegative optional process ct such that

ct ≥ Zt with Zt defined by (2.4) for fixed initial standard of living z ≥ 0 and the nonnegative

optional process Yt, we have the following equalities with respect to their corresponding auxiliary

processes c̃t = ct − Zt and Γt which is defined by (3.8), that:
〈
c, Y

〉
=

〈
c̃,Γ

〉
+ z

〈
w, Y

〉

=
〈
c̃,Γ

〉
+ z

〈
w̃,Γ

〉
,

(3.10)

where we define these extra exogenous random processes w, w̃ ∈ L0
+ as

(3.11) wt , e
∫ t

0
(δv−αv)dv and w̃t , e

∫ t

0
(−αv)dv for all t ∈ [0, T ].

Remark 3.3. These extra random processes wt and w̃t in (3.11) defined by stochastic discounting

factors αt and δt will play the role of shadow random endowment rate processes in the future

formulation of the dual optimization problem. In an attempt to analyze this special structure,

we will naturally adopt some classical convex duality framework with respect to market random

endowment source, and try to prove some similar results.

Based on previous Propositions 2.1 and 3.1, under Assumptions (3.3) and (3.4), clearly we will

have the alternative budget constraint characterization of the consumption rate process ct as:
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Proposition 3.2. For any given pair (x, z) ∈ H̄, we call the consumption rate process c is (x, z)-

financeable if and only if ct ≥ Zt, ∀t ∈ [0, T ] and
〈
c− Z,Γ

〉
≤ x− z

〈
w̃,Γ

〉
, for all Γ ∈ M̃.

Proposition 3.2 provides us the alternative definition of set Ā(x, z) for (x, z) ∈ H̄ as:

(3.12) Ā(x, z) =
{
c̃ ∈ L0

+ :
〈
c̃,Γ

〉
≤ x− z

〈
w̃,Γ

〉
, ∀Γ ∈ M̃

}
.

We see that the path-dependent addictive habits constraint on ct such that ct ≥ Zt eventually

turns to be a natural constraint that c̃ ∈ L0
+, and (3.12) states that the auxiliary set Ā(x, z) is

solid, convex and closed in measure P̄ although A(x, z) does not hold all these properties. Hence

this path-dependence reduction from ct to c̃t is crucial to enable us to work with convex duality

approach.

3.3. Embedding into an Abstract Utility Maximization Problem with Shadow

Random Endowments. In order to accommodate to the classical convex duality approach

with the random endowment in the next section, due to some technical reasons, we need to first

enlarge the domain of the set H̄ to H and enlarge the corresponding auxiliary set Ā(x, z) to Ã(x, z)

defined as:

(3.13) Ã(x, z) ,
{
c̃ ∈ L0

+ :
〈
c̃,Γ

〉
≤ x− z

〈
w̃,Γ

〉
, ∀Γ ∈ M̃

}
,

where now (x, z) ∈ R2, and is restricted in the enlarged domain H:

H , int
{
(x, z) ∈ R2 : Ã(x, z) 6= ∅

}
.

Under Assumption (3.3) and Proposition 3.1, we have the following equivalent characterization

of Ã(x, z):

Lemma 3.2.

H =
{
(x, z) ∈ R2 : x > z

〈
w̃,Γ

〉
, for all Γ ∈ M̃

}

=
{
(x, z) ∈ R2 : x > p̄z, z ≥ 0

}
∪
{
(x, z) ∈ R2 : x > pz, z < 0

}
.

(3.14)

where

(3.15) p̄ , sup
Y ∈M

〈
w, Y

〉
= sup

Γ∈M̃

〈
w̃,Γ

〉
,

and

(3.16) p , inf
Y ∈M

〈
w, Y

〉
= inf

Γ∈M̃

〈
w̃,Γ

〉
.

where p̄, p < ∞ and H is a well defined convex cone in R2. Moreover

clH =
{
(x, z) ∈ R2 : Ã(x, z) 6= ∅

}

=
{
(x, z) ∈ R2 : x ≥ z

〈
w̃,Γ

〉
, for all Γ ∈ M̃

}(3.17)
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where clH denotes the closure of the set H in R2.

We will now define the Auxiliary Primal Utility Maximization Problem based on the

abstract auxiliary domain Ã(x, z) as:

(3.18) ũ(x, z) , sup
c̃∈Ã(x,z)

E

[ ∫ T

0
U (t, c̃t)dt

]
, (x, z) ∈ H.

By definitions of Ā(x, z) for (x, z) ∈ H̄ and Ã(x, z) for (x, z) ∈ H, we successfully embedded our

original utility maximization problem (3.6) with consumption habit formation into the auxiliary

abstract utility maximization problem (3.18) without habit formation, however, with some shadow

random endowments. More precisely, the following equivalence can be guaranteed that for any

(x, z) ∈ H̄ ⊂ H:

(3.19) Ā(x, z) = Ã(x, z),

and the two value functions coincide

(3.20) u(x, z) = ũ(x, z),

in addition, the immediate byproduct consequence states that c∗t is the optimal solution for u(x, z)

if and only if c̃∗t = c∗t −Z∗
t ≥ 0 for all t ∈ [0, T ] is the optimal solution for ũ(x, z), when (x, z) ∈ H̄.

4. The Dual Optimization Problem and Main Results

Inspired by the idea in Hugonnier and Kramkov [16] for optimal investment with random en-

dowment, we concentrate now on the construction of the dual problem by firstly introducing the

set R, which is the relative interior of the polar cone of −H:

(4.1) R , ri
{
(y, r) ∈ R2 : xy − zr ≥ 0 for all (x, z) ∈ H

}
.

To exclude the easy case, let’s make the following assumption on stochastic discounting processes

αt and δt:

Assumption 4.1.

The random variable defined by

(4.2) E ,

∫ T

0
wtdt =

∫ T

0
e
∫ t

0
(δv−αv)dvdt

is not replicable under our original financial market.

Remark 4.1. Our Assumption (4.2) above prevents the foundation of the nice work by Schroder and

Skiadas [28] which states that there exists an equivalence between the primal utility maximization

problem with habit formation in the original market and the utility maximization problem in the

Isomorphic market without consumption habits. And our work generally extends their conclusion
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and provides the existence and uniqueness of the optimal solution in the incomplete market when

the Market Isomorphism does not hold.

Remark 4.2. We remark here that even if E ,
∫ T

0 wtdt is replicable in the original incomplete

market such that p̄ = p, the market isomorphism relation by Schroder and Skiadas [28] may still

not hold. In this case, however, the original utility maximization problem becomes easier since we

do not need to take care of the exogenous term w̃t and the primal value function u(x) becomes one

dimensional function only depending on the initial wealth. We can therefore embed our original

problem into the framework by Kramkov and Schachermayer [21], [22] to build the corresponding

one dimensional conjugate duality relation and provide the existence and uniqueness of the optimal

consumption strategy.

Lemma 4.1. By Assumption (4.2), we know that R is an open convex cone in R2, and can be

rewritten as:

(4.3) R =
{
(y, r) ∈ R2 : y > 0, and py < r < p̄y

}
,

where p̄ and p are defined by (3.15) and (3.16), and p̄ < p.

Following the framework of Hugonnier and Kramkov [16], for an arbitrary pair (y, r) ∈ R, we

denote by Ỹ(y, r) the set of nonnegative processes as a proper extension of the auxiliary set M̃ in

the way that:

(4.4) Ỹ(y, r) ,
{
Γ ∈ L0

+ :
〈
c̃,Γ

〉
≤ xy − zr, for all c̃ ∈ Ã(x, z), and (x, z) ∈ H

}
.

Based on previous efforts, we are ready to establish the Auxiliary Dual Utility Maximization

Problem to (3.18) defined as:

(4.5) ṽ(y, r) , inf
Γ∈Ỹ(y,r)

E
[ ∫ T

0
V (t,Γt)dt

]
, (y, r) ∈ R.

The following theorems constitute our main results. And we provide their proofs through a

number of auxiliary results in the next section.

Theorem 4.1. Assume conditions (2.5), (2.7), (3.3), (3.4), (4.2). Assume also that (2.11), (2.12)

and (2.10), (i.e., AE0[U ] < ∞) hold true together with

(4.6) ũ(x, z) < ∞ for some (x, z) ∈ H.

we will have:

(i) The function ũ is (−∞,∞)-valued on H and ṽ(y, r) is (−∞,∞]-valued on R. And for each

(y, r) ∈ R there exists a constant s = s(y, r) > 0 such that ṽ(sy, sr) < ∞. Moreover, we
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have the conjugate duality of value functions ũ and ṽ:

ũ(x, z) = inf
(y,r)∈R

{ṽ(y, r) + xy − zr}, (x, z) ∈ H

ṽ(y, r) = sup
(x,z)∈H

{ũ(x, z) − xy + zr}, (y, r) ∈ R.

(ii) The solution Γ∗(y, r) to the optimization problem (4.5) exists and is unique (in the sense of

≡ in L0
+) for all (y, r) ∈ R such that ṽ(y, r) < ∞.

Theorem 4.2. We now assume in addition to conditions of Theorem 4.1 that Assumption (2.9)

holds, (i.e., AE∞[U ] < 1). Then in addition to assertions of Theorem 4.1, we also have:

(i) The value function ṽ(y, r) is (−∞,∞)-valued on (y, r) ∈ R and ṽ is continuously differen-

tiable on L. And the optimal solution Γ∗
t (y, r) > 0, P-a.s. for all t ∈ [0, T ].

(ii) The solution c̃∗(x, z) to optimization problem (3.18) exists and is unique (in the sense of ≡

in L0
+) for any (x, z) ∈ H. And the optimal solution c̃∗t (x, z) > 0, P-a.s. for all t ∈ [0, T ].

(iii) The superdifferential of ũ maps H into R, i.e.,

(4.7) ∂ũ(x, z) ⊂ R, (x, z) ∈ H.

Moreover, if (y, r) ∈ ∂ũ(x, z), then c̃∗(x, z) and Γ∗(y, r) are related by:

Γ∗
t (y, r) = U ′(t, c̃∗t (x, z)) or c̃∗t (x, z) = I (t,Γ∗

t (y, r)),〈
Γ∗(y, r), c̃∗(x, z)

〉
= xy − zr.

(4.8)

(iv) If we restrict the choice of (x, z) ∈ Ĥ ⊂ H, the solution c∗t (x, z) to our primal utility

optimization problem (3.6) exists and is unique, moreover,

(4.9) c̃∗t (x, z) = c∗t (x, z)− Z∗
t (x, z).

5. Proofs of Main Results

5.1. The proof of Theorem 4.1. The following Proposition will serve as the key step to build

some future Bipolar relationships:

Proposition 5.1. Assume all assumptions of Theorem 4.1 hold true. Then the families
(
Ã(x, z)

)
(x,z)∈H

and
(
Ỹ(y, r)

)
(y,r)∈R

have the following properties:
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(i) For any (x, z) ∈ H, the set Ã(x, z) contains a strictly positive random variable on the

product space. A nonnegative random variable c̃ belongs to Ã(x, z) if and only if

(5.1)
〈
c̃,Γ

〉
≤ xy − zr for all (y, r) ∈ R and Γ ∈ Ỹ(y, r).

(ii) For any (y, r) ∈ R, the set Ỹ(y, r) contains a strictly positive random variable on the product

space. A nonnegative random variable Γ belongs to Ỹ(y, r) if and only if

(5.2)
〈
c̃,Γ

〉
≤ xy − zr for all (x, z) ∈ H and c̃ ∈ Ã(x, z).

In order to prove Proposition 5.1, for any p > 0, we denote by M(p) the subset ofM that consists

of measure densities Y ∈ M such that
〈
w, Y

〉
= p. Then for any density process Y ∈ M(p), define

the auxiliary set as

(5.3) M̃(p) ,
{
Γ ∈ L0

+ : Γt = Yt + δtE
[ ∫ T

t

e
∫ s

t
(δv−αv)dvYsds

∣∣∣Ft

]
, ∀t ∈ [0, T ], Y ∈ M(p)

}
.

We have
〈
w̃,Γ

〉
=

〈
w, Y

〉
= p.

Define P as the open interval P = (p, p̄), where p, p̄ are defined in (3.15) and (3.16). We have

the following result.

Lemma 5.1. Assume that conditions of Proposition 5.1 hold true and let p > 0. Then the set

M̃(p) is not empty if and only if p ∈ P = (p, p̄), where p, p̄ are defined in (3.15) and (3.16) . In

particular,

(5.4)
⋃

p∈P

M̃(p) = M̃.

where the set M̃ is defined by (3.9).

Proof. The proof reduces to verifying that P = P ′, where we define

P ′ , {p > 0 : M̃(p) 6= ∅}.

Similar to the proof of Lemma 8 of Hugonnier and Kramkov [16], one direction inclusion that

P ⊆ P ′ is obvious.

For the inverse, let p ∈ P ′, (x, z) ∈ clH, Γ ∈ M̃(p), and we first claim there exists a c̃ ∈ Ã(x, z)

such that

P̄[c̃ � 0] > 0,

so we get

0 <
〈
c̃,Γ

〉
≤ x− zp.

As (x, z) is an arbitrary element of clH, we have p ∈ P.

As for the above claim, according to Theorem 2.11 of Schachermayer [27], Assumption (4.2)

guarantees that for all Y ∈ M, we have

p < 〈w, Y 〉 < p̄,
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which is

p < 〈w̃,Γ〉 < p̄,

for all the Γ ∈ M̃. Then by the definition of clH in Lemma 3.2, we observe that for any (x, z) ∈ clH,

we will have

x− z
〈
w̃,Γ

〉
> 0,

for all the Γ ∈ M̃, and the claim holds by the definition of Ã(x, z). �

Lemma 5.2. Assume that conditions of Proposition 5.1 hold true and let p ∈ P = (p, p̄), we have

then M̃(p) ⊆ Ỹ(1, p).

Proof. The conclusion can be directly derived in light of the definition of Ã(x, z) and Ỹ(1, p). �

Lemma 5.3. Assume that conditions of Proposition 5.1 hold true. For any (x, z) ∈ H, a nonneg-

ative random variable c̃ belongs to Ã(x, z) if and only if

(5.5)
〈
c̃,Γ

〉
≤ x− zp for all p ∈ P and Γ ∈ M̃(p).

Proof. If c̃ ∈ Ã(x, z), the definition of Ã(x, z) and the fact M̃(p) ⊂ M̃ guarantee the validity of

(5.5).

On the other hand, for any c̃ ∈ L0
+ such that (5.5) holds true, we will have:

sup
Γ∈M̃

〈
c̃+ zw̃,Γ

〉
= sup

p∈P
sup

Γ∈M̃(p)

〈
c̃+ zw̃,Γ

〉

= sup
p∈P

sup
Γ∈M̃(p)

(〈
c̃,Γ

〉
+ zp

)
≤ x.

The claim holds according to the definition of Ã(x, z). �

PROOF OF PROPOSITION 5.1.

For the validity of assertion (i), consider (x, z) ∈ H, there exists a λ > 0 such that (x−λ, z) ∈ H

since H is an open set.

Let c̃ ∈ Ã(x− λ, z), we will have for any Γ ∈ M̃, and w̃t = e−
∫ t

0
αvdv � 0,

(5.6)
〈
c̃,Γ

〉
≤ x− λ− z

〈
w̃,Γ

〉
.

By Assumption (3.3) and Proposition 3.1, we define ρt ,
λ
p̄
w̃t > 0 for all t ∈ [0, T ], then for all

Γ ∈ M̃:

〈
ρ,Γ

〉
≤

〈
c̃+ ρ,Γ

〉
≤ x− λ− z

〈
w̃,Γ

〉
+

λ

p̄

〈
w̃,Γ

〉

≤ x− λ− z
〈
w̃,Γ

〉
+ λ ≤ x− z

〈
w̃,Γ

〉
.
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Hence, we have shown the existence of a strictly positive element ρt � 0 ∈ Ã(x, z) by the definition

of Ã(x, z).

If (5.1) holds for some c̃ ∈ L0
+. The density process Γ ∈ M̃(p) belongs to Ỹ(1, p) for all p ∈ P by

Lemma 5.2, and hence (5.5) holds. Lemma 5.3 then implies that c̃ ∈ Ã(x, z).Conversely, suppose

now c̃ ∈ Ã(x, z), the definition of sets Ỹ(y, r), (y, r) ∈ R implies (5.1) and we complete the proof

of assertion (i).

For the proof the assertion (ii), notice

kỸ(y, r) = Ỹ(ky, kr) for all k > 0, (y, r) ∈ R.

therefore we just need to consider (y, r) = (1, p) for some p ∈ P. Lemma 5.2 implies Γ ∈ M̃(p) ⊆

Ỹ(1, p), and the existence of Y � 0 ∈ M(p) takes care of the existence Γ � 0 ∈ M̃(p), P̄-a.s.

The second part is a direct consequence of the definition of Ỹ(y, r). �

For the proof of Theorem 4.1, we will also need the following lemmas:

Lemma 5.4. Under assumptions of Theorem 4.1, the value function ũ is (−∞,∞)-valued on H.

Proof. First, by Lemma 2.1, the assumption AE0[U ] < ∞ implies that for any positive constant

s > 0, the existence of s1 > 0 and s2 > 0 such that for all t ∈ [0, T ]:

(5.7) U (t, x/s) ≥ s1U (t, x) + s2, x > 0,

According to Assumption (3.4) and the proof of Proposition 5.1, for each fixed pair (x, z) ∈ H,

there exists λ = λ(x, z) > 0 such that λ
p̄
w̃t ∈ Ã(x, z), therefore we deduce that x̄w̃t ∈ Ã( x̄p̄

λ
x, x̄p̄

λ
z),

and

ũ(
x̄p̄

λ
x,

x̄p̄

λ
z) = sup

c̃∈Ã( x̄p̄
λ
x,

x̄p̄

λ
z)

E

[ ∫ T

0
U (t, c̃t)dt

]
≥ E

[ ∫ T

0
U (t, x̄w̃t)dt

]
> −∞,

hence, for any (x, z) ∈ H, we get the existence of a constant s(x, z) > 0, such that ũ(sx, sz) > −∞,

with s(x, z) = x̄p̄
λ
.

Since, for any constant s > 0,

Ã(x, z) = Ã(sx, sz)/s,

we derive ũ(x, z) > −∞ if ũ(sx, sz) > −∞ holds for a constant s = s(x, z) > 0 , follow the result

above, we conclude that ũ(x, z) > −∞ in the whole domain H.

Now, since the set H is open and ũ(x, z) < ∞ for some (x, z) ∈ H by assumption (4.6), we

deduce that ũ is finitely valued on H by the concavity of ũ on H. And the proof is complete. �

Before we state the next lemma, let’s introduce a special concept of compactness which was

originally defined in Žitković [31].
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Definition 5.1. A convex subset C of a topological vector space X is said to be convexly compact

if for any non-empty set A and any family {Fa}a∈A of closed, convex subsets of C, the condition

∀D ∈ Fin(A),
⋂

a∈D

Fa 6= ∅ =⇒
⋂

a∈A

Fa 6= ∅

where the set Fin(A) consists of all non-empty finite subsets of A for an arbitrary non-empty set

A.

Without the restriction that the sets {Fa}a∈A must be convex, this definition would be equivalent

to compactness in the original sense. Thus any convex and compact set is convexly compact and

Definition 5.1 extends the concept of compactness.

Žitković [31] furthermore derived an easy characterization on the space of non-negative, measur-

able functions.

Theorem 5.1. A closed and convex subset C of L0
+ is convexly compact if and only if it is bounded

in finite measure.

Based on the above theorem, we have the following lemma on the convexly compactness of sets

Ã(x, z) and Ỹ(y, r) :

Lemma 5.5. For each pair (x, z) ∈ H and (y, r) ∈ R, the sets Ã(x, z) and Ỹ(y, r) are convex,

solid and closed in the topology of convergence in measure P̄. Moreover, they are both bounded in

L0
+(Ω× [0, T ],O, P̄), hence they are both convexly compact.

Proof. For (y, r) ∈ R, we now define two auxiliary sets as

H(y, r) ,
{
(x, z) ∈ H : xy − zr ≤ 1

}

A(k) ,
⋃

(x,z)∈kH(y,r)

Ã(x, z),
(5.8)

and denote by Ã(k) the closure of A(k) with respect to convergence in measure P̄.

From Proposition 5.1, we deduce that

Γ ∈ Ỹ(y, r) ⇔
〈
c̃,Γ

〉
≤ 1, ∀c̃ ∈ Ã(1)

Hence, sets Ỹ(y, r) and Ã(1) satisfy

Ỹ(y, r) = Ã(1)◦.

At the same time, by its definition, we have Ã(1) itself is closed, convex and solid, by the Bipolar

theorem in Brannath and Schachermayer [4], we have Ã(1) = Ã(1)◦◦, and hence we have the

following Bipolar relationship:

Ã(1) = Ỹ(y, r)◦

Ỹ(y, r) = Ã(1)◦.
(5.9)
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The Bipolar theorem on L0
+ gives the convexity, solidness and closure in measure P̄.

Similarly, for (x, z) ∈ H, now define the set:

R(x, z) , {(y, r) ∈ R : xy − zr ≤ 1},

Y(k) ,
⋃

(y,r)∈kR(x,z)

Ỹ(y, r),(5.10)

and denote by Ỹ(k) the closure of Y(k) with respect to convergence in measure P̄.

Now, again Proposition 5.1 implies

c̃ ∈ Ã(x, z) ⇔
〈
c̃,Γ

〉
≤ 1, ∀Γ ∈ Ỹ

and the Bipolar relationship:

Ỹ(1) = Ã(x, z)◦

Ã(x, z) = Ỹ(1)◦.
(5.11)

Hence, we also have Ã(x, z) is convex, solid and closed in the topology of convergence in measure

P̄.

Moreover, thanks to the existence of 0 ≺ Γ ∈ M̃(p) which is also in Ỹ(1, p), we deduce the set

Ã(x, z) is bounded in measure P̄ by Proposition 5.1 part (i).

Similarly, as we have derived 0 ≺ ρt =
λ
p̄
w̃t ∈ Ã(x, z), due to Proposition 5.1 part (ii), we get

the set Ỹ(y, r) is also bounded in measure P̄. And therefore both of them are convexly compact in

L0
+. �

Lemma 5.6. Under assumptions of theorem 4.1, we have for each fixed (y, r) ∈ R

sup
Γ∈Ỹ(y,r)

E

[ ∫ T

0
V −(t,Γt)dt

]
< ∞.

Proof. Assumption (3.4) admits the existence of x̄w̃t ∈ L0
+ such that E

[ ∫ T

0 U (t, x̄w̃t)dt
]
> −∞,

and moreover, by the proof of Proposition 5.1, we also know for each fixed (y, r) ∈ R, find the fixed

pair (x, z) ∈ H̃(y, r), there exists a constant λ(x, z) > 0 such that w̃ ∈ Ã( p̄
λ
), where p̄ is defined by

(3.15). Taking into account the inequality U (t, x) ≤ V (t, y) + xy, we have for any Γ ∈ Ỹ(y, r) and

y0(t) , inf{y > 0 : V (t, y) < 0}

E

[ ∫ T

0
V −(t,Γt)dt

]
≤ −E

[ ∫ T

0
V (t,Γt1{Γt≥y0(t)} + y0(t)1{Γt<y0(t)})dt

]

≤− E

[ ∫ T

0
U (t, x̄w̃t)dt

]
+ x̄E

[ ∫ T

0
w̃tΓtdt

]
+ x̄E

[ ∫ T

0
w̃t(y0(t)− Γt)1{Γt<y0(t)}dt

]

≤− E

[ ∫ T

0
U (t, x̄w̃t)dt

]
+ x̄

p̄

λ
+ x̄

∫ T

0
y0(t)dt.

which is finitely valued and independent of the initial choice of Γ since we have w̃t , e
∫ t

0
(−αv)dv ≤ 1

for t ∈ [0, T ] and sup
t∈[0,T ]

y0(t) < ∞ by Assumption (2.12), and thus our conclusion holds true. �
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Lemma 5.7. Under assumptions of theorem 4.1, we have for any (y, r) ∈ R,
(
V −(·,Γ·)

)
is

uniformly integrable for all Γ ∈ Ỹ(y, r).

Proof. By Corollary 2.1, the assumption AE0[U ] < ∞ is equivalent to the following assertions:

(5.12) ∃y0 > 0, and µ ∈ (1, 2), ∀x ≥ y0, V (t, 2y) ≥ µV (t, y)

Let y0 > 0 and µ ∈ (1, 2) be the constants in the above (5.12). Take γ = log2 µ ∈ (0, 1), we

define the auxiliary function Ṽ (t, y) : [0,∞) × (0,∞) → R by

(5.13) Ṽ (t, y) ,

{
−2y0

γ
V ′(t, 2y0)− V (t, y), y ≥ 2y0,

−V (t, 2y0)−
2y0
γ
V ′(t, 2y0)(

y
2y0

)γ , y < 2y0.

For each fixed t > 0, Ṽ (t, y) is a nonnegative, concave, and nondecreasing function which agrees

with −V (t, y) up to a constant for large enough values of y and satisfies

(5.14) Ṽ (t, 2y) ≤ µṼ (t, y), for all y > 0.

Lemma 5.6 asserts

sup
Γ∈Ỹ(y,r)

E

[ ∫ T

0
V−(t,Γt)dt

]
< ∞

and hence in light of the fact that V− and Ṽ differ only by a constant in a neighborhood of ∞, we

will get

(5.15) sup
Γ∈Ỹ(y,r)

E

[ ∫ T

0
Ṽ (t,Γt)dt

]
< ∞.

The validity of uniform integrability of the sequence
(
V −(·,Γn

· )
)
n≥1

for Γn ∈ Ỹ(y, r), is therefore

equivalent to the uniform integrability of (Ṽ (·,Γn
· ))n≥1.

To this end, we argue by contradiction. Suppose this sequence is not uniformly integrable, then

by Rosenthal’s subsequence splitting lemma, we can find a subsequence (fn)n≥1, a constant ε > 0

and a disjoint sequence (An)n≥1 of (Ω× [0, T ],O) with

An ∈ O, Ai ∩Aj = ∅ if i 6= j,

such that

E

[ ∫ T

0
Ṽ (t, fn

t )1Andt
]
≥ ε, for n ≥ 1

We define the sequence of random variables (hn)n≥1

hnt =

n∑

k=1

fk
t 1Ak .

For any c̃ ∈ Ã(1),
〈
c̃, hn

〉
≤

n∑

k=1

〈
c̃, fk

〉
≤ n.
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Hence hn

n
∈ Ỹ(y, r).

One the other hand,

E
[ ∫ T

0
Ṽ (t, hnt )dt

]
≥

n∑

k=1

E
[ ∫ T

0
Ṽ (t, fk

t )1Akdt
]
≥ εn,

and therefore by taking n = 2m, via iteration, it produces

µm sup
Γt∈Ỹ(y,r)

E

[ ∫ T

0
Ṽ (t,Γt)dt

]
≥ µmE

[ ∫ T

0
Ṽ (t,

h2
m

t

2m
)dt

]

≥ E

[ ∫ T

0
Ṽ (t, h2

m

t )dt
]
≥ 2mε,

since µ ∈ (1, 2), this contradicts (5.15) for m large enough, therefore the conclusion holds true.

�

Lemma 5.8. For any pair (y, r) ∈ R, the optimal solution Γ∗ to the optimization problem (4.5)

exists and is unique such that ṽ(y, r) < ∞.

Proof. Now fix (y, r) ∈ R, let (Γn)n≥1 be a sequence in Ỹ(y, r) such that

lim
n→∞

E

[ ∫ T

0
V (t,Γn

t )dt
]
= ṽ(y, r).

There exists a sequence of forward convex combinations fn ∈ conv(Γn,Γn+1, . . .) which converges

almost surely to a random variable Γ∗ with values in [0,∞]. Since the set Ỹ(y, r) is closed and

bounded in measure P̄ in L0
+ by Lemma 5.5, we deduce that Γ∗ is almost surely finitely valued,

moreover, Γ∗ belongs to Ỹ(y, r). We claim that Γ∗ is the optimal solution to (4.5), that is

E

[ ∫ T

0
V (t,Γ∗

t )dt
]
= ṽ(y, r).

The concavity of V produces

lim
n→∞

E

[ ∫ T

0
V (t, fn

t )dt
]
= ṽ(y, r),

and Fatou’s lemma implies

lim inf
n→∞

E

[ ∫ T

0
V+(t, fn

t )dt
]
≥ E

[ ∫ T

0
V +(t,Γ∗

t )dt
]
.

The optimality of Γ∗
t will follow if we can show

(5.16) lim
n→∞

E

[ ∫ T

0
V−(t, fn

t )dt
]
= E

[ ∫ T

0
V −(t,Γ∗

t )dt
]
,

but the validity of (5.16) is a consequence of Lemma 5.7. �

For the proof of conjugate duality relations between value functions ũ(x, z) and ṽ(y, r), by the



22 XIANG YU

exact same proof, we can generalize Lemma 11 of Hugonnier and Kramkov [16] in the following

way:

Lemma 5.9. If G ⊆ L0
+ is convex and contains a strictly positive random variable. Then

sup
g∈G

E

[ ∫ T

0
U (t, xgt)dt

]
= sup

g∈clG
E

[ ∫ T

0
U (t, xgt)dt

]
, x > 0

where clG denotes the closure of G with respect to convergence in probability P̄.

Lemma 5.10. For w̃t , e
∫ t

0
(−αv)dv, we have the following result:

(5.17) E

[ ∫ T

0
V −(t,U ′(t, w̃t))dt

]
< ∞

Proof. Similar to the proof of Lemma 5.6, recall the Assumption that E

[ ∫ T

0 U (t, x̄w̃t)dt
]
> −∞,

taking into account the inequality U (t, x) < V (t, y) + xy, we have for any y0(t) , inf{y > 0 :

V (t, y) < 0}

E

[ ∫ T

0
V −(t,U ′(t, w̃t))dt

]
≤ −E

[ ∫ T

0
V (t,U ′(t, w̃t)1{U ′(t,w̃t)≥y0(t)} + y0(t)1{U ′(t,w̃t)<y0(t)})dt

]

≤− E

[ ∫ T

0
U (t, x̄w̃t)dt

]
+ x̄E

[ ∫ T

0
w̃tU

′(t, w̃t)dt
]
+ x̄E

[ ∫ T

0
w̃t(y0(t)−U ′(t, w̃t))1{U ′(t,w̃t)<y0(t)}dt

]

≤− E

[ ∫ T

0
U (t, x̄w̃t)dt

]
+ x̄E

[ ∫ T

0
w̃tU

′(t, w̃t)dt
]
+ x̄

∫ T

0
y0(t)dt.

(5.18)

We already know the first term and the third term are bounded, as for the second term, we have

two different cases:

1. If we have x̄ ≤ 1, then we can rewrite the second term as

E

[ ∫ T

0
w̃tU

′(t, w̃t)dt
]
= E

[ ∫ T

0
w̃tU

′(t, w̃t)1{w̃t≤x0}dt
]
+ E

[ ∫ T

0
w̃tU

′(t, w̃t)1{w̃>x0}dt
]
,

where x0 is the uniform constant in Corollary 2.1 such that for all t ∈ [0, T ],

(5.19) xU ′(t, x) <
( γ

1− γ

)(
− U (t, x)

)
for 0 < x ≤ x0.

Again, use the fact that w̃ � 1, we have

E
[ ∫ T

0
w̃tU

′(t, w̃t)1{w̃>x0}dt
]
< ∞,

and we also have

E

[ ∫ T

0
w̃tU

′(t, w̃t)1{w̃t≤x0}dt
]
≤ −

( γ

1− γ

)
E

[ ∫ T

0
U (t, w̃t)dt

]
≤ −

( γ

1− γ

)
E

[ ∫ T

0
U (t, x̄w̃t)dt

]
< ∞

by using the inequality (5.19), the increasing property of U (t, x) with respect to x and the As-

sumption (3.4).
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2. If we have x̄ > 1, then we rewrite the second term as:

E
[ ∫ T

0
w̃tU

′(t, w̃t)dt
]
= E

[ ∫ T

0
w̃tU

′(t, w̃t)1{x̄w̃t≤x0}dt
]
+ E

[ ∫ T

0
w̃tU

′(t, w̃t)1{x̄w̃>x0}dt
]
,

where x0 is the uniform constant in Corollary 2.1 such that for all t ∈ [0, T ], the inequality (5.19)

holds and moreover,

(5.20) U (t,
1

x̄
x) > (

1

x̄
)−

γ

1−γU (t, x) for 0 < x ≤ x0,

holds for all t ∈ [0, T ].

Then, again, the second term is bounded since x̄w̃ � x̄, and for the first term, we have

E

[ ∫ T

0
w̃tU

′(t, w̃t)1{x̄w̃t≤x0}dt
]
≤ −

( γ

1− γ

)
E

[ ∫ T

0
U (t, w̃t)1{x̄w̃t≤x0}dt

]

≤ −
( γ

1− γ

)
(
1

x̄
)
− γ

1−γE

[ ∫ T

0
U (t, x̄w̃t)dt

]
< ∞

by the inequality (5.19) and (5.20) and the Assumption (3.4).

Hence we proved the second term in (5.18) is also finite, and we can therefore conclude that result

(5.17) holds true. �

We should now emphasize the fact that because these stochastic discounting factors αt and

δt are only assumed to be nonnegative and optional, the auxiliary dual domain Ỹ(y, r) is then

not necessary a subset of L1, which fundamentally differs from the usual observations that the

dual domain of pure investment or consumption optimization problem without habit formation

is primarily a subset of L1. As a consequence, we have to revise the usual Minimax theorem

based on L1 to derive the important conjugate duality relationship. Fortunately, the following

Minimax theorem by Kauppila [19] can serve as a substitute tool on the space L0
+ without any

priori assumption on the integrability of the dual process.

Theorem 5.2 (Minimax Theorem). Let A be a nonempty convex subset of a topological space,

and B a nonempty, closed, convex, and convexly compact subset of a topological vector space. Let

H : A×B → R be convex on A, and concave and upper-semicontinuous on B. Then

sup
B

inf
A

H = inf
A

sup
B

H.

Lemma 5.11. Under assumptions of Theorem 4.1, the conjugate duality relations hold:

ũ(x, z) = inf
(y,r)∈R

{ṽ(y, r) + xy − zr}, (x, z) ∈ H

ṽ(y, r) = sup
(x,z)∈H

{ũ(x, z) − xy + zr}, (y, r) ∈ R.
(5.21)

Proof. For n > 0, we define Sn as a subset in L0
+(Ω × [0, T ],O, P̄) as

Sn = {c̃ ∈ L0
+ : 0 � c̃ � nw̃}.
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It is clear that sets Sn are closed, convex, and bounded in probability, and hence convexly compact

in L0
+.

We start to show the functional

c̃ 7→ E

[ ∫ T

0

(
U (t, c̃t)− c̃tΓt

)
dt
]

is upper-semicontinuous on Sn in the topology of convergence in measure P̄, for all Γ ∈ Ỹ(y, r) and

(y, r) ∈ R:

In fact, by passing if necessary to a subsequence denoted by (c̃m)m≥1 converges almost surely to

c̃ ∈ Sn, Fatou’s lemma deduces both

(5.22) lim inf
m→∞

E

[ ∫ T

0
U (t, c̃mt )−dt

]
≥ E

[ ∫ T

0
U (t, c̃t)

−dt
]
,

and

(5.23) lim inf
m→∞

E

[ ∫ T

0
c̃mt Γtdt

]
≥ E

[ ∫ T

0
c̃tΓtdt

]
.

Moreover, on Sn, it is clear that E
[ ∫ T

0 U (t, c̃mt )+dt
]
is uniformly integrable, and hence

(5.24) lim
m→∞

E

[ ∫ T

0
U (t, c̃mt )+dt

]
= E

[ ∫ T

0
U (t, c̃t)

+dt
]
.

Now, together with (5.22) and (5.23), we have

lim sup
m→∞

E
[ ∫ T

0

(
U (t, c̃mt )− c̃mt Γt

)
dt
]
≤ E

[ ∫ T

0

(
U (t, c̃t)− c̃tΓt

)
dt
]
.

Noting that, by Lemma 5.5, Ỹ(y, r) is a closed convex subset of L0
+, we may use the above

Minimax Theorem 5.2 to get the following equality, for n fixed:

sup
c̃∈Sn

inf
Γ∈Ỹ(y,r)

E

[ ∫ T

0

(
U (t, c̃t)− c̃tΓt

)
dt
]
= inf

Γ∈Ỹ(y,r)
sup
c̃∈Sn

E

[ ∫ T

0

(
U (t, c̃t)− c̃tΓt

)
dt
]
.

Recall now the Bipolar relationship (5.9), and from the definition, we have

(5.25)
⋃

(x,z)∈H

Ã(x, z) =
⋃

k>0

Ã(k).

As a preparation of the following proof, we define the auxiliary set

A′(k) ,
{
c̃ ∈ Ã(k) : sup

Γ∈Ỹ(y,r)

〈c̃,Γ〉 = k
}

and clearly, we also have

(5.26)
⋃

k>0

Ã(k) =
⋃

(x,z)∈H

Ã(x, z) =
⋃

k>0

A′(k).
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We show first that

lim
n→∞

sup
c̃∈Sn

inf
Γ∈Ỹ(y,r)

E

[ ∫ T

0

(
U (t, c̃t)− c̃tΓt

)
dt
]

= sup
k>0

sup
c̃∈A′(k)

inf
Γ∈Ỹ(y,r)

E

[ ∫ T

0

(
U (t, c̃t)− c̃tΓt

)
dt
]
.

(5.27)

The direction of inequality “≥” holds by

lim
n→∞

sup
c̃∈Sn

inf
Γ∈Ỹ(y,r)

E

[ ∫ T

0

(
U (t, c̃t)− c̃tΓt

)
dt
]

≥ lim
n→∞

sup
c̃∈A′(k)∩Sn

inf
Γ∈Ỹ(y,r)

E
[ ∫ T

0

(
U (t, c̃t)− c̃tΓt

)
dt
]

= sup
c̃∈A′(k)

inf
Γ∈Ỹ(y,r)

E

[ ∫ T

0

(
U (t, c̃t)− c̃tΓt

)
dt
]
, ∀k > 0,

while the other direction “≤” is obvious since for any (x, z) ∈ H, we have nw̃ ∈ A′(np̄), and hence

Sn ⊂ A′(np̄).

To show the next step, we need to prepare some finiteness results as below:

From definitions in Lemma 5.5 and by Lemma 5.9, we know

(5.28) sup
c̃∈Ã(k)

E

[ ∫ T

0
U (t, c̃t)dt

]
= sup

c̃∈A(k)
E

[ ∫ T

0
U (t, c̃t)dt

]
= sup

(x,z)∈kH(y,r)
ũ(x, z), k > 0.

and we claim that

(5.29) sup
(x,z)∈kH(y,r)

ũ(x, z) < ∞, k > 0.

To prove (5.29), recall that the set R is open, the set H(y, r) is bounded and (5.29) follows from

the concavity of ũ and ũ(x, z) < ∞ for all (x, z) ∈ H.

Now, by (5.26), (5.27), (5.28), (5.29) and the definition of domain H, we have further equalities:

sup
k>0

sup
c̃∈A′(k)

inf
Γ∈Ỹ(y,r)

E

[ ∫ T

0

(
U (t, c̃t)− c̃tΓt

)
dt
]

=sup
k>0

{
sup

c̃∈A′(k)
E

[ ∫ T

0
U (t, c̃t)dt

]
− k

}

=sup
k>0

{
sup

c̃∈Ã(k)

E

[ ∫ T

0
U (t, c̃t)dt

]
− k

}

=sup
k>0

{
sup

(x,z)∈kH(y,r)
ũ(x, z) − k

}

= sup
(x,z)∈H

{ũ(x, z)− xy + zr}.

On the other hand,

inf
Γ∈Ỹ(y,r)

sup
c̃∈Sn

E

[ ∫ T

0

(
U (t, c̃t)− c̃tΓt

)
dt
]
= inf

Γ∈Ỹ(y,r)
E

[ ∫ T

0
V n(t,Γt, ω)dt

]
, ṽn(y, r),
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where we define V n(t, y, ω) according to the definition of set Sn as

V n(t, y, ω) = sup
0<x≤nw̃

[
U (t, x)− xy

]
.

Consequently, it is sufficient to show that

lim
n→∞

ṽn(y, r) = lim
n→∞

inf
Γ∈Ỹ(y,r)

E

[ ∫ T

0
V n(t,Γt, ω)dt

]
= ṽ(y, r), (y, r) ∈ R.

Evidently, ṽn(y, r) ≤ ṽ(y, r), for n ≥ 1. Let (Γn)n≥1 be a sequence in Ỹ(y, r) such that

lim
n→∞

E

[ ∫ T

0
V n(t,Γn

t , ω)dt
]
= lim

n→∞
ṽn(y, r).

Then we can find a sequence hn ∈ conv(Γn,Γn+1, . . .), n ≥ 1, converging almost surely to a

variable Γ. We have Γ ∈ Ỹ(y, r), because the set Ỹ(y, r) is closed under convergence in probability.

Now, we claim the sequence of processes (V n(·, hn· , ω)
−), n ≥ 1 is uniformly integrable, and in

fact, we can rewrite

(5.30)
(
V n(t, hnt , ω)

)−
=

(
V n(t, hnt , ω)

)−
1{hn

t ≤U ′(t,w̃t)} +
(
V n(t, hnt , ω)

)−
1{hn

t >U ′(t,w̃t)},

and since V n(t, y, ω) = V (t, y) for y ≥ U ′(t, w̃t) ≥ U ′(t, nw̃t) by the definition. The argument from

Lemma 5.7 asserts the uniform integrability of the sequence of processes
(
V n(·, hn· , ω)

)−
1{hn

· >U ′(·,w̃·)}, n ≥

1.

On the other hand, by the monotonicity of (V n)−, we have for all n > 1,

(5.31)
(
V n(t, hnt , ω)

)−
1{hn

t ≤U ′(t,w̃t)} ≤
(
V 1(t, hnt , ω)

)−
1{hn

t ≤U ′(t,w̃t)} ≤
(
V (t,U ′(t, w̃t))

)−

and by Lemma 5.10 the right hand side is integrable in the product space, and hence we conclude

the sequence
(
V n(·, hn· , ω)

)−
1{hn

· ≤U ′(·,w̃·)}, n ≥ 1 is also uniformly integrable, and hence our claim

holds true. Moreover, we will have the following inequalities:

lim
n→∞

E

[ ∫ T

0
V n(t,Γn

t , ω)dt
]
≥ lim inf

n→∞
E

[ ∫ T

0
V n(t, hnt , ω)dt

]
≥ E

[ ∫ T

0
V (t,Γt)dt

]
≥ ṽ(y, r).

which proves:

(5.32) ṽ(y, r) = sup
(x,z)∈H

{ũ(x, z)− xy + zr}.

For the other equality (5.21), define the function f(x, z) from R2 to R̄ as

(5.33) f(x, z) ,

{
cl(−ũ(x, z)) (x, z) ∈ clH,

∞, otherwise.

where cl(−ũ(x, z)) is the lower semicontinuous hull of function −u(x, z). Then f is a proper, convex

and lower-semicontinuous function on R and notice int(dom(f)) = H. By Corollary 12.2.2 in

Rockafella [26], its Fenchel-Legendre transform is defined by

f̃(y, r) = sup
(x,z)∈R2

(−xy + zr − f(x, z)) = sup
(x,z)∈H

(−xy + zr + ũ(x, z)), (y, r) ∈ R2.



ADDICTIVE HABIT FORMATION 27

Observe that if (y, r) ∈ R, we have f̃(y, r) = ṽ(y, r) by (5.32), and if (y, r) /∈ clR, we have by the

increasing property of ũ(x, z) that

f̃(y, r) ≥ s(−x0y + z0r) + ũ(x0, z0)

for any s > 1 and fixed (x0, z0) ∈ H. We can therefore conclude that f̃(y, r) = ∞ for (y, r) /∈ clR

since −x0y+ z0r > 0 by the definition of R. We can thus apply Theorem 12.2 in Rockafella [26] to

derive that

f(x, z) = sup
(y,r)∈R2

(−xy + zr − f̃(y, r)), ∀(x, z) ∈ R2,

Again, by Corollary 12.2.2 in Rockafella [26] and the fact that int(dom(f̃)) = int(dom(ṽ)) ⊆ R,

we further have

f(x, z) = sup
(y,r)∈R

(−xy + zr − ṽ(y, r)) = − inf
(y,r)∈R

(ṽ(y, r) + xy − zr), ∀(x, z) ∈ R2, .

In particular, we deduce that relation

ũ(x, z) = inf
(y,r)∈R

{ṽ(y, r) + xy − zr}, ∀(x, z) ∈ H, .

�

PROOF OF THEOREM 4.1.

It is now sufficient to show the conjugate value function ṽ is (−∞,∞]-valued on R.

Now, according to the definition of Legendre transform, we have

U (t, x) ≤ V (t, y) + xy

by integration, it is easy to see for any c̃ ∈ Ã(x, z) and Γ ∈ Ỹ(y, r), we have

E

[ ∫ T

0
U (t, c̃t)dt

]
≤ E

[ ∫ T

0
V (t,Γt)dt

]
+ E

[ ∫ T

0
c̃tΓtdt

]
,

from which Proposition 5.1 deduces that

ũ(x, z) ≤ ṽ(y, r) + xy − zr,

and hence we obtain for all (y, r) ∈ R, we have ṽ(y, r) > −∞ by Lemma 5.4.

On the other hand, thanks to conjugate duality (5.21) and Bipolar relationship (5.9), follow the

proofs in Lemma 5.5 and Lemma 5.11, we also have for each fixed (y, r) ∈ R

sup
(x,z)∈kH(y,r)

ũ(x, z) = inf
s>0

{ṽ(sy, sr) + ks}.

The finiteness result (5.29) for all k > 0 in the proof of Lemma 5.11 guarantees the existence of a

constant s(y, r) > 0, such that ṽ(sy, sr) < ∞.

�
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5.2. The Proof of Theorem 4.2. Let’s move on to the proof of Theorem 4.2, to this end, we

will need some further lemmas and priori results.

Lemma 5.12. Under assumptions of Theorem 4.2, we have ṽ(y, r) is (−∞,∞)-valued on R.

Proof. Similar to the proof of Lemma 5.4, under the additional Assumption (2.9), we can show

ṽ(y, r) < ∞ if ṽ(sy, sr) < ∞ for a constant s = s(y, r) > 0. And we have shown that Theorem 4.1

asserts the existence of s = s(y, r) > 0. �

To obtain the existence and uniqueness of our auxiliary primal Utility Maximization problem

(3.18), we resort to a further auxiliary optimization problem of the auxiliary dual Utility Minimiza-

tion problem (4.5), and make advantage of the Bipolar results built in Lemma 5.5.

Lemma 5.13. Define the auxiliary optimization problem to the auxiliary dual Utility Minimization

problem (4.5) as:

(5.29) v̂(k) = inf
Γ∈Ỹ(k)

E

[ ∫ T

0
V (t,Γt)dt

]
,

where Ỹ(k) is defined in Lemma 5.5 as the bipolar set of Ã(x, z) on the product space for any

(x, z) ∈ H.

Then, for all k > 0, under hypothesis of Theorem 4.2, the value function v̂(k) < ∞ for all k > 0,

and the optimal solution Γ̂(k) exists and is unique and Γ̂t(k) > 0 for all t ∈ [0, T ]. Moreover, for

each k > 0, and any Γ ∈ Ỹ(k), we have

E

[ ∫ T

0
(Γt − Γ̂t(k))I (t, Γ̂t(k))dt

]
≤ 0.

Proof. According to the definition in Lemma 5.5, it is easy to see

v̂(k) = inf
Γ∈Ỹ(k)

E

[ ∫ T

0
V (t,Γt)dt

]
≤ inf

Γ∈Y(k)
E

[ ∫ T

0
V (t,Γt)dt

]
= inf

(y,r)∈kR(x,z)
ṽ(y, r) < ∞, k > 0.

by Lemma 5.12.

Taking into account the Bipolar relationship (5.11), we have Ỹ(k) is convexly compact in L0
+,

the existence and uniqueness of optimal solution Γ̂(k) will follow the similar proof of Theorem 4.1.

Now, for k > 0, ε ∈ (0, 1) and define Γε
t = (1 − ε)Γ̂t(k) + εΓt, for all t ∈ [0, T ], the optimality of

Γ̂(k) implies

0 ≤
1

ε
E

[ ∫ T

0

(
V (t,Γε

t)− V (t, Γ̂t(k))
)
dt
]

≤
1

ε
E
[ ∫ T

0

(
Γ̂t(k)− Γε

t

)
I (t,Γε

t)dt
]

=E

[ ∫ T

0

(
Γ̂t(k)− Γt

)
I (t,Γε

t)dt
]
.

(5.30)
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We claim the family
{(

(Γt − Γ̂t(k))I (t,Γ
ε
t)
)−

, ε ∈ (0, 1)
}

is uniformly integrable with respect to

P̄, since first
(
(Γt − Γ̂t(k))I (t,Γ

ε
t)
)−

≤ Γ̂t(k)I (t,Γ
ε
t) ≤ Γ̂t(k)I (t, (1 − ε)Γ̂t(k)), ∀t ∈ [0, T ].

We fix ε0 < 1 and observe that for ε < ε0, we have for each t ∈ [0, T ],
∣∣∣Γ̂t(k)I (t, (1 − ε)Γ̂t(k))

∣∣∣ ≤
∣∣∣Γ̂t(k)I (t, (1 − ε)Γ̂t(k))

∣∣∣1{Γ̂t(k)≤y1}
+

∣∣∣Γ̂t(k)I (t, (1 − ε)Γ̂t(k))
∣∣∣1{Γ̂t(k)≥

y2
1−ε0

}

+
∣∣∣Γ̂t(k)I (t, (1 − ε)Γ̂t(k))

∣∣∣1{y1<Γ̂t(k)<
y2

1−ε0
}.

Now fix ε0 < 1 and observe that for ε < ε0, recall by Lemma 2.1 and Corollary 2.1, assumptions

on Reasonable Asymptotic Elasticity AE0[U ] < ∞ and AE∞[U ] < 1 imply for fixed µ > 0, the

existence of constants C1 > 0, C2 > 0, y1 > 0 and y2 > 0 such that

−V ′(t, µy) < C1
V (t, y)

y
for 0 < y ≤ y1,

−V ′(t, y) < C2
−V (t, y)

y
for y2 ≤ y.

(5.31)

Hence, the first term is dominated by
∣∣∣Γ̂t(k)I (t, (1 − ε)Γ̂t(k))

∣∣∣1{Γ̂t(k)≤y1}
≤

1

1− ε0
C1V (t, Γ̂t(k)),

and the send term is dominated by
∣∣∣Γ̂t(k)I (t, (1 − ε)Γ̂t(k))

∣∣∣1{Γ̂t(k)≥
y2

1−ε0
} ≤

−1

1− ε0
C2V (t, (1 − ε)Γ̂t(k)) ≤

−1

1− ε0
C2V (t, Γ̂t(k)).

These two terms are both in L1 by the finiteness of v̂(k). On the other hand, the third remaining

term
∣∣∣Γ̂t(k)I (t, (1− ε)Γ̂t(k))

∣∣∣1{y1<Γ̂t(k)<
y2

1−ε0
} is dominated by kΓ̂t(k)1{y1<Γ̂t(k)<

y2
1−ε0

} for a constant

k > 0, and it is obviously integrable as well.

Now we can let ε → 0 and apply Dominated convergence theorem and Fatou’s lemma to obtain

the stated inequality.

To show the optimal solution Γ̂t(k) > 0 for all t ∈ [0, T ], it is enough to rewrite the inequality

(5.30) as

0 ≥ E
[ ∫ T

0

(
Γt − Γ̂t(k)

)
I (t,Γε

t)1{Γ̂t>0}dt
]
+ E

[ ∫ T

0

(
Γt − Γ̂t(k)

)
I (t,Γε

t)1{Γ̂t=0}dt
]
.

Now suppose P̄{Γ̂t(k) = 0} > 0, then by the uniform integrability of
{(

(Γt − Γ̂t(k))I (t,Γ
ε
t)
)−

, ε ∈

(0, 1)
}
, let ε converges to 0, the second term of (5.32) goes to ∞, since I (t, 0) = ∞, and Γt > 0 for

all t ∈ [0, T ], and we obtain the contradiction. Hence the conclusion holds.

�
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Lemma 5.14. Under Assumptions of Theorem 4.2, the auxiliary dual value function v̂(k) is con-

tinuously differentiable on (0,∞), and

(5.32) − kv̂′(k) = E

[ ∫ T

0
Γ̂t(k)I (t, Γ̂t(k))dt

]
.

Proof. In order to show v̂(k) is continuously differentiable, notice the convexity property, it is

enough to justify that its derivative exists on (0,∞). Now fix k > 0, and define the function

h(s) , E

[ ∫ T

0
V (t,

s

k
Γ̂t(k))dt

]
.

This function is convex and by optimality of Γ̂(k) of problem (5.29), we have h(s) ≥ v̂(s) for all

s > 0 and h(k) = v̂(k). Again, by convexity, we obtain

∆−h(k) ≤ ∆−v̂(k) ≤ ∆+v̂(k) ≤ ∆+h(k),

where ∆+ and ∆− denote right- and left-derivatives, respectively. Now

∆+h(k) = lim
ε→0

h(k + ε)− h(k)

ε
= lim

ε→0

1

ε
E

[ ∫ T

0

(
V (t,

k + ε

k
Γ̂t(k))− V (t, Γ̂t(k))

)
dt
]

≤lim inf
ε→0

(
−

1

kε

)
E

[ ∫ T

0
εΓ̂t(k)I (t,

k + ε

k
Γ̂t(k))dt

]

=−
1

k
E

[ ∫ T

0
Γ̂t(k)I (t, Γ̂t(k))dt

]
,

by the Monotone Convergence Theorem. Similarly, we get

∆−h(k) ≥ lim sup
ε→0

E

[
−

∫ T

0
Γ̂t(k)I (t,

k − ε

k
Γ̂t(k))dt

]
.

We can follow the same reasoning as in Lemma 5.13 to show the family {(Γ̂t(k)I (t,
k−ε
k
Γ̂t(k))), ε ∈

(0, 1)} is uniformly integrable, and Dominated Convergence Theorem deduces

∆−h(k) ≥ −
1

k
E

[ ∫ T

0
Γ̂t(k)I (t, Γ̂t(k))dt

]

which completes the proof. �

Lemma 5.15. The auxiliary dual value function v̂(·) has the asymptotic property:

(5.33) − v̂′(0) = ∞, −v̂′(∞) = 0.

Proof. We first show −v̂′(0) = ∞, and to this end, we can first derive the result that

(5.34) v̂(0+) ≥

∫ T

0
V (t, 0+)dt.

To prove the validity of (5.34), we observe that for any k > 0, by the definition we have

v̂(k) = E

[ ∫ T

0
V (t, Γ̂t(k))dt

]
= E

[ ∫ T

0
V+(t, Γ̂t(k))dt

]
− E

[ ∫ T

0
V −(t, Γ̂t(k))dt

]
,
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hence, by Fatou’s Lemma, firstly, we have

lim
k→0

E
[ ∫ T

0
V+(t, Γ̂t(k))dt

]
≥ E

[ ∫ T

0
V +(t, 0+)dt

]

and on the other hand, similar to the proof of Lemma 5.6, we can show that

(5.35) E

[ ∫ T

0
V−(t, Γ̂t(1))dt

]
< ∞,

and therefore, by the Monotonicity of function V−(t, ·) and Dominated Convergence Theorem, we

can easily derive that

lim
k→0

E

[ ∫ T

0
V−(t, Γ̂t(k))dt

]
≥ E

[ ∫ T

0
V−(t, 0+)dt

]
,

which together with (5.35) implies that (5.34) holds true.

Therefore, if
∫ T

0 V (t, 0+)dt = ∞, then we have v̂(0+) = ∞, and by convexity, we have v̂′(0+) =

−∞.

In the case
∫ T

0 V (t, 0+)dt < ∞, we then have

− v̂(0+) ≥ lim
k→0

v̂(0)− v̂(k)

k
≥ lim

k→0

∫ T

0 V (t, 0+)dt− E

[ ∫ T

0 V (t, Γ̂t(k))dt
]

k
.

and hence we have

−v̂(0+) ≥ lim
k→0

E

[ ∫ T

0 V (t, 0+)dt
]
− E

[ ∫ T

0 V (t, Γ̂t(k))dt
]

k

≥ lim
k→0

E

[ ∫ T

0
Γ̂t(1)I (t, kΓ̂t(1))dt

]
= ∞

by the Monotone Convergence Theorem.

We can now turn to show that −v̂′(∞) = 0, and since the function −v̂ is concave and increasing,

there is a finite positive limit

− v̂′(∞) , lim
k→∞

−v̂′(y).

By the definition of Legendre Transform, we clearly have for any y > 0,

− V (t, y) ≤ −U (t, x) + xy, for all x > 0,

and then for any ε > 0, we always have:

0 ≤ −v̂′(∞) = lim
k→∞

−v̂(k)

k
= lim

k→∞

E

[ ∫ T

0 −V (t, Γ̂t(k))dt
]

k

≤ lim
k→∞

E

[ ∫ T

0 −U (t, εw̃t)dt
]

k
+ lim

k→∞

〈
εw̃, Γ̂(k)

〉

k
.

Now, recall that for each fixed (x, z) ∈ H, there exists a constant λ(x, z) > 0 such that we have

w̃t ∈ Ã( p̄
λ
x, p̄

λ
z), and by the definition of Ỹ(k), we can see the second term above has

lim
k→∞

〈
εw̃, Γ̂(k)

〉

k
≤ lim

k→∞

ε p̄
λ
k

k
= ε

p̄

λ
.
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As for the first term, we claim that E

[ ∫ T

0 −U (t, εw̃t)dt
]
< ∞ for each fixed ε small enough,

without loss of generality, we just need to consider that ε < x̄, and then we will apply Corollary

2.1 again, and since there exists a constant x0 such that for all t ∈ [0, T ],

U (t,
ε

x̄
x) > (

ε

x̄
)
− γ

1−γU (t, x) for 0 < x ≤ x0,

we will have

E

[ ∫ T

0
−U (t, εw̃t)dt

]
= E

[ ∫ T

0
−U (t, εw̃t)1{x̄w̃t>x0}dt

]
+ E

[ ∫ T

0
−U (t, εw̃t)1{x̄w̃t≤x0}dt

]

≤ E

[ ∫ T

0
−U (t, εw̃t)1{x̄w̃t>x0}dt

]
+ (

ε

x̄
)−

γ

1−γE

[ ∫ T

0
−U (t, x̄w̃t)dt

]
< ∞

by the fact that w̃ � 1 and the Assumption (3.4).

Hence, we conclude that

0 ≤ −v̂′(∞) = lim
k→∞

−v̂(k)

k
≤ ε

p̄

λ
,

and consequently, we have −v̂′(∞) = 0 by letting ε goes to 0. �

Lemma 5.16. Under assumptions of Theorem 4.2, for any (x, z) ∈ H, suppose k satisfies 1 =

−v̂′(k) where v̂(k) is the value function of the auxiliary dual optimization problem (5.29), then

c̃∗t (x, z) , I (t, Γ̂t(k)) is the unique (in the sense of ≡ in L0
+) optimal solution to problem (3.18),

moreover we have c̃∗t (x, z) > 0, P-a.s. for all t ∈ [0, T ].

Proof. Lemma 5.14 asserts 〈
c̃∗(x, z), Γ̂(k)

〉
= −kv̂′(k) = k.

And for any Γ ∈ Ỹ(k), by Lemma 5.13, we have
〈
c̃∗(x, z),Γ(k)

〉
≤

〈
c̃∗(x, z), Γ̂(k)

〉
= k.

Hence, we get first c̃∗t (x, z) ∈ Ã(x, z) by the Bipolar relationship (5.11).

Now, for any c̃ ∈ Ã(x, z), we have
〈
c̃, Γ̂(k)

〉
≤k,

U (t, c̃t) ≤V (t, Γ̂t(k)) + c̃tΓ̂t(k), ∀t ∈ [0, T ].

It follows that

E

[ ∫ T

0
U (t, c̃t)dt

]
≤v̂(k) + k = E

[ ∫ T

0

(
V (t, Γ̂t(k)) + Γ̂tI (t, Γ̂t(k))

)
dt
]

=E

[ ∫ T

0
U (t, I (Γ̂t(k)))dt

]
= E

[ ∫ T

0
U (t, c̃∗t )dt

]
,

(5.36)

shows the optimality of c̃∗. The uniqueness of the optimal solution follows from the strict concavity

of the function U .

Moreover, under assumptions of Theorem 4.2, for any pair (x, z) ∈ H, by the fact that Ỹ(k)

is convexly compact and Γ̂t(k) is bounded in probability, we actually have the optimal solution
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c̃∗t (x, z) > 0, P-a.s. for all t ∈ [0, T ] since Γ̂t(k) is bounded in probability if and only if Γ̂t(k) is

finite P̄-a.s. and by definition, we know I (t, x) > 0 for x < ∞.

�

Let (x, z) ∈ clH, the proof of Lemma 5.1 states there exists c̃ ∈ Ã(x, z) such that P̄[c̃ � 0] > 0.

Similar to the proof of Lemma 12 of Hugonnier and Kramkov [16], we will have:

Lemma 5.17. Assume that the assumptions of Proposition of 5.1 hold true. Let the sequences

(yn, rn) ∈ R and Γn ∈ Ỹ(yn, rn), n ≥ 1, converges to (y, r) ∈ R2 and Γ ∈ L0
+, respectively. If Γ is

a strictly positive random variable, then (y, r) ∈ R and Γ ∈ Ỹ(y, r).

PROOF OF THEOREM 4.2.

We first show the dual value function ṽ(y, z) is continuously differentiable on R. Theorem 4.1.1

and 4.1.2 in Hiriart-Urruty and Lemaréchal [15] gives the equivalence between the above statement

and the fact that the value function ũ(x, z) is strictly concave on H. Since U is a strictly concave

function, to show the value function is strictly concave is equivalent to show for any two distinct

points (xi, zi) ∈ H, i = 1, 2, the optimal consumption policies are different:

P̄[c̃∗(x1, z1) 6= c̃∗(x2, z2)] > 0,

which is equivalent to Assumption (4.2).

The attempt of the left proof to Theorem 4.2 reduces to show the assertion (ii) hold, and recall

Γ̂(k) is the optimal solution of the auxiliary dual problem (5.29), such that

Γ̂t(k) = U ′(t, c̃∗t (x, z)), ∀t ∈ [0, T ], k =
〈
c̃∗(x, z), Γ̂(k)

〉
.

By the definition that Ỹ(k) is closed with respect to convergence in measure P̄, there exists

a sequence (yn, rn) ∈ kR(x, z) such that Γn ∈ Ỹ(yn, rn) and Γn converges to Γ̂(k) P̄-a.s. by

passing to a subsequence if necessary, and since set kR(x, z) is bounded, there exists a further

subsequence (yn, rn) converges to (y, r) ∈ R2. By passing to this further subsequence, as we have

shown P̄[Γ̂(k) � 0] = 1, we will have (y, r) ∈ kR(x, z) such that Γ̂(k) ∈ Ỹ(y, r) due to Lemma 5.17.

Moreover, for this pair (y, r) ∈ R, by Fatou’s Lemma and Proposition 5.1, we have the equality

that

(5.37) xy − zr = k =
〈
c̃∗(x, z), Γ̂(k)

〉
.

And we have the corresponding optimizer Γ∗
t (y, r) of (4.5) verifies

(5.38) Γ∗
t (y, r) = Γ̂t(k) = U ′(t, c̃∗(x, z)),

because on one hand, we have Γ̂(k) ∈ Ỹ(y, r), hence

E

∫ T

0
V (t,Γ∗

t (y, r)) = inf
Γ∈Ỹ(y,r)

E

∫ T

0
V (t,Γt(y, r)) ≤ E

∫ T

0
V (t, Γ̂t(k)),
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and on the other hand, we have

E

∫ T

0
V (t, Γ̂t(y, r)) = inf

Γ∈Ỹ(k)
E

∫ T

0
V (t,Γt(y, r)) ≤ inf

Γ∈Ỹ(y,r)
E

∫ T

0
V (t,Γt(y, r)) = E

∫ T

0
V (t,Γ∗

t (y, r)),

By the equality

U (t, c̃∗t (x, z)) = V (t, Γ̂t(k)) + c̃∗t (x, z)Γ̂t(k),

we can conclude (y, r) ∈ ∂ũ(x, z) by Theorem 23.5 of Rockafellar [26], since we have

(5.39) ũ(x, z) = ṽ(y, z) + xy − zr

In particular, we get

(5.40) ∂ũ(x, z) ∩R 6= ∅.

Similar to the proof of Theorem 2 in Hugonnier and Kramkov [16], we can actually show

∂ũ(x, z) ⊂ R.

For any (y, r) ∈ ∂ũ(x, z), we can find a sequence (yn, rn) ∈ ∂ũ(x, z) ∩ R converging to (y, r) by

(5.40) and the fact that ∂ũ(x, z) is closed and convex. Since U ′(·, c̃∗· (x, z)) is strictly positive and

we know U ′(·, c̃∗· (x, z)) ∈ Ỹ(y, r). Lemma 5.17 now infers (y, r) ∈ R.

Conversely, for any (y, r) ∈ ∂ũ(x, z), then

E

[ ∫ T

0

∣∣∣V (t,Γ∗
t (y, r)) + c̃∗t (x, z)Γ

∗
t (y, r)−U (t, c̃∗t (x, z))

∣∣∣dt
]

=E

[(∫ T

0
V (t,Γ∗

t (y, r)) + c̃∗t (x, z)Γ
∗
t (y, r)−U (t, c̃∗t (x, z))dt

)]

≤ṽ(y, r) + xy − zr − ũ(x, z) = 0,

which infers (5.37) and (5.38). �
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Appendix A.

A.1. Proof of Lemma 3.1.

Proof. It is enough to show for all (x, z) ∈ (0,∞)× [0,∞), x ≥ z sup
Y ∈M

E

[ ∫ T

0 e
∫ t

0
(δv−αv)dvYtdt

]
if and

only if Ā(x, z) 6= ∅.

On one hand, if (x, z) ∈ (0,∞) × [0,∞) and Ā(x, z) 6= ∅, by definition, there exists c ∈ L0
+

such that ct ≥ Zt for all t ∈ [0, T ] and
〈
c, Y

〉
≤ x,∀Y ∈ M. We now claim that we should

always have ct ≥ c̄t for all t ∈ [0, T ] where c̄t ≡ Z(c̄)t is the subsistent consumption plan which
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equals its standard of living process. To this end, we first recall by the definition of Zt that

dZt = (δtct − αtZt)dt with Z0 = z ≥ 0, and the constraint that ct ≥ Zt implies

(A.1) dZt ≥ (δtZt − αtZt)dt, Z0 = z,

also, we should have c̄t satisfies

(A.2) dc̄t = (δtc̄t − αtc̄t)dt, c̄0 = z.

and we can solve c̄t = ze
∫ t

0
(δv−αv)dv for t ∈ [0, T ].

By the simple subtraction of (A.1) and (A.2), one can get

d(Zt − c̄t) ≥ (δt − αt)(Zt − c̄t)dt, Z0 − c̄0 = 0,

from which we can derive that

(A.3) e
∫ t

0
(δs−αs)ds(Zt − c̄t) ≥ 0, ∀t ∈ [0, T ].

Hence, we will conclude that ct ≥ ze
∫ t

0
(δv−αv)dv for all t ∈ [0, T ], which gives x ≥ z sup

Y ∈M
E
[ ∫ T

0 e
∫ t

0
(δv−αv)dvYtdt

]

by the consumption Budget Constraint condition (2.6).

One the other hand, if (x, z) ∈ (0,∞) × [0,∞) and x ≥ z sup
Y ∈M

E

[ ∫ T

0 e
∫ t

0
(δv−αv)dvYtdt

]
, we

can obviously always construct c̄t = ze
∫ t

0
(δv−αv)dv such that c̄t ≡ Z(c̄)t for all t ∈ [0, T ] and〈

c, Y
〉
≤ x,∀Y ∈ M, and hence Ā(x, z) 6= ∅. The proof is complete.

�

A.2. Proof of Proposition 3.1.

Proof. By the definition, Zt solves the ODE: dZt = (δtct − αtZt)dt with Z0 = z, for each t ∈ [0, T ].

If we set c̃t = ct − Zt, we can rewrite ct in terms of c̃t as:

ct = ze
∫ t

0
(δv−αv)dv + c̃t +

∫ t

0
δse

∫ t

s
(δv−αv)dv c̃sds,

and hence we will have the following chain equivalence by Tonelli’s theorem:

〈
c, Y

〉
=zE

[ ∫ T

0
e
∫ t

0
(δv−αv)dvYtdt

]
+ E

[ ∫ T

0

(
c̃t +

∫ t

0
δse

∫ t

s
(δv−αv)dv c̃sds

)
Ytdt

]

=z
〈
w, Y

〉
+ E

[ ∫ T

0
c̃tYtdt+

∫ T

0
δsc̃s

(∫ T

s

e
∫ t

s
(δv−αv)dvYtdt

)
ds
]

=z
〈
w, Y

〉
+ E

[ ∫ T

0
c̃tYtdt+

∫ T

0
δtc̃tE

[ ∫ T

t

e
∫ s

t
(δv−αv)dvYsds

∣∣∣Ft

]
dt
]

=z
〈
w, Y

〉
+

〈
c̃,Γ

〉
,
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which gives the first equality. Similarly, we just observe that:

〈
w̃,Γ

〉
=E

[ ∫ T

0
e
∫ t

0
(−αv)dvYtdt

]
+ E

[ ∫ T

0
e
∫ t

0
(−αv)dvδtE

[ ∫ T

t

e
∫ s

t
(δv−αv)dvYsds

∣∣∣Ft

]
dt
]

=E

[ ∫ T

0
e
∫ t

0
(−αv)dvYtdt

]
+ E

[ ∫ T

0
e
∫ s

0
(δv−αv)dvYs

(∫ s

0
δte

−
∫ t

0
δvdvdt

)
ds
]

=E

[ ∫ T

0
e
∫ t

0
(−αv)dvYtdt

]
− E

[ ∫ T

0
e
∫ s

0
(δv−αv)dvYs

(
e−

∫ s

0
δsds − 1

)
ds
]

=E

[ ∫ T

0
e
∫ t

0
(−αv)dvYtdt

]
− E

[ ∫ T

0
e
∫ t

0
(−αv)dvYtdt

]
+ E

[ ∫ T

0
e
∫ t

0
(δv−αv)dvYtdt

]

=
〈
w, Y

〉
,

which gives the second equality. �

A.3. Proof of Lemma 3.2.

Proof. Again, it is just enough to show
{
(x, z) ∈ R2 : x ≥ z

〈
w̃,Γ

〉
, for all Γt ∈ M̃

}
is equivalent

to
{
(x, z) ∈ R2 : Ã(x, z) 6= ∅

}
.

On one hand, if (x, z) ∈
{
(x, z) ∈ R2 : Ã(x, z) 6= ∅

}
, there exists c̃ ∈ L0

+ such that 〈c̃,Γ〉 ≤

x− z〈w̃,Γ〉 for all Γ ∈ M̃, clearly, we get x ≥ z
〈
w̃,Γ

〉
, for all Γ ∈ M̃.

On the other hand, if (x, z) ∈
{
(x, z) ∈ R2 : x ≥ z

〈
w̃,Γ

〉
, for all Γt ∈ M̃

}
, it is trivial to

construct c̃t ≡ 0 ∈ Ã(x, z) for all t ∈ [0, T ], therefore, we have (x, z) ∈
{
(x, z) ∈ R2 : Ã(x, z) 6= ∅

}
,

which completes the proof.

�

A.4. Proof of Lemma 4.1.

Proof. Since p < p̄ by Assumption (4.2), and by Lemma 3.2 the set clH = {(x, z) ∈ R2 : x ≥

p̄z, z ≥ 0} ∪ {(x, z) ∈ R2 : x ≥ pz, z < 0} does not contain any lines passing through the origin. By

the properties of polars of convex sets (See Rockafella [26], Corollary 14.6.1), R is an open convex

cone in the first orthant of R2. Moreover, by the inequality constraint xy−zr ≥ 0 for all (x, z) ∈ H

and the definition of H, it is obvious that (4.3) holds. �
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[18] I. Karatzas and G. Žitković, Optimal consumption from investment and random endowment in incomplete

semimartingale markets, Annals of Probability, 31 (2003), pp. 1821–1858.

[19] H. Kauppila, Convex duality in singular control: Optimal consumption with intertemporal substitution and

optimal investment in incomplete markets, Graduate School in Arts and Science, Columbia University, (2010).

[20] D. Kramkov, Optional decomposition of supermartingales and hedging contingent claims in incomplete security

markets, Probab. Theory Related Fields, 105 (1996), pp. 459–479.

[21] D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment

in incomplete markets, Ann. Appl. Probab., 9 (1999), pp. 904–950.

[22] , Necessary and sufficient conditions in the problem of optimal investment in incomplete markets, Ann.

Appl. Probab., 13 (2003), pp. 1504–1516.
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