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Abstract 

 
We suggest a way to produce any number of clones of an unknown quantum 
state. We also suggest a way to transmit information from one place to other 
far away place exactly and almost instantaneously. This paper thus aims to 
suggest a method to produce “more than one clone” and a method to achieve 
“instantaneous and exact information transfer”.  
 
1. Introduction: Quantum entanglement describes the strong correlation 

that exists among different parts of composite quantum system [1], [2]. 
The parts of this composite quantum system may be space-like separated 
from one another. The exponential speedup that has been seen in some 
quantum algorithms over their classical counterparts utilizes this totally 
non-classical and purely quantum phenomenon of entanglement. 
Entangled quantum states representing composite systems are those states 
which cannot be expressed as direct product of states for its parts, i.e. 
entangled quantum states are those states which are not factorable in 
terms of tensor product of states corresponding to individual parts which 
when taken together represent the quantum state for entire composite 
system. Among the 2-qubit states the Bell states are well-known 
(maximally) entangled states. Bell states are denoted as 
{ }11100100 ,,, ββββ  and the standard computational basis states are 
denoted as{ }11,10,01,00 . Both these sets of states form 
orthonormal basis so that any 2-qubit state can be represented in terms of 
them. The Bell basis states and the computational basis states are inter 
convertible into each other through the following invertible matrix, A , 
which is also unitary (i.e. +− = AA 1 , where +A  is conjugate transpose of 
A ).  
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     Thus, the two bases are related through following matrix equation 
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     As an immediate extension we can similarly have orthonormal Bell basis 

for 3-qubit states. Bell basis for 3-qubit states can be denoted as 
{ }111001000 ,,, βββ L  and relates to standard computational basis for 3-
qubit states formed by { }111,,001,000 L  through the following matrix 
equation  
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     The 8×8 matrix on the right hand side in the above equation, B  say, is 

invertible and in addition unitary too. A further generalization is very 
much possible by proceeding in the same foot steps of the above cases. 
We can proceed on the similar lines and define orthonormal Bell basis for 

n-qubit states, namely, { }11110000100000 ,,,, LLLL L ββββ  and 
relate it with the corresponding n-qubit computational basis, namely, 



 3

{ }111,,1000,0100,000 LLLLL . For the sake of simplicity and 
clarity, instead of writing down the matrix equation relating Bell basis 
states and computational basis states as written above in the 2-qubit and 
3-qubit case for n-qubit case we just state how any general Bell basis 
state in this case is related to computational basis states as follows:   

( )( )n
x

nxxx xxxxx
n

−−−+= 1,,1,11,,,,0
2

1
232,,,

1

21
LLLβ  

     Using this relation one can easily construct the transformation matrix of 
size nn 22 × to express n-qubit Bell basis states in terms of 
corresponding n-qubit computational basis states. One can further see 
that as in the previous cases this matrix will be also invertible and 
unitary.  

     We give below the quantum circuit to obtain any general n-qubit Bell 

state nxxx ,,, 21 Lβ (by operating this quantum circuit) from the 

computational basis state nxxx ,,, 21 L   
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Note that nn xxxxxx ⊗⊗⊗= LL 2121 ,,,  such that 

{ }1,0∈ix , for ni ,,2,1 L= , i.e. a tensor product state, while state 

nxxx ,,, 21 Lβ on the other hand is not factorable and it is in fact a 
maximally entangled state. 

 
2. Many Clones from an Unknown Quantum State: We now proceed to 

achieve our first objective of this paper, namely, to discuss the quantum 
circuit to produce as many clones as one wants and to suggest an 
experimental procedure to achieve this task practically for an unknown 
quantum state, ψ  say 

  
10 ba +=ψ  

 

where 122 =+ ba . In order to achieve this we will make use of the 
same trick of teleportation used to produce one clone at a place but we 
will carry out appropriate change in the corresponding quantum circuit to 
produce more clones at more (different) places. We will develop 
quantum circuit which will teleport the same unknown quantum state to 
many different locations, i.e. to many different places where we desire 
have an exact copy of the quantum state, ψ , described above. In the 

standard procedure of teleporting the unknown quantum state ψ one 

requires using given quantum state ψ  to be teleported, and a 2-qubit 
Bell state. Further, one requires making two measurements, one made 
with respect to given unknown quantum state to be teleported, and the 
other with respect to particle with Alice. The outcome of these 
measurements one needs to convey to Bob in order to create an operator 
to be operated on Bob’s state to produce ψ at the location where Bob is 
situated. This process is generally described in following words: the 
original state ψ  gets destroyed and as a result its clone is produced at 
Bob’s location. This description creates an impression that the unknown 
state ψ  is a kind of conserved quantity and when it is destroyed at 
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original location then and only then it can appear at new (Bob’s) location. 
Thus, it is impossible to produce more than one clones of the state ψ  
because it will violate a kind of conservation rule. In actuality, the 
process of teleportation doesn’t imply any kind of movement of original 
state ψ  to new location. In actuality, teleportation is a clever procedure 

of transforming Bob’s particle into state ψ . Bob’s particle and Alice’s 
particle are entangled with one another. By allowing Alice’s particle in 
this entangled pair to interact with the given quantum state ψ  to be 

copied and further making measurement with respect to state ψ  and 
Alice’s particle leading to finding out two values. These values are 
fetched to construct the operator to be applied on Bob’s state. This 
operator when operated on Bob’s state makes Bob’s state to settle as the 
desired state ψ . Thus, we require to operate Bob’s state with an 

operator to convert it into state ψ , and thus it is Bob’s state that gets 

converted into ψ  and not the one that is destroyed in the measurement. 
In order to construct the operator to be operated on Bob’s state to convert 
it into ψ  require results of two measurements these measurements as a 

side effect cause destruction of original state ψ . When the procedure of 

teleportation for teleporting ψ  from one place to other will be clearly 

understood the following discussion about teleporting the state ψ  to 
many different desired locations can be hoped to make sense.  
Suppose our aim is to produce n copies of the unknown state ψ . As a 
first step we produce, independently of each other and without any 
knowledge of each other, n-copies of maximally entangled pairs of 
particles. We keep one particle from each such maximally entangled pair 
with Alice and keep other particles with different people, say Bob(1), 
Bob(2), …., Bob(n), located at different locations and unrelated to each 
other. We aim to produce one clone of ψ , at each of the locations 
where Bob(1), Bob(2), …., Bob(n) are situated. We associate labels with 
the particles as follows. We assign label {1} with quantum state ψ  to 
be teleported. We label the entangled pairs with label pairs {2, 3}, {4, 5}, 
……., {2k, 2k+1},……, {2n, 2n+1}. Particles with labels {2, 4, 6, …, 
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2k,…, 2n} are in possession of Alice while particles with labels {3, 5, 
…., 2k+1, …, 2n+1} are kept respectively with Bob(1), Bob(2), …, 
Bob(k),…., Bob(n), stationed at different locations. 
In order to achieve the task of producing n clones of ψ  we will use the 
following quantum circuit. We will make in total (n+1) measurements 
and using the outcomes of these measurements we will construct n 
operators to be operated on states of particles in possession of Bob(1), 
Bob(2), …, Bob(k),…., Bob(n) to get there an exact copy of state ψ .  
 

 
 
 
In the above quantum circuit symbols have their usual meaning. For the 
sake of clarity we think it right to say a few words of explanation: Note 
that  
(i) Symbol H inside a square represents Hadamard gate. 
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(ii)  Symbol between two data lines made up of a dark dot joined by a 
vertical line with a circle joined at the end of this vertical line 
containing plus symbol represents controlled-NOT gate (or, CNOT 
gate).  

(iii) Symbol M inside a square represents measurement and the result 
(value) of this measurement is written in front of equality-sign kept 
inside an open bracket in front of the symbol M.  

(iv) Symbols O(1), O(2), …, O(k), …, O(n) represent the operators  
defined by the following equation 

kvu XZkO =)(  
where symbols Z and X represent Pauli operators (we operate X first and 
then Z), and u and vk are values {0 or 1} that we get through 
measurements as shown in the above given quantum circuit. 
(v) Thus, the for any entangled pair, say Alice and Bob(k), initially there 

will be state 12,2001 +
⊗

kk
βψ   

 Note that 

( ) ( )
12,2,1

12,2001
111100

2
011000

2 +
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
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 +++=⊗
kk

kk

baβψ

 

[ ]
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1
+

+++=
kk
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Now, we use the relationship between Bell basis and computational basis 
for 2-qubit state and express each of the 2-qubit computational basis state 
in the above expression in terms of 2-qubit Bell basis states. Thus, the 
above expression will become 

( ) ( ) ( ) ( )[ ]
12,2,11000110111011000 1010

2
1

+
−+−++++=

kk
bbaa ββββββββ

 

( ) ( ) ( ) ( )[ ]
12,2,111011000 01011010

2
1

+
−+++−++=

kk
babababa ββββ

 
     It is clear from this last expression that depending on the values of u and 

vk operator kvu XZkO =)( will perform the appropriate action and a 
copy (exact clone) of ψ  will be produced at the location of Bob(k) for 
every k = 1, 2, ….,n. What actions are carried out depending upon the 
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values of u and vk by the operator kvu XZkO =)( can be understood by 
following table: 

 
 

Possibilities u vk Action1 Action2 
1 0 0 Nil Nil 
2 1 0 Change –ve 

sign to +ve  
Nil 

3 0 0 Nil Swap 
Coefficients 

(a, b) 
4 1 1 Change –ve 

sign to +ve 
Swap 

Coefficients 
(a, b) 

 
Note that although the value of u reaching the different locations where 
Bob(1), Bob(2), …, Bob(k),…., Bob(n) are situated will be some same 
value, (0 or 1), the values of vk , k = 1, 2, …, n, could be different for 

different locations and so the operators, kvu XZkO =)( , to be 
operated could be different for Bob(1), Bob(2), …, Bob(k),…., Bob(n) 
that are to be operated to retrieve the same ψ  at all these locations.  
 
A Simple Experiment for getting Two Clones: We suggest following 
simple experiment to get simultaneously two copies of message photon, 
one arriving at position of Bob(1), and the other at position of Bob(2). 
We suggest to conduct the experiment in following steps:  

1. We have one message photon to be sent along x- direction. 
2. We have two entangled pairs of photons, with one pair shared 

between Alice and Bob(1) while other pair shared between Alice 
and Bob(2). 

3. We choose and fix a right handed co-ordinate frame.  
4. We fix three beam splitters, one to receive photon of Bob(1) 

arriving along y+ direction and other of Bob(2) arriving along z+ 
direction, so that the arrived photons upon striking these beam 
splitters will continue to move along y+ and z+ direction or 
perpendicularly towards appropriately fixed detectors.  

5. The third beam splitter is fixed parallel to (111)- plane near 
origin to receive three photons arriving simultaneously: Alice’s 



 9

first photon arriving along y- direction which is entangled with 
photon of Bob(1), Alice’s second photon arriving along z- 
direction which is entangled with photon of Bob(2), and message 
photon arriving along x- direction.  

6. Suppose all these three photons will arrive at beam splitter fixed 
parallel to (111)- plane near origin simultaneously and move 
towards appropriately fixed different detectors in 
indistinguishable ways. Thus, Alice’s two photons get entangled 
with this message photon.  
Analysis: Alice’s two photons must have polarization states 
which are opposite to polarization state of message photon as 
they move towards different detectors. Further, Alice’s first 
photon entangled with Bob(1) and Alice’s second photon 
entangled with Bob(2) had opposite polarizations, therefore, 
message photon must have same polarization as photons of 
Bob(1) as well as Bob(2). Therefore, photons reaching Bob(1) 
and Bob(2) must be clones of message photon. 

 
3. Instantaneous Information Transfer among Too Far Away People: 

We now proceed to achieve our first objective of this paper, namely, 
exact and instantaneous information transfer. In this section we will see 
how information can be transmitted or transferred or exchanged among 
persons who are space-like separated from one another and may be 
residents of different galaxies. Following Shannon, a modern definition 
of information is nothing but an ordered sequence of zeroes and ones 
and to transfer this information present at some one place to any other 
place, i.e. to transfer reliably this prearranged sequence of zeroes and 
ones present at one location to any other location, through some 
communication means is in fact the aim and objective of information 
transfer technology. Sending this information through channels, more 
or less noisy, introduces some error and thus in that case information is 
not transferred with 100 percent accuracy as desired. Several error 
correcting techniques have been developed to manage the transfer of 
information much reliably and with minimum possible errors. The other 
aspect related to information transfer is the speed with which this 
transfer can be brought in effect. There is another aspect related to 
information transfer and it is about the highest possible speed with 
which we can do it. Everybody knows that the upper limit that exists on 
speed of transmitting information is due to fastest speed of signaling as 
per relativity theory that exists in nature, namely, the velocity of light. 
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According to theory of relativity, light is the fastest signal that exists in 
nature and therefore it is impossible to send any information from one 
location to another with speed that is greater than the speed of light.    
                                We now proceed to see how we can circumvent the 
above mentioned difficulties related to information transfer, the 
problem of error correction and the problem of speed limit imposed by 
relativity. We will see that for transferring the information exactly and 
instantaneously among the parties involved the preparation and 
conditioned measurement of an entangled state at regular intervals can 
be effectively utilized to attain this objective. Consider following 
quantum circuit:  
 

   Let the quantum state ψ  be as given below, with 122 =+ ba :  

10 ba +=ψ  
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Let Alice and Bob(1), Bob(2), …, Bob(k),…., Bob(n) share a maximally 

entangled state 0000Lβ . Let Alice and Bob(1) are neighbors while  

[ ]11111000101110100000
2

1
000 LLLLL bbaa ⊗+⊗+⊗+⊗=⊗ βψ

( ) ( )[ ]000111111000
2
1

0100 LLLL baba +++= ββ  

( ) ( )[ ]000111111000
2
1

1110 LLLL baba −+−+ ββ  
So, if the values of measurements (M), namely u and v, are conveyed to 
Bob(1) and he will operate the (entangled) shared state by operator 

vu XZO = , X  to be operated first and Z later, then the following 
shared state, shared among Bob(1), Bob(2), …, Bob(k),…., Bob(n), will 
result: 

111000 LL ba
shared

+=ψ  
Suppose Bob(1) wish to convey some information to Bob(2), Bob(3), 
…,etc. and suppose this information is following sequence of numbers: 
{0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1,…..}.  
Now, if Bob(1) will carry out conditioned measurement of state 

shared
ψ after a regular interval of time such that b is conditioned to 

take values {0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1,…..} at those times of 
measurements that arrive after regular interval of time. And further 
Bob(2), Bob(3), …,etc. are asked to record their state at those times of 
measurements of Bob(1) then each one, i.e. Bob(2), Bob(3), …,etc. will 
record the following sequence of states: 

{ }L,1,1,0,1,0,1,1,1,0,0 .  
Now, from this sequence of states the easily retrievable information, 
namely, {0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1,…..}, will reach to each one, i.e. 
Bob(2), Bob(3), …,etc., both exactly and instantaneously!!!  
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