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ABSTRACT

We investigate electromagnetic buoyancy instabilities of the electron-ion plasma with

the heat flux based on not the magnetohydrodynamic (MHD) equations, but using the

multicomponent plasma approach when the momentum equations are solved for each

species. We consider a geometry in which the background magnetic field, gravity, and

stratification are directed along one axis. The nonzero background electron thermal flux is

taken into account. Collisions between electrons and ions are included in the momentum

equations. No simplifications usual for the one-fluid MHD-approach in studying these

instabilities are used. We derive a simple dispersion relation, which shows that the thermal

flux perturbation generally stabilizes an instability for the geometry under consideration.

This result contradicts to conclusion obtained in the MHD-approach. We show that the
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reason of this contradiction is the simplified assumptions used in the MHD analysis of

buoyancy instabilities and the role of the longitudinal electric field perturbation which is

not captured by the ideal MHD equations. Our dispersion relation also shows that the

medium with the electron thermal flux can be unstable, if the temperature gradients of ions

and electrons have the opposite signs. The results obtained can be applied to the weakly

collisional magnetized plasma objects in laboratory and astrophysics.
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1. INTRODUCTION

Thermal effects resulting in instabilities, transport, heating, structures forming, and so

on play an important role in dynamics of different plasma objects in laboratory, space, and

astrophysics. For example, the ion-temperature-gradient-driven modes (Kadomtsev and

Pogutse 1965) are used for explaining anomalous transport in tokamak plasma experiments

(Dimits et al. 2000; Garbet 2001). Thermal conductivity influences on the Rayleigh-Taylor

instability in inertial fusion (Betti et al. 1998; Canaud et al. 2004; Lindl et al. 2004),

on the surface of the Sun (Isobe et al. 2005), in supernova (Fryxell et al. 1991), and

other astrophysical objects. Thermally stratified fluids can be buoyantly unstable in the

gravitational field. In astrophysics, this process may, for example, operates in the stellar

interiors (Schwarzschild 1958), accretion disks (Balbus 2000, 2001), neutron stars (Chang

and Quataert 2010), hot accretion flows (Narayan et al. 2000, 2002), galaxy clusters,

and intracluster medium (ICM) (Quataert 2008; Parrish et al. 2009; Ren et al. 2009,

2010a). Analogous instabilities also exist in the neutral atmosphere of the Earth and ocean

(Gossard and Hooke 1975; Pedlosky 1982). Diversity of environments in which buoyancy (or

convective) instabilities may have the significant role, leading to turbulence and anomalous

energy and matter transport, makes these instabilities an important object for analytical

and numerical explorations.

The crucial role of convection in the transport of energy, for example, in stellar

interiors is a well-known physical process (Schwarzschild 1958). However, theoretical efforts

to understand convective energy transport in the dilute and hot plasmas such as galaxies

clusters and ICM (Sarazin 1988) have lead to some results over recent years. As it is

known, majority of the mass of a cluster of galaxies is in the dark matter. However, around

1/6 of its mass consists of a hot, magnetized, and low density plasma known as ICM.

The electron number density is ne ≃ 10−3 to 10−1 cm−3 at the central parts of ICM. The
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electron temperature Te is measured of the order of 1− 15 keV, though the ion temperature

Ti has not yet been measured directly (Fabian et al. 2006; Sanders et al. 2010). The

magnetic field in ICM is estimated to be in the range 0.1− 10 µG depending on where the

measurement is made (Carilli and Taylor 2002). This implies a dynamically weak magnetic

field with β = 8πneTe/B
2 ≈ 200− 2000. Under conditions given above, the Larmor radius

of electrons and ions (Ti ∼ Te) is many orders of magnitude smaller than the mean free

path. Thus, the ICM is classified as a weakly collisional plasma (Carilli and Taylor 2002)

possessing anisotropic transport due to the magnetic field.

In recent past, for such plasmas in the framework of the ideal MHD supplemented by

an anisotropic heat flux along the magnetic field, there were found some new convective

instabilities for the case when a heat flux plays the significant role (Balbus 2000, 2001;

Quataert 2008; Ren et al. 2009, 2010a, 2010b). One of these instabilities, at the absence of

the background thermal flux, has been shown to arise when the temperature increases in

the direction of gravity which is perpendicular to the background magnetic field. This is

so-called the magnetothermal instability (MTI) (Balbus 2000, 2001). The other instability,

the heat buoyancy instability (HBI) (Quataert 2008), has been found to arise at the

presence of the background heat flux when the temperature decreases along gravity parallel

to the magnetic field. Anisotropic dissipative effects have been included by Ren et al.

(2010a, 2010b).

Theoretical models applied for study of buoyancy instabilities in astrophysical objects

with a heat flux are based on the one-fluid ideal (Balbus 2000, 2001; Quataert 2008; Ren

et al. 2009; Chang and Quataert 2010) and nonideal (Ren et al. 2010a, 2010b) MHD

equations. By using of these equations one can comparatively easily to consider any

problems. However, the ideal MHD does not capture some important effects which can

be taken into account by using a multi-fluid plasma approach. One of such effects is the
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nonzero longitudinal electric field perturbation along the background magnetic field. An

importance of involving this component due to multi-fluid effects and shortcomings of the

ideal MHD were emphasized, for example, for the acceleration of solar flare electrons by

inertial Alfvén waves (McClements and Fletcher 2009), at consideration of structures of

electromagnetic fields and plasma flows in pulsar magnetosphere (Kojima and Oogi 2009),

for the acceleration of relativistic ions, electrons, and positrons in shock waves (Takahashi

et al. 2009), and in a gyrofluid description of Alfvénic turbulence (Bian and Kontar 2010).

As we show here, the contribution of currents due to this (small in the present case)

parallel electric field to the dispersion relation can be of the same order of magnitude as

that due to transverse electric field components. Besides, the MHD equations do not take

into account the existence of various charged and neutral species with different masses and

electric charges and their collisions between each others and therefore can not be applied

to multicomponent systems. In some cases, the standard methods used in the MHD lead

to conclusions that are different from those obtained by the method using the electric field

perturbations (the E-approach). One such an example concerning the contribution of the

electron-ion collisions to the dispersion relation for the MHD waves in the two-component

magnetized plasma was considered by Nekrasov (2009c). A multicomponent approach has

been used in (Nekrasov 2008, 2009a, 2009b, 2009c, 2009d), where the streaming instabilities

of rotating astrophysical objects (accretion disks, molecular clouds and so on) have been

investigated.

A study of buoyancy instabilities with the electron heat flux by the multicomponent

E-approach has been performed by Nekrasov and Shadmehri (2010). The geometry has

been considered in which the gravity is perpendicular to the background magnetic field and

the background heat flux is absent. Solution of the dispersion relation obtained in this

paper differs from solution of the same problem found from the ideal MHD (Balbus 2000).
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In this paper, we apply a multicomponent approach to study buoyancy instabilities in

magnetized electron-ion plasmas with the background electron thermal flux. We consider

the geometry in which the gravity, stratification, background magnetic field and thermal

flux are all directed along one (z-) axis. For generality, we include collisions between

electrons and ions in the momentum equations. At the consideration of the perturbed heat

flux, we adopt that cyclotron frequencies of species are much larger than their collision

frequencies. Such conditions are typical for many laboratory, space, and astrophysical

plasmas. In this case, the heat flux is anisotropic and directed along the magnetic field

lines (Braginskii 1965). However in other respects, the relation between the cyclotron and

collision frequencies is arbitrary in the general expressions for the perturbed values. We

derive the dispersion relation for cases, in which the background heat flux is present or

absent. This gives a possibility to compare these two cases. Solutions of the dispersion

relation are discussed.

The paper is organized as follows. In Sect. 2, the fundamental equations are given.

An equilibrium state is considered in Sect. 3. Perturbed ion velocity, number density, and

thermal pressure are obtained in Sect. 4. In Sect. 5, we consider the perturbed velocity

and temperature for electrons. Components of the dielectric permeability tensor are found

in Sect. 6. Dispersion relation is derived and considered in the collisionless and collisional

cases in Sect. 7. Discussion of the results obtained and comparison with the MHD results

are provided in Sect. 8. In Sect. 9, we give conclusive remarks.

2. BASIC EQUATIONS

We start with the following equations for ions:

∂vi

∂t
= −

∇pi
mini

+ g+
qi
mi

E+
qi
mic

vi ×B− νie (vi − ve) , (1)
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the momentum equation,

∂ni

∂t
+∇ · nivi = 0, (2)

the continuity equation, and

∂pi
∂t

+ vi · ∇pi + γpi∇ · vi = 0, (3)

the pressure equation. The corresponding equations for electrons are:

0 = −
∇pe
ne

+ qeE+
qe
c
ve ×B−meνei (ve − vi) , (4)

∂ne

∂t
+∇ · neve = 0, (5)

∂pe
∂t

+ ve · ∇pe + γpe∇ · ve = λ− (γ − 1)∇ · qe, (6)

∂Te

∂t
+ ve · ∇Te + (γ − 1)Te∇ · ve =

λ

ne

− (γ − 1)
1

ne

∇ · qe, (7)

the temperature equation, where qe is the electron heat flux (Braginskii 1965). We neglect

inertia of the electrons. In (1)-(7), qj and mj are the charge and mass of species j = i, e,

vj is the hydrodynamic velocity, nj is the number density, pj = njTj is the thermal

pressure, Tj is the temperature, νie (νei) is the collision frequency of ions (electrons) with

electrons (ions), g is gravity, E and B are the electric and magnetic fields, c is the speed

of light in vacuum, and γ is the adiabatic constant. At the consideration of the electron

heat flux, we will assume the electrons to be magnetized when their cyclotron frequency

ωce = qeB/mec ≫ νee(νei), where νee(νei) is the electron-electron (ion) collision frequency.

In this case, the electron thermal flux is mainly directed along the magnetic field,

qe = −χeb (b · ∇)Te, (8)

where χe is the electron thermal conductivity coefficient and b = B/B is the unit vector

along the magnetic field (Braginskii 1965). However in the momentum equations (1) and

(4), we keep for generality an arbitrary relation between ωci(ωce) and νie(νei) (ωci = qiB/mic
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and νie are the ion cyclotron and ion-electron collision frequencies, respectively), having

in mind that some expressions obtained below can be applied for collisional objects. The

term λ compensates the temperature change as a result of the equilibrium heat flux. We

take only into account the electron thermal conductivity by (8), because the corresponding

ion conductivity is considerably smaller (Braginskii 1965). For generality, we assume the

electron and ion temperatures to be different. However, we do not involve, for simplicity,

the terms describing the energy exchange between ions and electrons in (3), (6), and (7).

Thus, our treatment is available for cases in which such an exchange is not effective or when

there is a strong temperature coupling of species. In the last case, one can set Ti ≃ Te. This

issue is considered in more detail in Sect. 8.

Electromagnetic equations are Faraday’s law

∇× E = −
1

c

∂B

∂t
(9)

and Ampere‘s law

∇×B =
4π

c
j, (10)

where j =
∑

j qjnjvj. We consider the wave processes with typical timescales much larger

than the time the light spends to cover the wavelength of perturbations. In this case,

one can neglect the displacement current in (10) that results in quasineutrality both in

electromagnetic and purely electrostatic perturbations. The magnetic field B includes the

background magnetic field B0, the magnetic field B0cur of the background current (when it

presents), and the perturbed magnetic field.

3. EQUILIBRIUM STATE

At first, we consider an equilibrium state. We assume that background velocities are

absent. In this paper, we study configuration in which the background magnetic field,
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gravity, and stratification are directed along the z-axis. Let, for definiteness, g be g = −zg,

where g > 0 and z is the unit vector along the z-direction. Then, (1) and (4) give

gi = −
1

mini0

∂pi0
∂z

= g −
qi
mi

E0, (11)

ge = −
1

mine0

∂pe0
∂z

=
qi
mi

E0, (12)

where (and below) the index 0 denotes equilibrium values. Here and below, we assume that

qi = −qe. For convenience of notations, we do not use that ni0 = ne0 for the two-component

plasma up to a point where it will be necessary. We see that equilibrium distributions of

ions and electrons influence on each other through the background electric field E0. In the

case ni0 = ne0 and Ti0 = Te0, we have gi = ge = g/2. Thus, we obtain E0 = mig/2qi. The

presence of the third component, for example, of the cold dust grains with the charge qd and

mass md ≫ mi results in other value of E0 = mdg/qd. In this case, the ions and electrons

are in equilibrium under the action of the thermal pressure and equilibrium electric field,

being gi ≃ −ge, if qimd ≫ qdmi.

4. LINEAR ION PERTURBATIONS

Let us write (1)-(3) for ions in the linear approximation,

∂vi1

∂t
= −

∇pi1
mini0

+
∇pi0
mini0

ni1

ni0
+ Fi1 +

qi
mic

vi1 ×B0, (13)

∂ni1

∂t
+ vi1z

∂ni0

∂z
+ ni0∇ · vi1 = 0, (14)

∂pi1
∂t

+ vi1z
∂pi0
∂z

+ γpi0∇ · vi1 = 0, (15)

where

Fi1 =
qi
mi

E1 − νie (vi1 − ve1) , (16)

and the index 1 denotes the perturbed variables. Below, we solve these equations to find

the perturbed velocity of ions in an inhomogeneous medium.
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4.1. Perturbed velocity of ions

Applying the operator ∂/∂t to (13) and using (14) and (15), we obtain equation

containing only the ion velocity

∂2vi1

∂t2
= −gi∇vi1z +

1

mini0
[(γ − 1) (∇pi0) + γpi0∇]∇ · vi1 +

∂Fi1

∂t
+

qi
mic

∂vi1

∂t
×B0. (17)

From this equation, we can find solutions for the components of vi1. For simplicity, we

assume that ∂/∂x = 0 because a system is symmetric in the transverse direction relative to

the z-axis. The x-component of (17) has the simple form

∂vi1x
∂t

=Fi1x + ωcivi1y. (18)

Here ωci = qiB0/mic. For the y-component of (17), we obtain:

∂2vi1y
∂t2

= −gi
∂vi1z
∂y

+ c2si
∂

∂y
∇ · vi1 +

∂Fi1y

∂t
− ωci

∂vi1x
∂t

, (19)

where, csi = (γTi0/mi)
1/2 is the ion sound velocity. Using (18), equation for vi1y is given

from (19) as follows
(

∂2

∂t2
+ ω2

ci

)

vi1y −Qi1y=
∂Pi1

∂y
. (20)

Then from (18), we obtain

∂

ωci∂t

[(

∂2

∂t2
+ ω2

ci

)

vi1x −Qi1x

]

=
∂Pi1

∂y
. (21)

In (20) and (21), we have introduced the following notations:

Pi1 = −givi1z + c2si∇ · vi1, (22)

Qi1x = ωciFi1y +
∂Fi1x

∂t
, (23)

Qi1y = −ωciFi1x +
∂Fi1y

∂t
. (24)
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The value Pi1 defines the ion pressure perturbation (see 15). We see from (20) and (21)

that the thermal pressure effect on the velocity vi1x is much larger than that on vi1y when

∂/∂t ≪ ωci.

The z-component of (17) takes the form

∂

∂t

(

∂vi1z
∂t

− Fi1z

)

= −gi
∂vi1z
∂z

+

[

(1− γ) gi + c2si
∂

∂z

]

∇ · vi1. (25)

To obtain equation only for vi1z, we need to express ∇ · vi1 through vi1z . Differentiating

(20) with respect to y and using expression (22), we find

L1∇ · vi1=L2vi1z +
∂Qi1y

∂y
, (26)

where the following operators are introduced:

L1 =
∂2

∂t2
+ ω2

ci−c2si
∂2

∂y2
, (27)

L2 =

(

∂2

∂t2
+ ω2

ci

)

∂

∂z
− gi

∂2

∂y2
. (28)

We can derive equation for the longitudinal velocity vi1z, substituting ∇ · vi1 found from

(26) into (25),

L3vi1z=L1

∂Fi1z

∂t
+ L4

∂Qi1y

∂y
, (29)

where operators L3 and L4 have the form

L3 =

(

∂2

∂t2
+ ω2

ci

)

∂2

∂t2
− c2si

(

∂2

∂y2
+

∂2

∂z2

)

∂2

∂t2
− c2siω

2

ci

∂2

∂z2
(30)

+ γgi

(

∂2

∂t2
+ ω2

ci

)

∂

∂z
+ c2si

∂L1

L1∂z
L2 + (1− γ) g2i

∂2

∂y2
,

L4 = (1− γ) gi + c2si

(

∂

∂z
−

∂L1

L1∂z

)

. (31)

For obtaining expression (30), we have used expressions (27) and (28).
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It is easy to see that at the absence of the background magnetic field and without

taking into account electromagnetic perturbations and collisions with electrons (the right

hand-side of 29), equation L3vi1z = 0 describes the ion sound and internal gravity waves. In

this case, a sum of the last two terms on the right hand-side of expression (30) is equal to

−c2siω
2

bi
∂2

∂y2
, where ωbi is the (ion) Brunt-Väisälä frequency equal to

ω2

bi =
gi
c2si

[

(γ − 1) gi +
∂c2si
∂z

]

. (32)

Thus, we have obtained a result corresponding to perturbations in the neutral atmosphere

(Gossard and Hooke 1975). However, we see that the existence of the background magnetic

field considerably modifies the operator L3. We note that the right hand-side of (29)

describes a connection between ions and electrons through the electric field E1 and collisions.

4.2. Specific case for ions

So far, we did not make any simplifications and all the equations and expressions

obtained above are given in their general form. This permits us to investigate different

limiting cases. Further, we consider perturbations with a frequency much lower than the

ion cyclotron frequency and the transverse wavelengths much larger than the ion Larmor

radius. Such perturbations are of interest for both laboratory and astrophysical plasmas.

Besides, we investigate a part of the frequency spectrum in the region lower than the ion

sound frequency. Thus, we set

ω2

ci ≫
∂2

∂t2
, c2si

∂2

∂y2
; c2si

∂2

∂z2
≫

∂2

∂t2
. (33)



– 13 –

In this case, operators (27), (28), (30), and (31) take the form

L1 ≃ ω2

ci, L2 ≃ ω2

ci

∂

∂z
, (34)

L3 = −ω2

ci

[(

c2si
∂

∂z
− γgi

)

∂

∂z
−

∂2

∂t2

]

,

L4 = (1− γ) gi + c2si
∂

∂z
.

Also, an additional condition

ω2

ci

∂2

∂t2
≫ c2si

∂c2si
∂z

∂3

∂y2∂z
(35)

must be satisfied for operator L3 to have a given form (34). The small corrections in

operators L3 and L4 are needed to be kept because some main terms in expressions for the

ion and electron velocities are equal to each other (see below). Therefore, when calculating

the electric current, these main terms will be canceled and small corrections to velocities

will only contribute to the current. The applicability of condition (35) and other conditions

used below will be discussed in Sect. 8.

For cases represented by inequalities (33) and (35) when the operators Li, i = 1, 2, 3, 4,

have the form (34), equations for vi1z and ∇ · vi1 become

[(

c2si
∂

∂z
− γgi

)

∂

∂z
−

∂2

∂t2

]

vi1z= −
∂Fi1z

∂t
−

[

(1− γ) gi + c2si
∂

∂z

]

∂Qi1y

ω2

ci∂y
, (36)

∇ · vi1 ≃
∂vi1z
∂z

+
∂Qi1y

ω2

ci∂y
. (37)

4.3. Ion perturbations in the Fourier transformation

Calculations show that some main terms in expressions for vi1z (when calculating

the current), ∇ · vi1 and Pi1 are canceled. Therefore, the small terms proportional to

inhomogeneity must be taken into account. To do this correctly, we can not apply the

Fourier transformation to (36) and (37) to find the variable Pi1. However, firstly, we should
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apply the operator ∂/∂z to this variable for using (36). It is analogous to obtaining the

term ∂c2s/∂z in expression (32) for the Brunt-Väisälä frequency. After that, we can apply

the Fourier transformation in a local approximation assuming the linear perturbations to

be proportional to exp(ikr−iωt). As a result, we obtain for the Fourier-components vi1zk,

k · vi1k, and Pi1k, where k = (k,ω), the following expressions:

vi1zk = −i
ω

k2
zc

2

si

(

1− i
γgi
kzc2si

)

Fi1zk −
ky

kzω2

ci

(

1− i
gi

kzc2si

)

Qi1yk, (38)

k · vi1k= −i
ω

kzc2si

(

1− i
γgi
kzc2si

)

Fi1zk + i
ky
kz

gi
c2siω

2

ci

Qi1yk, (39)

Pi1k =
ω

kz
Fi1zk − i

ω

k2
zc

2

si

[

(γ − 1) gi +
∂c2si
∂z

]

Fi1zk (40)

+ i
kygi

k2
zc

2

siω
2

ci

[

(γ − 1) gi +
∂c2si
∂z

− ω2
c2si
gi

]

Qi1yk,

where gi/kzc
2

si ≪ 1. In expressions (38) and (39), we have omitted additional small terms

at Qi1yk which are needed for calculation of Pi1k.

When calculating the current along the z-axis, the main term ∼ Qi1yk in (38) will be

canceled with the corresponding electron term. The contribution of the first term ∼ Fi1zk

to this current has, as we will see below, the same order of magnitude for the buoyancy

instabilities as contribution of the term ∼ giQi1yk, i.e. Fi1zk ∼ (kygi/ωω
2

ci)Qi1yk. The same

relates to expressions (39) and (40). Thus, the longitudinal electric field perturbation E1z

containing in Fi1z must be taken into account. However, in the ideal MHD, this field is

absent. We see from expressions (38) and (39) that ∇ · vi1 ∼ (gi/c
2

si)vi1z. This relation is

the same as that for internal gravity waves in the Earth’s atmosphere (see, e.g., Nekrasov

1994). Using expression (40), we can find velocities vi1yk and vi1xk from (20) and (21),

correspondingly.
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4.4. Perturbed ion number density and pressure

It is followed from above that ∇ · vi1 ∼ vi1z/H , where H is the inhomogeneity

scale height (H ∼ c2si/gi). Thus, the last two terms in (14) and (15) are of the same

order of magnitude. Let us find the perturbed ion number density and pressure in the

Fourier-representation. From (14), (38) and (39), we obtain

ni1k

ni0
= −i

1

kzc2si
Fi1zk − i

ky
kzc2siωω

2

ci

[

(γ − 1) gi +
∂c2si
∂z

]

Qi1yk. (41)

Equation (15) gives ∂pi1/∂t = −mini0Pi1. Thus, we have, using (40),

pi1k
pi0

= −i
γ

kzc2si
Fi1zk +

γkygi
k2
zc

4

siωω
2

ci

[

(γ − 1) gi +
∂c2si
∂z

− ω2
c2si
gi

]

Qi1yk. (42)

Comparing (41) and (42), we see that the relative perturbation of the pressure due

to the transverse electric force Qi1yk is much smaller than the relative perturbation of

the number density. However, these relative perturbations as a result of the action of the

longitudinal electric force Fi1zk have the same order of magnitude (see Sect. 4.3). Thus,

pi1k/pi0 ∼ ni1k/ni0. This result contradicts a supposition pi1k/pi0 ≪ ni1k/ni0 adopted in the

MHD analysis of buoyancy instabilities (Balbus 2000, 2001; Quataert 2008). From results

obtained below, it is followed that, as we already have noted above, the both terms on the

right hand-side of (41) have the same order of magnitude.

5. LINEAR ELECTRON PERTURBATIONS

Equations for the electrons in the linear approximation are the following:

0 = −
∇pe1
ne0

+
∇pe0
ne0

ne1

ne0
+ Fe1 +

qe
c
ve1 ×B0, (43)
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∂ne1

∂t
+ ve1z

∂ne0

∂z
+ ne0∇ · ve1 = 0, (44)

∂pe1
∂t

+ ve1z
∂pe0
∂z

+ γpe0∇ · ve1 = − (γ − 1)∇ · qe1, (45)

∂Te1

∂t
+ ve1z

∂Te0

∂z
+ (γ − 1)Te0∇ · ve1 = − (γ − 1)

1

ne0
∇ · qe1, (46)

qe1 = −b1χe0
∂Te0

∂z
− b0χe0

∂Te1

∂z
− b0χe1

∂Te0

∂z
, (47)

Fe1 = qeE1 −meνei (ve1 − vi1) . (48)

In (47), χe1 = 5χe0Te1/2Te0 is the perturbation of the thermal flux conductivity coefficient

χe which is proportional to T
5/2
e (Spitzer 1962; Braginskii 1965). The perturbation of the

unit magnetic vector b1 is equal to b1x,y = B1x,y/B0 and b1z = 0. The thermal flux in

equilibrium is qe0 = −b0χe0
∂Te0

∂z
.

We have seen above at consideration of the ion perturbations that the terms ∼ 1/H2

are needed to be kept (see the last term in 40). Therefore, we also keep such terms for the

electrons.

5.1. Equation for the electron temperature perturbation

Let us now find equation for the electron temperature perturbation. Expression ∇ · qe1,

where qe1 is defined by (47), is given by

∇ · qe1 =
∂qe1y
∂y

+
∂qe1z
∂z

= −χe0
∂Te0

∂z

1

B0

∂B1y

∂y
− χe0

∂2Te1

∂z2
− 2

∂χe0

∂z

∂Te1

∂z
−

∂2χe0

∂z2
Te1. (49)

Substituting this expression into (46), we obtain

D1Te1 = −ve1z
∂Te0

∂z
− (γ − 1) Te0∇ · ve1 + (γ − 1)

χe0

ne0

∂Te0

∂z

∂B1y

B0∂y
, (50)

where the operator D1 is defined by

D1 =

[

∂

∂t
− (γ − 1)

1

ne0

(

χe0
∂2

∂z2
+ 2

∂χe0

∂z

∂

∂z
+

∂2χe0

∂z2

)]

. (51)
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5.2. Perturbed velocity and temperature of electrons

We further find equations for components of the perturbed velocity of electrons. The

x-component of (43) has a simple form, i.e.

ve1y = −
1

meωce

Fe1x, (52)

where ωce = qeB0/mec. Applying the operator ∂/∂t to the y-component of (43) and using

(45) and (49), we obtain

∂

∂t

(

ve1x −
1

meωce
Fe1y

)

=−
1

ωci

∂Pe1

∂y
− (γ − 1)

χe0

meωcene0

∂Te0

∂z

∂2B1y

B0∂y2
(53)

+
1

meωce

(

D1 −
∂

∂t

)

∂Te1

∂y
.

Here

Pe1 = −geve1z + c2se∇ · ve1, (54)

where c2se = γpe0/ mine0. The variable Pe1 is analogous to Pi1 (see 22) and defines the

electron pressure perturbation. But for electrons, their pressure perturbation is also affected

by the thermal conductivity (see 45). The z-component of (43) takes the form

0= −
1

ne0

∂pe1
∂z

+
1

ne0

∂pe0
∂z

ne1

ne0

+ Fe1z. (55)

We can express ∇ · ve1 which is contained in (54) through ve1z, using (52),

∇ · ve1 =
∂ve1z
∂z

−
1

meωce

∂Fe1x

∂y
. (56)

This expression for electrons is analogous to that for ions (see 37).

We further consider perturbations with the dynamical frequency ∂/∂t satisfying the

following conditions:

χe0

ne0

∂2

∂z2
≫

∂

∂t
≫

1

ne0

∂χe0

∂z

∂

∂z
. (57)

The first inequality (57) means that the thermal conductivity is the dominant mode of the

thermal transport (Balbus 2000; Quataert 2008). Under the second condition (57), we can
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neglect the inhomogeneity and perturbation of the thermal flux conductivity coefficient

in the temperature equation (50) (see 47 and 51). Obviously, the term proportional to

∂2χe0/∂z
2 in expression (51) can also be neglected. In this case, the small correction

proportional to ∂/∂t in the temperature equation (50) which will be necessary for calculation

of the electron velocity (see below) will be larger than that ∼ ∂χe0/∂z. We further apply

the operator ∂/∂t to (55) and use (44), (45), (49), and (56). As a result, we obtain

(

c2se
∂

∂z
− γge

)

∂ve1z
∂z

=−
∂Fe1z

mi∂t
+

[

(1− γ) ge + c2se
∂

∂z

]

1

meωce

∂Fe1x

∂y
(58)

+ (γ − 1)
χe0

mine0

(

∂Te0

∂z

1

B0

∂2B1y

∂y∂z
+

∂3Te1

∂z3

)

.

Equation for the temperature perturbation under conditions (57) has the form

[

(γ − 1)
χe0

ne0

∂2

∂z2
−

∂

∂t

]

Te1 = ve1z
∂Te0

∂z
+ (γ − 1)Te0

(

∂ve1z
∂z

−
1

meωce

∂Fe1x

∂y

)

(59)

− (γ − 1)
χe0

ne0

∂Te0

∂z

∂B1y

B0∂y
,

where we have used (56).

To find equation for ve1z, we substitute Te1 from (59) into (58). Taking into account a

contribution of the term ∂Te1/∂t and carrying out some transformations, we obtain

∂3ve1z
∂z3

= −
∂2Fe1z

Te0∂z∂t
−
ne0

χe0

(

∂

∂z

)

−1
∂2Fe1z

Te0∂t2
+

1

meωce

∂3Fe1x

∂y∂z2
(60)

+
1

c2se

(

γge +
∂c2se
∂z

)

1

meωce

∂2Fe1x

∂y∂z
−

∂Te0

Te0∂z

1

B0

∂2B1y

∂y∂t
.

The correction proportional to ∂Fe1x/∂t is absent. The last term on the right hand-side of

(60) is connected with the background electron thermal flux.
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From (59) and (60), we can find equation for the temperature perturbation

(γ − 1)
χe0

ne0

∂

∂z

(

∂2Te1

∂z2
+

∂Te0

∂z

∂B1y

B0∂y

)

=
γTe0

c2se

[

(γ − 1) ge +
∂c2se
∂z

]

1

meωce

∂Fe1x

∂y
(61)

− (γ − 1)
∂Fe1z

∂t
− γ

ne0

χe0

(

∂

∂z

)

−2
∂2Fe1z

∂t2

− γ
∂Te0

∂z

(

∂

∂z

)

−1
∂2B1y

B0∂y∂t
.

It is followed from results obtained below that all terms on the right-hand side of (61)

(except the correction ∼ ∂2Fe1z/∂t
2) have the same order of magnitude (see Sect. 4.3).

The left-hand side of this equation is larger (see conditions 57). Thus, the temperature

perturbation in the zero order of magnitude can be found by equaling the left part of (61)

to zero. However, the right part of this equation is necessary for finding the transverse

velocity perturbation ve1x (see below).

To find the velocity ve1x, we need to calculate the value Pe1 (see 53 and 54). Performing

calculations in the same way as that for ions (see Sect. 4.3), we obtain

c2se
∂2Pe1

∂z2
=

[

c2se
∂

∂z
+ (γ − 1) ge +

∂c2se
∂z

](

−
∂Fe1z

mi∂t
+

∂Ve1

∂z

)

(62)

+ ge

[

(γ − 1) ge +
∂c2se
∂z

]

1

meωce

∂Fe1x

∂y
,

where we have introduced notation connected with the thermal conductivity,

Ve1 = (γ − 1)
χe0

mine0

(

∂Te0

∂z

1

B0

∂B1y

∂y
+

∂2Te1

∂z2

)

. (63)

Equation (62) can be re-written in the form which is convenient for finding the velocity

ve1x. Using (61), we obtain

∂2

∂z2
(Pe1 − Ve1) = −

∂2Fe1z

mi∂z∂t
−

γ

c2se

[

(γ − 1) ge +
∂c2se
∂z

]

∂Fe1z

mi∂t
(64)

+
1

c2se

[

(γ − 1) ge +
∂c2se
∂z

](

γge +
∂c2se
∂z

)

1

meωce

∂Fe1x

∂y

−

[

(γ − 1) ge +
∂c2se
∂z

]

∂Te0

Te0∂z

(

∂

∂z

)

−1
∂2B1y

B0∂y∂t
.
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It is easy to see that (53) has the form

∂

∂t

(

ve1x −
1

meωce
Fe1y

)

= −
1

ωci

∂

∂y
(Pe1 − Ve1) . (65)

Thus, the main contribution of the flux described by (63) does not influence on the electron

dynamics. Applying operator ∂2/∂z2 to (65) and using (64), we find an equation for the

perturbed velocity ve1x.

6. FOURIER CURRENT COMPONENTS

6.1. Fourier velocity components of ions and electrons

Let us give velocities of ions and electrons in the Fourier-representation. From (20),

(21), and (40), we have

vi1xk=
1

ω2

ci

(

1 +
ω2

ω2

ci

)

Qi1xk + i
k2

y

k2
z

(ω2 − giai)

ωω3

ci

Qi1yk−
1

ωci

ky
kz

(

1− i
ai
kz

)

Fi1zk, (66)

vi1yk=
1

ω2

ci

[

1 +

(

k2ω2 − k2

ygiai
)

k2
zω

2

ci

]

Qi1yk + i
ω

ω2

ci

ky
kz

(

1− i
ai
kz

)

Fi1zk. (67)

Here and below, we have introduced notations

ai,e =
1

c2si,e

[

(γ − 1) gi,e +
∂c2si,e
∂z

]

. (68)

The velocity vi1zk is given by (38).

For electrons, using (64) and (65), we find

ve1xk=−i
aec

2

se

ωωci

k2

y

k2
z

(

be
1

meωce
Fe1xk + ω

∂Te0

kzTe0∂z

B1yk

B0

)

(69)

+
1

meωce
Fe1yk−

ky
kz

(

1− iγ
ae
kz

)

1

meωce
Fe1zk,

where the following notation is introduced:

be =
1

c2se

(

γge +
∂c2se
∂z

)

. (70)
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Equation (60) gives us

ve1zk =
ky
kz

1

meωce

Fe1xk − i
ky
k2
z

(

be
1

meωce

Fe1xk + ω
∂Te0

kzTe0∂z

B1yk

B0

)

(71)

− i
ω

k2
zTe0

(

1 + iω
ne0

χe0k2
z

)

Fe1zk.

The velocity ve1y is defined by (52).

6.2. Fourier electron velocity components at the absence of the heat flux

To elucidate the role of the electron thermal flux, we will also consider the dispersion

relation when this flux is absent. Therefore, we also give here the corresponding electron

velocity components:

ve1xk = −i
k2

ygeae

k2
zωωci

1

meωce
Fe1xk +

1

meωce
Fe1yk −

ky
kz

(

1− i
ae
kz

)

1

meωce
Fe1zk, (72)

ve1zk=
ky
kz

(

1− i
ge

kzc2se

)

1

meωce
Fe1xk−i

ω

k2
zc

2
semi

(

1− i
γge
kzc2se

)

Fe1zk. (73)

Comparing expressions (69) and (71) with these equations, we see that the thermal flux

essentially modifies the small terms in the electron velocity under conditions (57).

6.3. Fourier components of current

We find now the Fourier components of the linear current j1 = qini0vi1 + qene0ve1. It is

convenient to consider the value 4πij1/ω. Using expressions (38), (52), (66), (67), (69), and

(71), we obtain the following current components:

4πi

ω
j1xk = axxE1xk + iaxyE1yk − axzE1zk (74)

− bxx (vi1xk − ve1xk)− ibxy (vi1yk − ve1yk) + bxz (vi1zk − ve1zk) ,
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4πi

ω
j1yk = −iayxE1xk + ayyE1yk − ayzE1zk (75)

+ ibyx (vi1xk − ve1xk)− byy (vi1yk − ve1yk) + byz (vi1zk − ve1zk) ,

4πi

ω
j1zk = −azxE1xk − azyE1yk + azzE1z (76)

+ bzx (vi1x − ve1x) + bzy (vi1y − ve1y)− bzz (vi1z − ve1z) .

When obtaining (74)-(76), we have used notations (16), (23), (24), and (48) and equalities

qe = −qi, ne0 = ni0, meνei = miνie. We also have substituted B1yk by (kzc/ω)E1xk, using

(9). The following notations are introduced in (74)-(76):

axx =
ω2

pi

ω2

ci

k2

k2
z

(

1−
k2

y

k2

giai + aebec
2

se

ω2
−

k2

y

k2

aec
2

se

ω2

∂T ∗

e0

Te0∂z

)

, (77)

axy = ayx =
ω2

piω

ω3

ci

k2

k2
z

(

1−
k2

y

k2

giai
ω2

)

, axz =
ω2

pi

ωωci

ky
k2
z

(ai − γae) ,

ayy =
ω2

pi

ω2

ci

, ayz = azy =
ω2

pi

ω2

ci

ky
kz

, azx =
ω2

pi

ωωci

ky
k2
z

(

be −
gi
c2si

+
∂T ∗

e0

Te0∂z

)

,

azz =
ω2

pi

k2
z

(

γ

c2se
+

1

c2si

)

and

bxx =
ω2

piνie

ω2

ci

mi

qi

k2

k2
z

(

1−
k2

y

k2

giai + aec
2

sebe
ω2

)

, (78)

bzx =
ω2

pi

ωωci

ky
k2
z

(

be −
gi
c2si

)

mi

qi
νie,

bij = aij
mi

qi
νie.

Here ωpi = (4πni0q
2

i /mi)
1/2

is the ion plasma frequency and k2 = k2

y + k2

z . The terms

proportional to T ∗

e0 are connected with the background electron thermal flux.

Calculations show that to obtain expressions for aij without thermal flux, using

electron velocities (72) and (73), we must change be by ge/c
2

se, put T
∗

e0 = 0, and take γ = 1

in terms axz and azz.
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6.4. Simplification of collision contribution

An assumption that electrons are magnetized has only been involved by neglecting the

transverse electron thermal flux. In other respects, a relationship between ωce and νei or

ωci and νie (that is the same) can be arbitrary in (74)-(76). We further proceed by taking

into account that ω ≪ ωci. In this case, we can neglect the collisional terms proportional to

bxy and byx. However, the system of equations (74)-(76) stays sufficiently complex to find

j1 through E1. Therefore, we further consider the case in which the frequency ω and wave

numbers satisfy the following conditions:

ω2

ci

ν2

ie

k2

z

k2
≫

ω

νie
≫

1

k2
zH

2

k2

yc
2

s

ω2

ci

, (79)

where

c2s =
c2sic

2

se

γc2si + c2se
. (80)

It is clear that conditions (79) can easily be realized. In this case, the current components

are equal to

4πi

ω
j1xk = εxxE1xk + iεxyE1yk − εxzE1zk, (81)

4πi

ω
j1yk = −iεyxE1xk + εyyE1yk − εyzE1zk,

4πi

ω
j1zk = −εzxE1xk − εzyE1yk + εzzE1z .

Components of the dielectric permeability tensor εij are the following:

εxx = axx + i
νie
ωci

ky
k2
z

(ai − γae)

(1− idz)
azx, εxy = axy +

νie
ωci

ky
k2
z

(ai − γae)

(1− idz)
azy, (82)

εxz =
axz

(1− idz)
, εyx = ayx −

ωνie
ω2

ci

ky
kz

azx
(1− idz)

, εyy = ayy,

εyz =
ayz

(1− idz)
, εzx =

azx
(1− idz)

, εzy =
azy

(1− idz)
, εzz =

azz
(1− idz)

,

where we have used notations (78). Parameter dz,

dz =
ωνie
k2
zc

2
s

, (83)
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defines the collisionless, dz ≪ 1, and collisional, dz ≫ 1, regimes. Below, we derive the

dispersion relation.

7. DISPERSION RELATION

Using (9) and (10) in the Fourier-representation and a system of equations (81), we

obtain the following equations for the electric field components:

(

n2 − εxx
)

E1xk − iεxyE1yk + εxzE1zk = 0, (84)

iεyxE1xk +
(

n2

z − εyy
)

E1yk + (−nynz + εyz)E1zk = 0,

εzxE1xk + (−nynz + εzy)E1yk +
(

n2

y − εzz
)

E1zk = 0,

where n = kc/ω. The dispersion relation can be found by setting the determinant of the

system (84) equal to zero. In our case, the terms proportional to εxy and εyx can be

neglected. As a result, we have

(

n2 − εxx
) [

n2

yεyy +
(

n2

z − εyy
)

εzz − nynz (εyz + εzy) + εyzεzy
]

+
(

n2

z − εyy
)

εxzεzx = 0. (85)

This dispersion relation can be studied for different cases. In subsequent sections, we

consider both the collisionless and collisional cases.

7.1. Collisionless case

We assume that condition

ωνie
k2
zc

2
s

≪ 1, (86)
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is satisfied. Then, using notations (77) and (82), we reduce the dispersion relation (85) to

the form
(

ω2 − k2

zc
2

A

)

(

ω2 − k2

zc
2

A − Ω2
k2

y

k2

)

= 0, (87)

where cA = B0/(4πmini0)
1/2 is the Alfvén velocity and

Ω2 = giai + c2seaebe + c2seae
∂T ∗

e0

Te0∂z
+ c2s (ai − γae)

(

be −
gi
c2si

+
∂T ∗

e0

Te0∂z

)

. (88)

When obtaining (87), we have used the condition k2

yc
2

s/ω
2

ci ≪ 1. We see that there are

two wave modes. The first mode, ω2 = k2

zc
2

A, is the Alfvén wave with a polarization of

the electric field mainly along the y-axis (remind that the wave vector k is situated in the

y − z plane). This wave does not feel the inhomogeneity of medium. The second wave has

a polarization of the magnetosonic wave, i.e. its electric field is directed mainly along the

x-axis (see below). This wave is undergone by the action of the medium inhomogeneity

effect. The corresponding dispersion relation is

ω2 = k2

zc
2

A + Ω2
k2

y

k2
. (89)

Expression (88) can further be simplified, using (11), (12), (68), (70), and (80). As a result,

we obtain

Ω2 =
γ

(γc2si + c2se)m
2

i

[

(γ − 1)mig + γ
∂ (Ti0 + Te0)

∂z

] [

mig +
∂ (Te0 + T ∗

e0)

∂z

]

. (90)

We have pointed out at the end of Sect. 6.3 what changes must be done in expressions

(77) and (78) to consider the case without the electron heat flux. This case follows from

(90), if we omit the term ∂ (Te0 + T ∗

e0) /∂z and put γ = 1 in the first multiplier. Then Ω2

becomes (Ω2 → Ω2

1
)

Ω2

1
=

g

(c2si + c2se)

[

(γ − 1) g +
∂ (c2si + c2se)

∂z

]

. (91)
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This is the Brunt-Väisälä frequency. Comparing expressions (90) and (91), we see that

the heat flux stabilizes the unstable (Ω2

1
< 0) stratification. We also see from (90) that

the background heat flux (∼ T ∗

e0) has no a fundamental importance. If the temperature

decreases in the direction of gravity (∂Ti,e0/∂z > 0), the medium is stable. Solution (90)

describes an instability only when

γ − 1

2γ
mig < −

∂T0

∂z
<

1

2
mig,

where Ti0 ∼ Te0 = T0. We also note that Ω2 can be negative if gradients of Ti0 and Te0 have

different signs.

The dispersion relation (87) with Ω2 defined by (90) considerably differs from the

dispersion relation obtained in the framework of the ideal MHD (Quataert 2008). The

reasons of this are discussed in Sect. 8.

7.2. Collisional case

We proceed with the collisional case when

ωνie
k2
zc

2
s

≫ 1. (92)

In this limiting case, the dispersion relation takes the form n2 − εxx ≈ 0 and we obtain

again (89). Thus, the dispersion relation is the same for both the collisionless and collisional

cases. We note that this result has also been obtained for the case in which gravity is

perpendicular to the magnetic field (Nekrasov and Shadmehri 2010).
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7.3. Polarization of perturbations

Let us neglect in the system of equations (84) the small contributions given by εxy and

εyx. Then, for example, in the collisionless case, we obtain for the second wave ω2 6= k2

zc
2

A,

E1yk =
ky
kz

E1zk, (93)

E1zk =
εzx
εzz

E1xk ≪ E1xk.

Thus, the second wave has a polarization of the electric field mainly along the x-axis. In

spite of that the component E1zk ≪ E1xk, it is multiplied by a large coefficient in the first

equation of the system (84). As a result, the contribution of this term is the same on the

order of magnitude as that of the first term.

In the collisional case, the component E1zk is also defined by (93). However, its

contribution to the first equation of the system (84) can be neglected. However, the

contribution of the collisional term connected with the longitudinal current in (74) which is

proportional to E1xk in (76) is important.

8. DISCUSSION

In the MHD analysis of the buoyancy instabilities, one assumes that pi1k/pi0 ≪ ni1k/ni0

(see, e.g., Balbus 2000; Quataert 2008; Ren et al. 2009). This relation is correct for

internal gravity waves in the neutral medium (e.g., Nekrasov 1994). It is also correct for

perturbations ni1k and pi1k connected with the transverse perturbations Qi1yk

pi1k
pi0

/
ni1k

ni0

(∼ Qi1yk) ∼
gi

kzc
2

si

≪ 1

(see 41 and 42). However, it is followed from the last equations that due to the longitudinal

electric field perturbation E1zk which is of the order of E1zk ∼ (kyc
2

s/ωωciH)E1xk (see 77,



– 28 –

82, and 93) the relative pressure and number density perturbations are of the same order of

magnitude

pi1k
pi0

/
ni1k

ni0

(∼ E1zk) ∼ 1.

The ideal MHD does not capture the field E1z. Therefore, results obtained in the MHD

framework and multicomponent plasma approach are different. In Sect. 4.3, we also have

shown that ∇ · vi1 ∼ (gi/c
2

si)vi1z . This relation is also true for internal gravity waves

(Nekrasov 1994). The fact that ∇ · vi1 6= 0 for gaseous media is taken into account when

deriving an internal energy equation (∇ · vi1 is excluded from the number density and

pressure or temperature equations). Then in the MHD framework, one can use the condition

of incompressibility ∇ · vi1 = 0 in the momentum and magnetic induction equations for

perturbations much slower than the sound waves. In our case, the divergence of the velocity

defined by the main terms in vi1k ∼ Qi1yk (see 38 and 67) and ve1k ∼ Fe1xk (see 52 and 71)

is also equal to zero. However, these main terms are the same for ions and electrons and

canceled with each other at calculation of the current. Therefore, together with velocity

perturbations proportional to the longitudinal force Fi,e1zk, we must take into account

contribution of additional small velocities connected with transverse perturbations Qi1x,yk

and Fe1xk.

From the dispersion relation (85), we see the necessity of involving the contribution

of values εxz, εzx, and εzz in the collisionless case (86) (values εxz and εzx give the last

term on the right hand-side of 88). This means that contribution of currents j1x ∼ E1z and

j1z ∼ E1x, E1z must be taken into account. As for the collisional case (92), the electric field

E1z is not important. In the current j1xk, we must take into consideration the contribution

of the current j1zk as a result of collisions which is proportional to E1xk (see 74 and 76).

This collisional case also is not captured by the ideal MHD.

Thus, the standard MHD equations with simplified assumptions are not applicable
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for the correct theory of buoyancy instabilities. Such a theory can only be given by the

multicomponent approach used in this paper.

The results following from (90) show that the thermal flux stabilizes the buoyancy

instability in the case of the geometry under consideration. The instability only is possible

in the narrow region of the temperature gradient (see Sect. 7.1). The presence of the

background electron thermal flux (the term ∼ T ∗

e0) does not play an essential role. An

instability also is possible, if the temperature gradients of ions and electrons have the

opposite signs.

The contribution of collisions between electrons and ions depends on the parameter dz

defined by (83). In the both limits (86) (dz ≪ 1) and (92) (dz ≫ 1), the dispersion relation

has the same form.

In our analysis, we have considered for generality that ions and electrons have different

temperatures. However in (3), (6), and (7), the terms describing the energy exchange

between species due to their collisions has not been taken into account. This is possible, if

the dynamical timescale is smaller than the timescale of smoothing of the ion and electron

temperatures, i.e. νie ≪ Ω. In the opposite case, νie ≫ Ω, the perturbed temperatures of

electrons and ions are almost equal one another. Equations (6) and (7) for electrons will

keep their form because ve1 ≈ vi1. In the case Te0 ≈ Ti0, these equations will stay the same

with the heat flux two times less than the former one.

Conditions of our consideration (33) and (35) are satisfied when 1 ≫ ρi/H and

1 ≫ kzHk2

yρ
2

i , where ρi is the ion Larmor radius. For estimations, we take ω ∼ g/cs

(Te0 ∼ Ti0). It is obvious that these inequalities can be justified. It is easy to verify that

conditions (79) are also satisfied. However, conditions (57) can impose some restrictions. In
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the case Te0 ∼ Ti0, they can be written in the form

1 ≫
kzcs
νie

≫
1

kzH
, (94)

where we have used expression for χe0 (Braginskii 1965). From inequalities (94), it is in

particular followed that the case of consideration is justified when νie ≫ ω and dz ≪ 1. In

the case Te0 ≫ Ti0, the value dz is in the limits

Te0

Ti0

≫ dz ≫
Te0

Ti0

1

kzH

and can be both < 1 and & 1.

We will further compare results obtained in this paper with the case when stratification

is perpendicular to the magnetic field (Nekrasov and Shadmehri, 2010). However, first of

all, we would like to say a few words about the Schwarzschild criterion of the buoyancy

instability. It is generally accepted that this instability is possible, if the entropy increases

in the direction of gravity. From a formal point of view, it is correct, if we take the

Brunt-Väisälä frequency N in the form (e.g. Balbus 2000),

N2 = −
1

γρ

∂p

∂z

∂ ln pρ−γ

∂z
.

However, this expression can easily be transformed into expression (32). Thus, we see that

the buoyancy instability exists, if the temperature increases along the gravity and the

temperature gradient exceeds a certain threshold.

When the thermal conduction is the dominant process in the electron temperature

evolution, the buoyancy instability in the case g ⊥ B0 can arise according to criterion which

is analogous to the Schwarzschild criterion (see 65 in Nekrasov and Shadmehri, 2010). The

same is also true when the thermal conduction is negligible (66 in Nekrasov and Shadmehri,

2010). Both criteria are similar. Thus, we can conclude that from the point of view of

observations it is difficult to define the role of thermal conduction in generation of instability
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and turbulence. However, in the case g ‖ B0, the situation is different. For the negligible

electron heat flux, we have the similar criterion of instability as that for g ⊥ B0(91). When

the thermal conduction is dominant, the possible instability at ∂ (Ti0 + Te0) /∂z < 0 is

stabilized (90). These results could be used by observers for determination of the mutual

orientation of the magnetic field and gravity in astrophysical objects, e.g., in galaxy clusters.

The true geometry of the magnetic field lines in the ICM is poorly understood.

However, one may consider two extreme cases for the direction of the dominant magnetic

field lines depending on the direction of gravity. The direction of the latter can have a vital

role in driving turbulence via the possible effect of convective heat flux. Since this flux is

mainly along the magnetic field lines, the two extreme cases are considered as either the

magnetic field is perpendicular to the gravity or parallel to it. Thus, the true response of

ICM to small perturbations would be possibly between these two cases. Of course, when

the system evolves and enters into the nonlinear regime, one may expect saturation of the

instability by rearranging the magnetic field lines. Measurements of the magnetic field in

ICM are not consistent and there is a factor of four to ten of discrepancy depending on

the method (e.g., Carilli and Taylor 2002). Physical mechanisms that may affect these

observational measurements of the magnetic field in ICM are very important in this regard.

Our analysis gives a better understanding of such a mechanism, i.e. buoyancy instability,

though more detailed work is needed in future.

9. CONCLUSION

In this paper, we have investigated buoyancy instabilities in magnetized electron-ion

plasmas with the anisotropic electron thermal flux, using the multicomponent approach
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when the dynamical equations for the ions and electrons are solved separately via

electric field perturbations. We have included the background electron heat flux and

collisions between electrons and ions. The important role of the longitudinal electric field

perturbation, which is not captured by the ideal MHD equations, has been demonstrated.

We have shown that the previous MHD result for the growth rate in the geometry

considered in this paper when all background quantities are directed along the one axis is

questionable. The reason of this has been shown to be in simplified assumptions made in

the MHD analysis of the buoyancy instabilities and some shortcomings of the MHD.

At the consideration of the electron heat flux, we have adopted that the electron

cyclotron frequency is much larger than the electron collision frequency that is typical

for tokamaks, solar corona, and astrophysical objects such as ICM and galaxy clusters.

The dispersion relation obtained shows that the anisotropic electron heat flux including

the background one stabilizes the unstable stratification except the narrow region of the

temperature gradient. However, when gradients of the ion and electron temperatures have

opposite signs, the medium becomes unstable.

Results obtained in this paper are applicable to the magnetized stratified objects

and can be useful for searching sources of turbulent transport of energy and matter. For

astrophysical plasmas, it has been suggested that the buoyancy instability can act as a

driving mechanism to generate turbulence in ICM and this extra source of heating may help

to resolve the cooling flow problem (e.g., Allen 2000). However, all previous analytical and

numerical studies are restricted to the MHD approach. Our study shows that when the true

multifluid nature of the system with the electron heat flux is considered, one can not expect

the buoyancy instability unless for a very limited range of the gradient of the temperature

or when the gradients of the temperature of the electrons and ions have opposite signs.

Both cases are very unlikely. However, in the case when the heat flux does not play the
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role, the system can be unstable due to the convective instability.
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