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Abstract

We present a numerically efficient method to reconstruct a disordered network of thin biopolymers, such
as collagen gels, from three-dimensional (3D) image stacks recorded with a confocal microscope. Our
method is based on a template matching algorithm that simultaneously performs a binarization and
skeletonization of the network. The size and intensity pattern of the template is automatically adapted
to the input data so that the method is scale invariant and generic. Furthermore, the template matching
threshold is iteratively optimized to ensure that the final skeletonized network obeys a universal property
of voxelized random line networks, namely, solid-phase voxels have most likely three solid-phase neighbors
in a 3 × 3 neighborhood. This optimization criterion makes our method free of user-defined parameters
and the output exceptionally robust against imaging noise.

Introduction

Many biological materials, such as the cytoskeleton or the extracellular matrix, self-organize into complex
networks by the polymerization of protein molecules into fibrils (Fig. 1). If the thickness of the fibrils
is negligible compared to the pore size, the resulting structure can be mathematically described as a
disordered line network. In general, the functional properties of these networks, such as their mechanical
stiffness on the macroscopic scale, or their permeability for diffusing particles and for actively migrating
cells on a microscopic scale, depend on the geometrical details of the microscopic network structure.
In order to study the relationship between structure and function, it is therefore important to extract,
or reconstruct, the 3D network structure from image stacks. One aspect of the reconstruction is the
binarization of the intensity values of the image stack, so that each voxel is assigned one of two possible
values, corresponding either to the solid phase (1, collagen fibers) or the liquid phase (0, surrounding
medium). Another aspect of the reconstruction is the skeletonization, so that the optically broadened
fibers are reduced to their central (medial) axis, with a width of only one voxel.

While most of the standard reconstruction methods realize the two aspects of reconstruction (i.e.
binarization and skeletonization) in a two-step process, our template matching method achieves both
aspects in a single step. This new method avoids the problem of chosing an arbitrary intensity threshold
for the binarization. Instead, the template matching algorithm automatically adapts to the input data
such that within the reconstructed fraction of solid-phase voxels the most probable number of next
neighbors equals three. This represents a universal property of voxelized line networks.

Criteria for reconstruction methods We regard it essential to define the following criteria for
our reconstruction method: (1) The method needs to be free of user-adjustable parameters, and (2) be
insensitive to variations in the input data quality. To test this criterion we image collagen networks under
a wide range of different confocal microscope settings such as amplifyer gain and laser outlet power. The
method (3) must be able to correctly reconstruct known networks. To simulate realistic conditions, these
networks are convoluted with a point spread function of the imaging system, and different levels of noise
are added.

Existing reconstruction methods A vast variety of methods can be used for the reconstruction
problem. A large class of these methods works with two separate steps of binarization and skeletonization
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Figure 1. A cube of collagen gel. Dimensions (32× 32× 34)µm3, concentration 1.2 mg
ml , recorded

with confocal reflection microscopy and without any image processing. (a) Top view, i.e. in z-direction.
(b) Side view. The lateral (x-, y-direction) resolution of the fibers is considerably better than the
vertical (z-direction) resolution, due to the anisotropic point spread function. In addition, only fiber
segments that run in small angles to the imaging plane are visible, the so-called blind spot effect.

[1–6]. The simplest way to binarize an image stack is by comparing each individual voxel’s grayscale
with a threshold value θ and to assign all voxels that are brighter than θ to the solid phase. As we shall
demonstrate below, this method naturally leads to binarized arrays with many artifacts, i.e. false positive
and false negative voxels. This includes the simple removal of isolated solid-phase voxels, which can result
from noise or dirt particles in the medium. More demanding, it requires the thinning of the broadened
binarized fibers to their medial axis of one voxel diameter. Binarization can also lead to the disintegration
of fibers, so that closing methods, consisting of dilatation with subsequent erosion steps [7,8], have to be
applied as well. Another class of methods is based on edge detection with convolution kernels, using, for
example, Laplace filters or Sobel operators [7,8]. This class of methods is also plagued with the production
of artifacts that have to be removed afterwards. Finally, there are the class of learning algorithms, such
as vector clustering methods [9] and neural networks [10], for example the k-means algorithm [11] or
RBF networks [12]. A significant advantage of such methods is their ability to automatically adapt to
the specific properties of the data at hand. Our proposed template matching algorithm generates its
template patterns automatically from the data and can therefore be considered as a learning algorithm
as well.

Problems with existing methods A detailed summary and comparison of all reconstruction methods
is beyond the scope of this paper. Instead, we shall briefly consider the simple example of global threshold
binarization and discuss some of its fundamental shortcomings. This will be useful to highlight the
advantages of the template matching method proposed later.

We start with an image stack recorded by reflection microscopy. Let us assume that the grayscales
of the image stack are coded with 8 bits, i.e. all brightness values B are in the range B ∈ [0, 255], with
B = 0 corresponding to completely dark (black) and B = 255 to maximum bright (white) voxels. In our
setup (Leica SP5X confocal microscope), a typical distribution p(B) of brightness values has a sharp peak
around B = 15±5 and a very flat tail towards large values (Fig. 2a). The reasonable range of binarization
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thresholds θ is located somewhere within this tail. However, the distribution p(B) itself offers no hint as
to where the optimum threshold point should be set.

To characterize different network reconstruction methods, we use artificially generated image stacks.
This requires realistic models of both, the line network itself and its transformation into cross-sectional
images by the microscope. As described in more detail in the Methods section, we use a ”Mikado”
model for the line network, where straight lines of fixed lengths and isotropic orientations are distributed
throughout the volume with a homogeneous density [13]. To model the imaging process, we take into
account the broadening (simulated by a convolution with a point spread function), the blind spot effect
(i.e. a gradual darkening of steep fibers) [14] and the addition of random noise. The resulting image
stacks have statistical properties almost indistinguishable from measured image stacks (Fig. 2), but with
the advantage that the underlying mathematical line network is known precisely.

Is it possible to perfectly reconstruct the original line network using global threshold binarization?
This would require the existence of a threshold θ, such that all fluid-phase voxels have brightnesses below
and all solid-phase-voxels brightnesses above this threshold. However, when we use our synthetic stack
and plot the brightness distributions pS(B) and pF (B) of the two phases separately, we find in general
two peaks with a significant overlap (Fig. 3). This means that no global threshold can be found, even
in principle, for separating the two phases, without also producing some false positive and false negative
voxels.

The voxels with brightnesses in the overlap interval include, for example, isolated bright points due
to noise. It would be relatively easy to remove such cases in a subsequent post-processing step. More
problematic is that the overlap interval also includes liquid phase voxels from the narrow gaps between
two fibers, which have been raised in brightness beyond the threshold by the superposition of the fibers’
point spread functions. This effect would lead to a merging of the two close-by fibers in the binarized
image and would require a much more sophisticated procedure to be repaired. Finally, the overlap region
includes voxels of fiber segments that are more vertically oriented, and therefore too dark, to exceed the
threshold, because of the blind spot problem [14]. We note that a human observer could still recognize
such dark fiber segments quite easily.

Taken together, the threshold binarization has some fundamental limitations. To a certain extent,
the method can be improved by using variable thresholds, which take into account the local brightness
conditions in the environment of each voxel to be binarized. This, however, can already be viewed as a
first step towards a template matching method that will be discussed in the following.

Template matching in line networks Template matching methods recognize specific image parts
within larger image stacks by comparing features, e.g. the brightness patterns, of small sub volumes of
the stack with the brightness pattern of pre-defined templates. The templates incorporate the a-priori-
knowledge about the features to be found. In the case of line networks, the templates would contain
short line segments, that are oriented in arbitrary directions.

The number of required templates turns out to be impractically large in 3D. However, the situation is
much simpler when only 2D cross-sections are used for the template matching: The vertical cross-section
of a broadened line segment with a plane is a elliptical spot of finite size that can be easily recognized
by 2D template matching (Fig. 4a). The shape of the spot will vary slightly as the angle of intersection
becomes less than 90 degrees. For angles less than 45 degrees, the distortion of the spot can become too
large to match the template (Fig. 4b), but in this case the same line segment can be easily recognized by
its intersection with a perpendicular plane. Therefore, all line segments (solid voxels) can be detected
by sequentially scanning through the x-, y- and z-planes of the sample volume. As shown below this
binarization method turns out to be much more reliable and robust than the simple threshold method.

The similarity between the cross-sectional brightness pattern and the template will be largest if the
template is located exactly at the center of the finite spot. Therefore, the medial axes of the broadened
line segments can be identified as local minima of the mismatching measure. In this way, the 2D template
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matching simultaneously achieves a skeletonization of the broadened fibers.
We note that this method meets the design criteria imposed before. In order to eliminate all internal

parameters (1), we have implemented an automatic template generator, which is entirely based on the
input image stack and requires no user intervention. We will demonstrate in the Results section that our
method is also robust with respect to the quality of the input data (2) and yields reconstructions that
reproduce simulated line networks almost perfectly (3). The algorithm is implemented in C++ to achieve
fast execution times (about 12 minutes on a standard notebook for reconstructing a (512×512×597)-voxel
stack) and is available as a supplement to this publication.

Methods

Generation of surrogate data sets Since the true shape of the underlying fiber network of real
grayscale data sets is unknown, we artificially generated surrogate data sets to validate the performance
of our algorithm. Firstly we created idealized line networks using a ”Mikado” model. Straight lines
of fixed lengths and isotropic orientations are distributed throughout the volume with a homogeneous
density [13]. Binary surrogate data sets are derived from these parameterized networks by a voxelization
operation. Then we simulate the imaging process to transform these binary data sets into grayscale data
sets.

Initially N sets of parameters representing N lines are randomly generated. Each parameter set con-
tains uniformly distributed Cartesian coordinates of a line’s center point (xc, yc, zc), uniformly distributed
azimuthal angle ϕ ∈ [−π, π] with p(ϕ) = 1

2π and polar angle ϑ ∈ [0, π] with p(ϑ) = sinϑ
2 . This is an

efficient way of representing a line network, since for each arbitrary point within the volume one can
unambiguously determine whether or not the point is located on any line.

To derive a binary data set from the parameterized network the whole volume is divided into distinct
volume elements representing the voxels. Initially all voxels within the 3D-array are set to value 0
(fluid phase). Starting at the first center point, the line is traced in opposite directions according to its
orientation (ϕ, ϑ) until the half length of the line is reached for each direction. While tracing the line,
every voxel corresponding to a touched volume element is set to value 1 (solid phase). This process is
repeated for all N sets of line parameters.

To convert the binary data set into a 8-bit-grayscale data set, we apply a process called numeric
blurring which simulates the imaging process. Numeric blurring is done in five subsequent steps:

1. The binary 3D-array of voxels is converted into a grayscale 3D-array by setting all voxels with value
1 to brightness values B ∈ [0, 255] according to the polar angle ϑ of the line to which they belong.
This procedure replicates the blind spot effect (i.e. a gradual darkening of steep fibers) as described
in [14].

2. A small number of dark voxels is randomly selected and set to brightness values > 200. This
simulates dirt particles within the fluid phase that appear as isolated bright fluctuations in the
original microscope images.

3. The 3D-array of voxels is convoluted with an anisotropic Gaussian to simulate the point spread
function:

B(x, y, z) := (B ∗ psf)(x, y, z) (1)

(B ∗ psf)(x, y, z) =

∫∫∫
B(x′, y′, z′)psf(x− x′, y − y′, z − z′)dx′ dy′ dz′ (2)

where B(x, y, z) ∈ [0, 255] is brightness of voxel (x, y, z). The point spread function is defined as

psf(x− x′, y − y′, z − z′) = exp
(
−
(

(x−x′)2

σ2
x

+ (y−y′)2
σ2
y

+ (z−z′)2
σ2
z

))
with σx = σy < σz according to

the characteristics of confocal microscopy.
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4. A Gaussian distributed random variable is added to each voxel to simulate noise1.

5. Finally, all brightness values are rescaled to values from 0 to 255 by affine transformation.

We have analyzed the statistical properties of the resulting grayscale data sets2. They are almost
indistinguishable from real data sets imaged with confocal reflection microscopy (Fig. 2), but with the
advantage that the underlying mathematical line network is known in detail.

Figure 2. Statistical properties of real and surrogate image stacks. (a) Comparison of the
brightness distributions in the real and surrogate image stacks. Both distributions are similar. (b) and
(c) show angular distributions of the fiber segments. (b) Typical distributions of azimuthal angles ϕ in a
real and a surrogate data set. The distributions are almost indistinguishable. The peaks are a result of
voxelization. The principal directions, corresponding to the x- and y-direction, as well as the principal
diagonals are over-represented in short fiber segments and lead to maxima at ϕ = 0,±π4 ,±

π
2 ,±

3π
4 ,±π.

(c) Typical distributions of polar angles ϑ in a real and a surrogate data set. Again, the distributions
are similar. Compared to an ideal isotropic network with p(ϑ) ∝ sin(ϑ), polar angles smaller than π

2 are
increasingly suppressed due to the blind spot effect of confocal reflection microscopy [14].

When we plot the brightness distributions pS(B) and pF (B) of the two phases (solid and fluid)
separately, we find in general two peaks with a significant overlap (Fig. 3). This means that no global
threshold can be found, even in principle, for separating the two phases, without also producing some
false positive and false negative voxels.

Preprocessing Some data sets show a z-dependence of mean grayscale. The average brightness of
each z-slice µ(z) is not constant in all layers, but rather decreases for deeper located slices in the stack.

1We are aware that photon shot noise would not be normally distributed. However, as shown below, the resulting
statistical properties of the surrogate stacks agree almost perfectly with measured data.

2It is possible to determine the direction vector of a short fiber segment, even from its voxelized representation, by
treating the brightness distribution as a mass distribution, computing and diagonalizing the moment of inertia tensor, and
finding the principal component axis of mimimal inertia. This principal component corresponds to the direction of the
locally straight line segment. Several conditions have to be met when analyzing a given small test volume: First, the fluid
background of the fiber segment in the test volume should have a much smaller (ideally zero) brightness/mass than the fiber
itself. It is therefore advisable to use already reconstructed stacks for this analysis. Second, the test volume should contain
enough solid voxels to clearly define a single fiber segment. Third, the test volume should not be so large to contain several
line-like objects with different directions. We have therefore used the following method: A number of PMX=105 spherical
test volumes of radius r=3.0 vu (voxel unit, i.e. linear size of a single voxel) have been chosen randomly throughout the
reconstructed stack, ensuring that each test volume contains at least NMIN=5 solid voxels. Inside each sphere, the voxels
were treated as mass points, located at the voxel centers, and with constant mass m=1 for all solid and m=0 for all liquid
voxels. After determining the easy axis of the inertia tensor, the corresponding unit direction vector was computed. Note
that this vector does not depend on the exact position of the test sphere’s center, as long as the same solid voxels are
enclosed. From this Cartesian vector, the azimuthal angle ϕ and the polar angle ϑ in spherical coordinates were computed.
Finally, histograms were generated for ϕ and ϑ.
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Figure 3. Brightness distributions pS(B) and pF (B) of the solid and the fluid phase. The
two peaks show a significant overlap. This clearly points out that no global threshold can be found,
even in principle, for separating the two phases, without also producing some false positive and false
negative voxels.

This effect is caused by scattering and absorption of light by collagen fibers and ambient medium. For
compensation the data set is firstly normalized to an equal global mean grayscale, disregarding statistical
fluctuations:

Bxyz := Bxyz − µ(z) ∀ x, y, z (3)

where µ(z) = 1
NxNy

Nx∑
i=1

Ny∑
j=1

Bijz

and secondly rescaled to values [0, 255] by affine transformation:

Bxyz := 255 · Bxyz −min {Bijk}
max {Bijk} −min {Bijk}

∀ x, y, z, i, j, k (4)

Automatic template generation The number of required templates turns out to be impractically
large in 3D. However, the situation becomes much easyer when only 2D cross-sections are used for the
template matching: The vertical cross-section of a broadened line segment with an image plane is a
ellitpical spot of finite size that can be easily recognized by 2D template matching (Fig. 4).

The templates are derived automatically from the gray scale data set. The described process requires
neither any knowledge of the point spread function’s characteristics nor any user interactions. Since fiber
detection is performed in three directions (x, y and z) and the point spread function may be anisotropic,
three different templates Tx,Ty,Tz are required. One for each direction.

1. A sufficient large sample of voxels (105) is picked out randomly. In order to minimize computation
time only voxels with intensities greater than the global mean intensity µ were accepted.

2. Each voxel is the center of three small 2D images (Ix, Iy, Iz), where the first image is located in
the yz-, the second in the xz- and the third in the xy-plane. The images’ height H and width W
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Figure 4. 2D cross-section of a 3D image stack. (a) The vertical cross-section of a broadened line
segment with a plane is a elliptical spot of finite size that can be easily recognized by 2D template
matching. (b) The shape of the spot is varying slightly as the angle of intersection becomes less than 90
degrees. For angles less than 45 degrees, the distortion of the spot can become too large to match the
template.

are initially set to arbitrary small values. The adaptive resizing process is described in a following
section.

3. These small images are represented as H ×W matrices P1,P2, . . . ,PN , with matrix entries corre-
sponding to voxel brightnesses. Hence three sets of training patterns {Px

i } , {P
y
i } , {Pz

i } are obtained
to compute the three different templates.

4. From all training patterns belonging to a set, the weighted average pattern A is computed:

A :=

∑
i

wiPi∑
i

wi
(5)

where wi is the central entry of matrix Pi.

5. To become independent from absolute brightnesses the global mean gray scale µ is subtracted from
each matrix entry.

6. Finally the matrices Ax,Ay,Az are normalized to obtain the templates Tx,Ty,Tz:

T :=
1

‖A‖
A (6)

Fiber detection process As previously mentioned the fiber detecting process in the gray scale input
data set is performed subsequently for all three directions x, y and z. During these three cycles three
temporary binary output data sets Ox,Oy,Oz are obtained, having each voxel labeled with one of two
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possible values 0 (fluid phase) or 1 (collagen phase). The similarity between a given cross-sectional
brightness pattern and the corresponding template will be largest if the template is located exactly at
the center of the finite spot. Therefore, the medial axes of the broadened line segments can be identified
as local minima of the mismatching measure. The fiber detection process includes the following steps:

1. Initially all voxels of the first x-slice (yz-plane) with brightnesses larger than the mean gray scale
µ are investigated. This restriction is only made to decrease computation time. Without this
restriction the fraction of additionally detected fiber voxels is less than 10−5. This small fraction
is negligible since it does not significantly affect the resulting network properties on the one hand.
On the other hand, performance time would be increased drastically by a factor of 5, because 80%
of all voxels are darker than the mean brightness. Consequently all voxels with gray scales smaller
than µ are set to 0 in the binarized output data set Ox.

2. The voxels to be investigated are taken as centers of small 2D-images located in the yz-plane.
These images are represented as matrices with the same size as the corresponding template. These
matrices are the unknown patterns to be compared with the template. We call them search patterns
Sn.

3. From each entry of Sn the local mean value µn is subtracted.

4. The search patterns are normalized:

Sn :=
1

‖Sn‖
Sn (7)

5. Now the mismatch dn between search patterns Sn and template pattern Tx for detection in x-
direction is computed. The smaller dn, the more probable the central voxel of the search pattern
belongs to the collagen phase. As mismatch measuring metric we chose the Euclidean distance in
feature space. Hence we call dn the matching distance.

dn := ‖Sn −Tx‖ =

√∑
i

∑
j

(
snij − txij

)2
(8)

Since all matrices are normalized, the range of dn is [0, 2] where dn = 0 means perfect matching.

6. The calculated matching distances dn are compared with the threshold θxd . This threshold defines
whether the search pattern is sufficiently similar to the template, so the pattern’s central voxel
may be a fiber voxel. For dn > θxd the corresponding voxels in Ox are set to 0. Note that all
thresholds θxd , θ

y
d , θ

z
d are not chosen arbitrarily, but derived adaptively from the input data. The

detailed method of defining these thresholds will be described in a later section.

7. To all voxels being considered (dn < θxd) a local minimum filter is applied, labeling only local best
matching voxels as belonging to collagen phase by assigning the value 1, while all others are set
to 0. After having finished this step the first x-slice (yz-plane) of the input data set is completely
binarized and stored in the temporary binary output data set Ox.

8. All previous steps are repeated for all other x-slices resulting the first binarized data set Ox.

9. Some fibers with angles less than 45 degrees to any yz-plane (x-slice) may be not well detected
since their cross-sections, appearing as roundish spots of finite size, are distorted and hence are
not sufficiently similar to the template. Therefore the complete detection process is repeated in
perpendicular xz- and xy-planes (y- and z-slices) of the sample volume. Having all y- and z-slices
binarized two more binary data sets Oy and Oz are obtained.
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10. Finally the three temporary reconstruction results are combined to one binary data set using logical
OR:

Oijk := Oxijk ∨O
y
ijk ∨O

z
ijk ∀ i, j, k (9)

11. As a post-processing step all isolated voxels (i.e. solid phase voxels with all 26 neighbors belonging
to fluid phase) are converted to fluid phase.

Define optimal template sizes The right size H ×W of the template T ∈ RH×W is crucial. On the
one hand the template must not be too small, because otherwise the pattern is not completely covered.
On the other hand templates should not be too large to limit computation time. A good indication is
given by the algebraic sign of template’s matrix entries. Since all entries are reduced by subtracting the
mean gray scale µ, positive entries correspond to gray scales brighter than and vice versa negative entries
to gray scales darker than the average. Taking into account that the patterns to be detected are resulting
from convolution of bright fibers with the point spread function it is reasonable to consider positive
matrix entries as belonging to the pattern’s foreground, while negative entries represent the surrounding
background. Hence, if the template is sized in a kind that all outer entries are negative and at the same
time all inner entries are positive it is warranted that the pattern is completely covered by the template.
Furthermore using both, positive and negative matrix entries, implies better use of the complete domain
of definition and contrast enhancement since matching distances dn only will be minimal if the template
is perfectly centered at the patterns being investigated.

Initially height H and width W are set to arbitrary, small values, e.g. H = 15 and W = 9. Then the
templates are iteratively resized and recalculated until the optimal size is found. Since computing the
template takes only a few seconds the complete runtime is not affected significantly by these iterations.

Define optimal matching thresholds The optimal thresholds θxd , θyd and θzd are also defined itera-
tively. It is clear that it depends on the thresholds how many voxels are labeled as fiber voxels. Because
both templates and search matrices are normalized the maximum range of matching distances dn is [0, 2]
and consequently the optimal thresholds are in the same range as well.
If matrices are treated as vectors in high-dimensional feature space, three special cases can be distin-
guished:

Identity dn = 0 ⇒ Sn ≡ T

Orthogonality dn =
√

2 ⇒ Sn ⊥ T

Inversion dn = 2 ⇒ Sn = −T

Where orthogonality means a maximum dissimilarity between template and search matrix. Inversion
implies identical absolute values of corresponding matrix entries with inverted algebraic signs. Hence[√

2, 2
]

is no expedient range for the thresholds which rather must be within
[
0,
√

2
]
.

Since reconstructed fibers should be skeletonized, the most probably number of direct fiber voxel
neighbors Emode in a 33-neighborhood of a central fiber voxel turns out to be a good criterion. Extensive
evaluations of simulated line networks showed Emode = 3 in case of perfect skeletonization.

Obviously there is not only a single value for thresholds that achieves Emode = 3, but rather a range,
where the optimal thresholds would be the top of this range, because this causes a maximum number of
detected fibers while simultaneously the constraint Emode = 3 is fulfilled.
The threshold for each reconstruction direction x, y and z is defined in two subsequent steps. Firstly
a threshold that fulfills Emode = 4 is found using a binary search algorithm. And secondly the found
threshold is reduced step by step until it fulfills Emode = 3.
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Binary Search Binary search is an efficient standard algorithm for searching a specified value by
halving the number of items to check with each iteration [15, 16]. Initially the threshold is set to the
middle of the range to be searched

[
0,
√

2
]
θ
(0)
d :=

0 +
√

2

2
=

1√
2

(10)

and the bounds are defined

θ
max(0)
d :=

√
2 (11)

θ
min(0)
d := 0 (12)

Then the following steps are repeated until the stop criterion is fulfilled:

1. The fiber detection algorithm is performed with recent threshold θ
(n)
d . To limit computation time

not the complete data set (containing 512×512×597 voxels) is used but a smaller sub set containing
only 150× 150× 150 voxels.

2. The most probable number of fiber voxel neighbors Emode is evaluated.

3. The threshold and the bounds of the searching range are updated:
If Emode < 4 then:

θ
max(n+1)
d := θ

max(n)
d (13)

θ
min(n+1)
d := θ

(n)
d (14)

θ
(n+1)
d := (θ

max(n+1)
d + θ

min(n+1)
d )/2 (15)

If Emode > 4 then:

θ
max(n+1)
d := θ

(n)
d (16)

θ
min(n+1)
d := θ

min(n)
d (17)

θ
(n+1)
d := (θ

max(n+1)
d + θ

min(n+1)
d )/2 (18)

If Emode = 4 then binary search is stopped.

Reduction of threshold The threshold is now iteratively reduced until Emode = 3:

1. The fiber detection algorithm is performed using the recent threshold θ
(n)
d . Again due to limit

computation time not the complete data set is used but a sub set. However containing now more
voxels (i.e. 250× 250× 250) than previously used for binary search to increase accuracy.

2. The most probably number of fiber voxel neighbors Emode is evaluated.

3. If Emode = 4 then the recent threshold is reduced by subtracting a small ε.
If Emode = 3 then the optimal threshold is found and the iteration loop is stopped.
Note that the smaller ε is chosen the more exact the best threshold is found on the one hand but
on the other hand the more iteration steps are required. As a good compromise to achieve both
high accuracy and runtime limitation we found ε = 0.01.
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Distribution of nearest obstacle distances The geometric properties of line networks, such as the
pore sizes, are good indicators to estimate the similarity between different networks. The pore sizes of
a network can be quantified in different ways, for instance by placing within each pore a sphere of the
maximum possible size and then analyzing the size distribution of these spheres [17]. In this paper, we
choose another, yet equivalent approach: We compute the distribution p(rno) of nearest obstacle distances
in the binarized network. This is done by selecting a set of random points within the stack, computing
the distance from each test point to its closest solid state obstacle (i.e. fiber segment) and then finding
the distribution of these distances [13,18].

Quality measures To evaluate the validity of our algorithm we defined two quality measures based
on Pearson product-moment correlation coefficient using the surrogate data sets. The sample correlation
coefficient of local averaged voxel arrays r(S,R) ∈ [−1, 1] and the sample correlation coefficient of the
distributions of nearest obstacle distances r(pS , pR) ∈ [−1, 1]. A value of r(S,R) = 1 indicates a complete
linear dependence between the two data sets and hence implies a perfect reconstruction of the network,
while r(S,R) = 0 corresponds to linear independence, i.e. both networks are entirely different. In
a similar manner, r(pS , pR) = 1 indicates that both distributions are identic. The reconstructed fibers,
derived from grayscale surrogate data sets, are not exactly straight but rather smoothly fluctuating. That
means that for a given solid phase voxel in binary surrogate data set the position of the corresponding
solid phase voxel in the reconstructed data set may differ. However, the range of difference does not
exceed one voxel size in each direction. Taking into account that such small fluctuations do not affect
the network’s global properties, we do not compare the binary data sets (i.e. binary surrogate and
binary reconstruction) itselves, but local averaged voxel arrays S and R. Therefore both binary data
sets to be compared are converted by setting each voxel to the average value of itself and its 26 direct
neighbors. The resulting arrays provide some significant advantages: The information of local solid voxel
density is preserved since larger average values are corresponding to a larger number of solid phase voxels
within a 33-neighborhood. Furthermore, independency against small differences from exact positions is
achieved and the global solid voxel distribution, i.e. the network morphology, is also preserved. After
having converted the data sets to be compared, the sample correlation coefficient r(S,R) of voxel values
is calculated. To compare the distributions of nearest obstacle distances pS(rno) and pR(rno) in binary
surrogate and reconstruction result, firstly both distributions are evaluated and secondly the empirical
correlation coefficient r(pS , pR) is calculated.

Results

In the following, we show the results of binarizing grayscale image stacks with the template matching
algorithm, i.e. the insensitivity to variations in the input data quality and the correct reconstruction of
known networks. A typical reconstruction result of original microscope image stacks can be seen in Fig. 5.

Insensitivity to variations in the input data quality

We first showed that our binarization algorithm was widely independent from the setup parameters of
the imaging process, such as the laser outlet power of the confocal microscope that defines the global
picture brightness and the gain of the photomultiplier tubes (PMTs) which mostly determines the signal-
to-noise-ratio (SNR) of the images. Therefore, both parameters were changed systematically in the
available range. The laser outlet power was shifted from 10 % to 90 % of the laser’s produced beam, the
gain being constantly fixed to an apropriate value for 50 % laser outlet power. Furthermore, the gain was
varied about 50 V around the fitting value for a fixed laser power of 50 %. The results of a sequence of
changed parameters can be seen in Fig. 6.
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Figure 5. Reconstruction result. Three subsequent original microscope images (left) and the
corresponding binarizations (right) generated by the template matching algorithm.

Figure 6. Insensitivity of the algorithm to variations in the input data quality. The
algorithm produces stable results in a wide range of photomultiplier gain and laser outlet power. Hence
it is insensitive to variations in the input data quality. (a) Evaluated pore size as a function of
photomultiplier gain (signal-to-noise-ratio). (b) Evaluated pore size as a function of laser outlet power
(image brightness). The data in (a) and (b) correspond to two collagen gels that have been fabricated
under identical conditions. The slight differences in the observed pore sizes reflect natural
sample-to-sample fluctuations.

Correct reconstruction of known networks

We calculated r(S,R) to evaluate the similarity between the surrogate and the reconstructed networks
(compare Methods Section).

To highlight the performance of the template matching algorithm (PM), we also calculated r(S,R)
for a simple threshold binarization algorithm (TH). We used a threshold θ = µ+2σ, with mean grayscale
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µ and standard deviation of grayscales σ, since extensive tests have shown, that this rough rule of thumb
provides a quite fair value for the threshold.

Typical results are:

rPM (S,R) = 0.84 and rTH(S,R) = 0.46

The algorithm’s correct reconstruction was proved by using surrogate data sets. We compared the
distributions pS(rno) and pB(rno) of nearest obstacle distances for about 100 surrogate and reconstructed
networks and calculated the correlation coefficient. As can be seen in the example of Fig. 7, the distribu-
tions are almost identical with a sample correlation coefficient of 0.93.

Figure 7. Distributions of nearest obstacle distances pS(rno) and pB(rno) in binary
surrogate data set and reconstruction result. Both distributions are, disregarding statistical
fluctuations, almost identic.

Summary and Outlook

In this paper we have presented a fast, robust and objectively tested method to reconstruct disordered
fiber networks from confocal image stacks. In the original stacks, visible fiber segments appear as ”cylin-
drical clouds” with a bright core, surrounded by a broad ”halo” with slowly decaying gray level. After
reconstruction, the fiber segments are represented by contiguous voxels with value 1, while all background
voxels are assigned the value 0. These reconstructed traces, due to the remaining voxelization, ”wiggle”
around the smooth space curve of the fiber’s medial axis. This level of reconstruction is sufficient for
many purposes, such as the statistical evaluation of the distribution of nearest obstacle distances in the
fiber network.

However, other statistical investigations, for example evaluating the distribution of curvatures along
the fibers, would benefit from a parametrized description of each visible fiber segment s in terms of a space
curve ~Rs(t). This could be achieved by a suitable post-processing of the present, voxelized representation.
Alternatively, our template matching algorithm could be extended to sub-voxel accuracy. In this case
the 2D position of the fiber center would be treated as a continuous variable within each of the cross
sectional planes. The local mismatch minimum can then be found, with arbitrary spatial resolution,
using standard continuum optimization techniques. Once the fiber centers are determined in each cross
sectional plane, they can be connected by straight line segments or spline-interpolated to obtain the space
curves ~Rs(t).
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