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Abstract

In order to develop the methods of thermodynamic analysis for the living cell, two

models of protoplasm microstructure of the living cell in resting state were suggested.

Both models are based on the assumption that the Ling’s cell as a statistical me-

chanics system is non-ergodic. In the first,Van der Waals model, the protein-protein

interactions, which form the physical basis for the cell functioning, are considered as

a interactions of key importance. It is postulated that protein molecules are situated

in points of some space lattice (the Ling model of a cell) they assemble to aggregates

at equilibrium state, corresponding to the dead protoplasm. In the second model we

consider protein conformation at the resting state and conformation changes while

the cell is passing from the resting state to the equilibrium state (dead protoplasm).

The investigation of the models and comparison of their characteristics showed that

the convenient tool to define the energy minimum of the system under consideration

is a Hamiltonian describing the superfluid Bose gas on protein configuration space.

Our approach allows us to define the thermodynamic features of the living (at resting

state) and dead protoplasm in a new way: in the first case the system is characterized

by the unfolded state of proteins, in the second case proteins are folded and aggre-

gated. Obtained results prove the applicability of our approaches for thermodynamic

characteristics of the Ling model of a cell.
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1 Introduction

R. Feynman wrote: ”All things are made of atoms, and that everything that living things

do can be understood in terms of the jiggling and wiggling of atoms.” (Feynman, 1963).

To move beyond this assertion, it is necessary to adopt common principles of organization

of atoms and molecules in living systems. These principles, compatible with the existing

analytical apparatus of thermodynamics and statistical physics, have been formulated by

Gilbert Ling (Ling, 2006). The living cell model created by him was used as a starting point

of his study.

According to Ling, fundamental properties of the living cell are explained by the single

physical factor — sorption properties of its proteins. An unfolded (linear) protein molecule

binding water (multilayer adsorption) and K+ (in the presence of Na+) under the control of

ATP represents the smallest part (unit) of a living protoplasm which still keeps the main

physical characteristics of the living cell. Later Matveev (2005) offered to call the unit as a

physiological atom or physioatom.

The main physical state of the phisioatom, and accordingly, the cells comprising them,

is, according to Ling, a resting state. The physical nature of this state determines, on the

Ling’s theory, all forms of biological activity of the cell and therefore the analysis of this

state is a key issue of the physical theory of the living cell.

Compatibility of the Ling’s resting cell organization principles with analytical meth-

ods of modern theoretical physics was first shown in our previous work (Prokhorenko and

Matveev, 2011). The base of our approach is the fact that the majority of statistical me-

chanics systems (including the most realistic ones) are non-ergodic that was proved by one

of us (Prokhorenko, 2009). The generalized thermodynamic analysis (generalized thermody-

namics) of Ling’s cell we proposed (Prokhorenko and Matveev, 2011) allowed us to explain

(in framework of adopted boundary conditions) a number of physiological phenomena that

occur when cell is in activated (excited) state: exothermicity of transition to excited state,

change of cell volume, folding of natively unfolded proteins (which determine, by Ling, a

main features of the resting state), efflux of cell K+ and wider — major redistribution of

physiologically important ions between the cell and its environment. However, we deter-

mined the sign (direction) only of these processes, there were no numerical evaluations. In

other words, the results were obtained as inequalities. These are the normal features of
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thermodynamics (not of the generalized one only): it allows us to obtain general relations

between thermodynamic variables which are independent on a nature of intermolecular in-

teractions. It is needed to construct models with desired properties (including microscopic

models) to obtain specific numerical values of thermodynamic variables and then investigate

them by methods of statistical mechanics.

Indeed, inequalities we have determined (Prokhorenko and Matveev, 2011) were based

on the postulate of relative entropy maximum for the resting cell standing in the state of

thermodynamic equilibrium with environment. However, an equilibrium with environment

does not mean the equilibrium state (the absolute maximum of entropy) of a system; that’s

why the relative nature of the entropy maximum is indicated. We consider the resting cell as

a system in a steady non-equilibrium state described by the generalized Gibbs distribution

(Prokhorenko and Matveev, 2011). In other words, the case is the maximum among of all

the states described by generalized Gibbs distributions and constructed using the fixed set of

first integrals in the involution. These inequalities give evidences of the negative determinacy

of the second entropy derivative matrix with respect to parameters describing a system in a

state corresponding to the relative entropy maximum.

Involvement of statistical mechanics methods brings up an issue of certain properties of

the investigated system. Ling’s model of the living cell gives, in our opinion, an interesting

material for such analysis. So, after construction of the generalized thermodynamics of

the resting state, set out in (Prokhorenko and Matveev, 2011), it makes sense to turn to

some of the structural characteristics of the investigated system (as it often happened in

the history of thermodynamics and statistical mechanics). In our case, the problem arises

of constructing various models of protoplasm, and their investigation by various (mostly

approximate) methods of theoretical physics. In this paper, the authors make the first steps

in this direction.

The first model, we call the Van der Waals model, focuses on the nature of interactions

between protein molecules only. As Ling, we assume that protein molecules in the resting

cell embedded at specific sites in the lattice of a crystal, and the distances between proteins

are so long that interaction between them can be neglected. This assumption makes it

possible to use the method for calculating thermodynamic potentials of ideal systems in

order to determine thermodynamic potentials of the resting protoplasm with a specified
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structure. In the case of dead protoplasm (the state opposite to the living resting state), the

protein molecules are associated due to secondary (non-covalent) bonds in large equilibrium

aggregates. In this case, to calculate thermodynamic potentials we use the formula, we have

obtained in this paper, for corrections of free energy values in the case of formation of large

aggregates.

As part of the Van der Waals model we have obtained (i) numerical estimation for heat

amount released when erythrocyte die, (ii) the estimation for number of protein aggregates

appeared in dead protoplasm, and (iii) the estimation for fraction of whole cell volume

occupied by these aggregates. All these estimates are in good (qualitative) agreement with

available experimental data.

In our second model, we also assume that protein molecules in the resting cell embedded

at specific sites in the lattice of a crystal, but at this time the focus is on internal structure

of a protein. We consider this model at zero temperature (the energy scale), which makes

it possible to use (to calculate the ground state) some effective Hamiltonian describing a

superfluid Bose gas in the configuration space of a protein molecule. Based on the repre-

sentations set forth in (Prokhorenko and Matveev, 2011), we define parameters of effective

Hamiltonian corresponding to living and dead states of protoplasm; we show (in accordance

with our assumptions) that proteins in the resting state (that determine key properties of

the system) are natively unfolded, whereas in dead protoplasm the same protein molecules

are folded.

In Appendix 1 the process when the living protoplasm transforms into a dead one is con-

sidered as it appears in the physical point of view. In Appendix 2 we discuss the mechanism

by which ATP is able to effectively influence sorption properties of proteins of Ling’s model

for water and physiologically important cations.

2 Non-Ergodicity and Crystallization

Let’s consider some non-trivial issues that arise when we consider the cell as a nonergodic

system. According to the Ling’s model (Ling, 2001), water in the resting cell is in a bound

quasi-crystalline state (important, water content is about 44 mole/kg wet weight of the cell).

The bound state of water and its massive amount in the cell has fundamental importance for
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the understanding of physiological processes (Ling, 1997). Therefore, one of key issues of cell

physics is the question: which properties the crystal has in terms of our recently proposed

approach, generalized thermodynamics (Prokhorenko and Matveev, 2011) Let’s begin the

consideration of this issue with finding out the relation between non-ergodicity of a system

(for example, the Ling’s cell) and its solidifying capability at low temperatures.

Despite this problem definition is non-physiological, its solution will allow us to verify

once more that a large number of systems of statistical mechanics, including our model, have

a non-ergodicity property. Our argument will be largely heuristic rather than rigorously

mathematical character. In the mathematical physics the rigorous theory is often preceded

by formal theories handling objects of poorly ascertained mathematical context. However,

the heuristics presented here are of interest, in our view, as a basis for more rigorous methods.

At first, let’s define the ergodicity for statistical mechanics systems.

Definition. Suppose the quantum system is described by Hamiltonian H and K1, ..., Kl

are some commuting (among themselves) self-adjoint integrals of motion. The system is

called ergodic with respect to the set of integrals K1, ..., Kl if any dynamical variable com-

muting with H, K1, ..., Kl is their function.

To give a classical analog of this definition we should just replace the word ”commutator”

by a Poisson bracket everywhere.

Usually, the operator of system momenta ~P and operator of particles number N are used

as trivial integrals.

At first let’s show how the non-ergodicity of a system arises from its solidifying capability

at low temperatures. Let’s consider the system at solidifying temperatures, supposing them

T < T0 T0 > 0. In addition, the system can move through the space as a solid body and its

coordinates (as as solid body) are six real numbers

x1, x2, x3 ϕ1, ϕ2, ϕ3, (1)

where x1, x2, x3 are Cartesian coordinates of the system’s center of mass, and ϕ1, ϕ2, ϕ3

are some coordinates characterizing the position of a system (as a solid body) relative to

its center of mass, for example, Euler angles. Let p1, ..p3, π1, ..., π3 be momenta canonically

conjugated to them. The Hamiltonian of the whole system

Ĥ(x1, ..., x3, ϕ1, ..., ϕ3, p1, ..., p3, π1, ..., π3) (2)
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is a function of variables x1, x2, x3 ϕ1, ϕ2, ϕ3, conjugated momenta to them and operator

”in other variables”. Free energy of a system is given by:

F (x1, ..., x3, ϕ1, ..., ϕ3, p1, ..., p3, π1, ..., π3|T )

= −T ln tre−
Ĥ(x1,...,x3,ϕ1,...,ϕ3,p1,...,p3,π1,...,π3)

T , (3)

where trace is taken by Hilbert space which is ”left” after separation of variables de-

scribing the motion of a system as a solid body. We won’t refine the meaning of

words enclosed in quotation marks considering them as intuitive clear. It’s clear that

F (x1, ..., x3, ϕ1, ..., ϕ3, p1, ..., p3, π1, ..., π3|T ) does not depend on variable ϕ3 (if, for example,

ϕ1, ϕ2, ϕ3 are Euler angles).

But

ln tre−
Ĥ(x1,...,x3,ϕ1,...,ϕ3,p1,...,p3,π1,...,π3)

T =

∞
∑

i=0

di(x1, ..., π3)e
−λi(x1,..,π3)

T , (4)

where di = dimLi is a dimension of eigenspace Li of operator Ĥ(x1, ..., π3) corresponding to

λi eigenvalue of operator Ĥ(x1, ..., π3). But since
∞
∑

i=0

di(x1, ..., π3)e
−λi(x1,..,π3)β (β := 1

T
) does

not depend on ϕ3 (for different β), then di(x1, ..., π3) and λi(x1, .., π3) are also independent

of ϕ3. Indeed
∞
∑

i=0

di(x1, ..., π3)e
−λi(x1,..,π3)β is really a Laplace transform of a measure

∞
∑

i=0

δ(λ− λi(x1, .., π3))di(x1, ..., π3). (5)

So, for all values ϕ3 when others values parameters x1, ..., π3 are the same, operators

Ĥ(x1, ..., x3, ϕ1, ..., ϕ3, p1, ..., p3, π1, ..., π3) are unitary equivalent. And after making the

appropriate unitary transformation of H depending on x1, ..., π3, we can conclude that

Ĥ(x1, ..., x3, ϕ1, ..., ϕ3, p1, ..., p3, π1, ..., π3) do not depend on ϕ3. We have considered vari-

ables x1, ..., x3, ϕ1, ..., ϕ3, p1, ..p3, π1, ..., π3 as classical ones since they describe macroscopic

degrees of freedom and appear to be very large. Now we again consider ϕ3, π3 as quantum

variables, replacing them by corresponding operators ϕ̂3, π̂3, and considering the Hamil-

tonian Ĥ1(x1, ..., x3, ϕ1, ϕ2, p1, ..., p3, π1, π2) obtained by replacing the variables ϕ3, π3 with

the corresponding quantum-mechanical operators ϕ̂3, π̂3, in Ĥ to describe our system. This

operator acts in Hilbert space H⊗ Γ where Γ is a Hilbert space corresponding to operators

ϕ̂3, π̂3. The fact of independence of Ĥ(x1, ..., x3, ϕ1, ..., ϕ3, p1, ..., p3, π1, ..., π3) of ϕ3 is stated

now as commutativity of Ĥ1 with π̂3, and the presence of nontrivial first integral of a system
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means of course the Hamiltonian degeneracy. The last fact can indicate the non-ergodicity

of the system, but this new integral should be commutative with the momenta operator. It

can be achieved for example by consideration of the integral Π := π̂3

G
instead of π̂3, where G

behaves like ∼ V
5
3 if the volume V of the system approaches infinity. Then Π asymptotically

commutates with the momenta operator which means the non-ergodicity of the system. The

reason for choosing G ∼ V
5
3 is shown below.

However, instead of considering Π as a new independent integral we prefer other way.

Variables x1, ..., x3, ϕ1, ..., ϕ3, p1, ..., p3, π1, ..., π3 are canonically conjugated variables satisfy-

ing to the Hamilton’s evolution at temperatures T < T0 for the Hamiltonian F (x1, ..., π3|T )
(see section 3). Just as we did before, we can show that F (x1, ..., π3|T ) does not depend on

x1, ..., x3, ϕ1, ..., ϕ3. But the system in the equilibrium state has the energy (in the thermody-

namic limit) proportional to the volume of this system, therefore E ≤ CV for some constant

C. On the other hand, if I1, I2, I3 are the eigenvalues of the inertia operator of our system as

a solid body and ω1, ω2, ω3 are components of angular velocity along corresponding principal

axes of inertia operator, then E ≥ I1
2
ω2
1 +

I2
2
ω2
2 +

I3
2
ω2
3. However, I1, I2, I3 ∼ V

5
3 . Therefore,

in the thermodynamic limit ω1 = ω2 = ω3 = 0 and our system can moves only parallel to

itself in other words, ϕ̇1 = ϕ̇2 = ϕ̇3 = 0. So, variables ϕ1, ϕ2, ϕ3 are motion integrals of the

system commutating with the impulse operator which makes our system non-ergodic one.

Since CV ≥ E ≥ I1
2
ω2
1+

I2
2
ω2
2+

I3
2
ω2
3 =

π2
1

2I1
+ ...+

π2
3

2I3
, and I1, I2, I3 ∼ V

5
3 then π1. π2, π3 ∼

V
4
3 .

At low angular velocities ω1, ..., ω3 the free energy of the whole system is presented as

F (x1, ..., π3) = F0(x1, ..., p3) +
I1ω

2
1

2
+ ... +

I3ω
2
3

2
, (6)

for some function F0(x1, ..., p3) of variables x1, ..., p3. Momentum variables π1, ..., π3 can be

chosen so that time rates of change of canonically conjugated coordinates may be equal to

ω1, ..., ω3. Then π1 = I1ω1,...,π3 = I3ω3 and the effective Hamiltonian of the system equals

to

F (x1, ..., π3) = F0(x1, ..., p3) +
π2
1

2I1
+ ... +

π2
3

2I3
. (7)

The form of this Hamiltonian together with the fact that in the thermodynamic limit

π1. π2, π3 ∼ V
4
3 imply that ϕ1, ϕ2, ϕ3 are the integrals of motion commutating with an

operator of the total system momenta.
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Now let us ask the question arising out of the context of our analysis: why the crys-

talline state of matter is stable at temperatures different from zero. The fact that matter

solidifies at zero temperature is almost evident: configuration of the system must achieve

the minimum potential energy. The question arises: why do atoms keep on doing just small

oscillations around points of the lattice at non-zero temperature and why does the lattice re-

main faultless, though thermal fluctuations seem to break it. This question is closely related

to the question of why Ling’s cell is stable at relatively high temperatures. We shall try to

answer with help of our generalized thermodynamics (Prokhorenko and Matveev, 2011).

So, let H be a Hilbert space of our system, Ĥ is a Hamiltonian of our system, and E0

is the lowest number belonging to spectrum, and Ê0 is a spectral projection of Ĥ onto the

eigensubspace Ĥ corresponding to the eigenvalue E0.

In classical terms, at T = 0 atoms composing the system have an arrangement which

meets the condition of minimum potential energy. This means the body solidifies at T = 0.

As we suppose, at that moment atoms are situated in points of a crystal lattice. But

according to the accepted approach this lattices are not invariant under infinitesimal rotation,

i.e. the system state obtained from the initial one by an infinitesimal rotation does not align

with the initial one. This results degeneracy of E0, i.e. trÊ0 > 1.

Now let’s complete {Ĥ} to obtain the complete set of (commuting) observed values by

self-adjoint operators K̂1, K̂2, .... Here we use Dirac terminology (Dirac, 1958).

Completeness of the system of observables Ĥ, K̂1, K̂2, ... means that their joint spectrum

is simple (non-degenerated). Let P1, P2, ... be orthogonal projectors in H projecting to the

subspaces of subspace ImÊ0 (i.e. PiÊ0 = Ê0Pi = Pi) and are projections to their own

subspaces of operators family Ĥ, K̂1, K̂2, .... All P1, P2, ... are clearly one-dimensional due to

completeness of operators family Ĥ, K̂1, K̂2, .... The generalized microcanonical distribution

(Prokhorenko and Matveev, 2011) describing our system, can be taken, for example, in the

following form:

ρ = Pf , (8)

for any f .

Observed values of the integrals Ki, i = 1, 2, ... in the state ρ are given by the following

formula:

K ′
i = tr(ρKi). (9)
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Let SO(3) be a group of self-rotations in Euclidean three-dimensional space, o is an arbitrary

element of this group, ô is a unitary representation of o in the state space H of our system.

When subjected to transformation o ∈ SO(3) the state ρ comes to ôρô+). Let’s show that,

if necessary, replacing the complete set Ĥ, K̂1, K̂2, ... of observables by another complete set

Ĥ, L̂1, L̂2, ... allows us to choose f from (8) so that for some o ∈ SO(3) and for some integer

i

tr(ρKi) 6= tr(ôρô+Ki). (10)

If the stated conclusion is false, then ∀i, j = 1, 2..., ∀o ∈ SO(3) , we have

tr(ôPiô
+Pj) = tr(PiPj) = δij . (11)

But the latest means that ∀i = 1, 2, ...

ôPiô
+ = Pi. (12)

Let fi be a unitary vector stretching the image Pi. It follows from (12) that ∀i = 1, 2...

ôfi = exp(iϕi(o))fi (13)

for some functions ϕi(o) on SO(3). The last conclusion is true for any complete set of ob-

servables Ĥ, K̂1, K̂2, .... In particular it is clear that in (13) we can choose arbitrary the

orthonormal basis {fi} in ImÊ0. Thus ∀o ∈ SO(3), the restriction of ô on ImÊ0 should be

diagonal in any orthonormal basis, therefore, the restriction of ô on ImÊ0 must be propor-

tional to identical operator. But SO(3) has no one-dimensional representations except the

trivial one. Therefore, ∀o ∈ SO(3) ô = 1. Thus, any ground state of our system under each

rotation should come to itself; but it is false as we seen above. The statement is established.

So, the generalized microcanonical distribution Pf have the property that some rotation

of a system causes the change of integral Ki averaged over this state for some f , i = 1, 2, ....

Now, if we give a sufficiently small non-zero temperature to our system, then (as it follows

from the principle of physical continuity) for this temperature there exists a (generalized)

equilibrium state described by a generalized microcanonical distribution ρ, such that after

some system rotation the corresponding observable value of integral Ki must change for some

i = 1, 2.... But the system entropy does not change under the rotation of the system. This

means that for a fixed energy (corresponding to enough small temperatures) the system
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entropy has a plateau of d > 0 dimensions that provides the stability of our generalized

microcanonical distributions, as it was discussed in our previous work (Prokhorenko and

Matveev, 2011).

In addition, let’s remark that instead of speaking about the completeness of the sys-

tem of observables Ĥ, K̂1, K̂2, ..., we should speak about the macroscopical completeness

of this system. We say that the system of macroscopical observables quantities Ô1, Ô2, ...

is macroscopically complete if any macroscopical quantity (which clearly commutates with

Ô1, Ô2, ... because all macroscopical quantities are simultaneously measurable) is a function

of observables quantities Ô1, Ô2, ....

Thus, for enough small temperatures the system have stable stationary states which are

described by generalized microcanonical distributions which are not reduced to the common

microcanonical distribution. We identify the crystal states of the matter exactly with such

states, and the stability of the crystal state could be explained by just proven stability of

the corresponding microcanonical distribution.

3 Van der Waals Model of Protoplasm

The general description of this model is presented in the introduction. Within the framework

of this model and basing on our generalized thermodynamics, we give numerical estimates

for some changes proceeding in a cell while it excites or becomes damaged: the amount of

emitted heat by the cell and amount of released potassium ions from the cell to environment

(according to Ling, potassium ions in the resting state are bounded by proteins).

Let’s consider two extreme protoplasm states: resting state and ”dead” protoplasm.

First, let’s discuss how does the dead protoplasm appear in the context of our model.

In the dead protoplasm protein molecules are in the folded state Prokhorenko and

Matveev, 2011), and we suppose they are homogeneous balls of radius r0 and dielectric

permittivity ε′. The dielectric permittivity of the other matter in the cell is denoted by ε.

Assume that M is a mass of a protein molecule. Since a protein molecule contains a lot of

atoms, M is a very large quantity.

Let’s write out the equation of motion which describes the motion of protein molecules.

We suppose that the cell is described by classical mechanics, however further obtained results
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clearly imply that the answer for the quantum case is the same. The motion of protein

molecules may be considered as classical motion because of a high value of M . Let’s denote

x = (p, q) are coordinates and momenta of all protein molecules. Put by definition that

y = (p′, q′) are coordinates and momenta of all other protoplasm components. Let H(x, y)

be the Hamiltonian of the whole protoplasm. Then Hamilton’s differential equations on x

take the following form:

ṗ = −∂H(x, y)

∂q
,

q̇ =
∂H(x, y)

∂p
. (14)

However, since the cell is dead, its distribution function is a Gibbs distribution function.

In particular, the conditional probability density that variable x takes value x′ provided

variable y takes value y′ is given by:

w(x′|y′) = 1

Z1(x′)
e−

H(x′,y′)
T , (15)

where T is a system temperature and

Z1(y
′) :=

∫

dxe−
H(x,y′)

T . (16)

Since protein molecules move slowly and their mass M is very large (thousands of D), in

(14) we can replace right parts by their averages over distribution w(y|x). Omitting rather

trivial calculations, we find that the averaged system (14) is a Hamiltonian one too and the

corresponding Hamiltonian is a free energy of the system. More specifically, the averaged

system (14) is given by:

ṗ = −∂F (x|T )
∂q

,

q̇ =
∂F (x|T )

∂p
, (17)

where

F (x|T ) := −T ln

∫

dye−
H(x,y)

T . (18)

This is a standard adiabatic limit.

Note two more properties.
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1. If our whole system (protoplasm) is described by a Gibbs distribution:

w(x, y) =
1

Z
e−

H(x,y)
T , (19)

then, the distribution of probability that protein molecules are situated in the given point of

phase space can be achieved by integrating (19) by dy. The distribution of probability w(x)

to find protein molecules in the given point of the configuration space is:

w(x) = conste−
F (x|T )

T . (20)

That is, again we received the Gibbs distribution in which the Hamiltonian is the effective

Hamiltonian for protein molecules we received above.

2. By using a standard formula we can calculate the free energy of protein system F ′(T )

for Hamiltonian F (x|T ). Elementary calculations give:

F ′(T ) = F (T ) := −T ln

∫

dxdye−
H(x,y)

T , (21)

i.e. F ′(T ) equals to the free energy of the whole system F (T ).

Now let’s define the form of our effective Hamiltonian F (x|T ) as a function of coordinates

and momentas of protein molecules. We suppose the contribution to F (x|T ) nontrivially

dependent on x is caused by Van der Waals interaction between protein molecules and

therefore F (x|T ) is given by:

F (x|T ) = Ekin(p) + F0(T ) +
∑

i>j

V (qi − qj |T ), (22)

where Ekin(p) is a kinetic energy of protein molecules as material points, F0(T ) is a function

of temperature and qi pi, i = 1, 2, 3, ... are Cartesian coordinates of protein molecules and

canonically conjugated momenta. V (x|T )— is a pair interaction potential of the following

form:

V (q|T ) = +∞ if |q| < 2r0,

V (q|T ) = −C

r6
, if |q| ≥ 2r0, (23)

where C is some positive constant. The explicit formula expressing C in terms of ε, ε′, r0 can

be retrieved, for example, from (Lifshitz and Pitaevsky, 1978). Now, we find thermodynamic

variables for the case just described. The solution of this problem providing that

min2r0<r |V (r|T )|
T

≪ 1 (24)
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is stated in many textbooks, for example (Landau, Lifshitz, 1995). However, in real cells (for

example, erythrocyte) this condition is not fulfilled; this is a subject of a special analysis in

the next section. For simplicity here we suppose that condition (24) is fulfilled.

In the case of the living cell, as we shall see later, the free energy of a cell is given by

expression:

F (V, T )l = F0(V, T ) + Fid(V, T ), (25)

where F0(V, T ) is a free water energy where all the proteins are eliminated and Fid is free

protein energy calculated as if it was an ideal gas. For the dead protoplasm

F (V, T )l = F0(V, T ) + Fid(V, T ) + ∆F (V, T ), (26)

where

∆F (V, T ) = −T ln[

∫

V

...

∫

V

d3q1
V

....
d3qN
V

e
− 1

T

∑

1≤i<j≤N

V (qi−qj |T )

]. (27)

Note that when we use formulas (25), (26), (27), we neglect the conformational part of the

free energy. There is one more omitted contribution to the free energy, which is caused by

possibility of protein molecules rotation as a unit. However, these contributions for fully

unfolded and folded protein conformation differ only by the value of const T and therefore,

as it will be clear from the following, omitting of those contributions does not influence the

final results.

For the case when (24) is fulfilled and a gas is so much rarefied that we can take into

account only pair collisions, the calculations of integral (27) are made in many textbooks (for

example, see (Landau and Lifshitz, 1995). But to find ∆F (V, T ) in the real case we should

derive an expression for ∆F (V, T ) when condition (24) is fulfilled and only pair collisions

are taken into account. Therefore, we give here derivation for ∆F (V, T ) (condition (24) is

fulfilled). Put by definition (U(q|T ) :=
∑

1≤i<j≤N

V (qi − qj |T )). Then

∆F (V, T ) = −T ln[

∫

V

...

∫

V

d3q1
V

....
d3qN
V

{e−
U(q|T )

T − 1}+ 1] (28)

If we take into account only pair collisions and suppose them rare, then the whole config-

uration space of the system C = R
3 × ... × R

3 should be divided into subareas with equal

13



volume Ci,j, 1 ≤ i < j ≤ N such that in each of them collisions of i-th and j-th particles

happens. But in Ci,j U(q|T ) = V (qi − qj |T ) So:

∆F (V, T ) = −T ln[
∑

1≤i<j≤N

∫

Ci,j

d3q1
V

....
d3qN
V

{e−
V (qi−qj |T )

T − 1}+ 1]. (29)

But pairs (i, j) such, that 1 ≤ i < j ≤ N could be chosen by N(N−1)
2

≈ N2

2
ways. So, we have

∆F (V, T ) = −T ln[
N2

2V 2

∫

V

∫

V

d3q1d
3q2{e−

V (q1−q1|T )

T − 1}+ 1] =

−T ln[
N2

2V

∫

V

d3q{e−
V (q|T )

T − 1}+ 1] (30)

Expanding the logarithm in a Taylor series near 1, the final result is

∆F (V, T ) = −T N
2

2V

∫

V

d3q{e−
V (q|T )

T − 1}. (31)

In the area r := |q| < 2r0 {e−V (q|T )
T − 1} = −1 and in the area r > 2r0 {e−V (q|T )

T − 1} =

−V (q|T )
T

due to weakness of interaction. Put by definition:

b =
16πr30
3

,

a = 2π

+∞
∫

2r0

|V (r|q)|r2dr. (32)

Notice by the way that using our choice of potential

a =
πC

12r30
. (33)

With these notations we can rewrite F (V, T ) in the following way:

∆F (V, T ) = T
N2

V
(b− a

T
). (34)

So

Sd = S0 + Sid − b
N2

V
,

Ed = E0 + Eid −
N2a

V
, (35)
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where Sd and Ed are entropy and energy of the dead protoplasm respectively, S0 and E0 are

entropy and energy of the protoplasm where all the protein molecules are eliminated and Sid

and Eid are entropy and energy of the ideal gas of protein molecules.

That is a definition of the thermodynamic features of the dead protoplasm in our model.

Now, let’s consider the living protoplasm. Let’s divide the effective Hamiltonian of the

protein system obtained by the method of adiabatic limit into two summands:

H = Hv−d−W +H ′, (36)

Here Hv−d−W contains the kinetic energy of proteins as material points and energy of the Van

der Waals interaction between them. The Hamiltonian H ′ depends on variables describing

internal degrees of freedom of proteins. We suppose that in a certain sense H ′ ≪ Hk,

where Hk is the kinetic energy of all protein molecules. Next, according to our common

view (Prokhorenko and Matveev, 2011), in the living protoplasm some first integrals in the

involution K1, ..., Kn are active and a statistical weight of protein molecules is given by:

W (E) =

∫ N
∏

i=1

dpidqi

n
∏

j=1

δ(Kj −K ′
j)δ(Hv−d−V +H ′ − E), (37)

where pi, qi are momenta and coordinates of i-th protein.

Let’s try to define the form of integrals Ki. According to Ling, intracellular water in the

resting living protoplasm is in the bound state and protein molecules form a paracrystals.

Since we suppose the living state differs from non-living by activity of integrals Ki, then

it’s reasonable to assume that fixation of protein molecules in points of lattice is performed

by means of multiplier
n
∏

j=1

δ(Kj − K ′
j) in the integral of the statistical weight definition.

Therefore, we just suppose that

n
∏

j=1

δ(Kj −K ′
j) =

N
∏

i=1

δ(qi − q′i), (38)

where qi are coordinates of i-th point of protein molecules lattice. But on the support

of
N
∏

i=1

δ(qi − q′i) the potential energy of protein interaction
∑

i>j

V (xi − xj|T ) is a constant.

Furthermore, we can suppose that on the support
N
∏

i=1

δ(qi − q′i) the potential energy of

proteins
∑

i>j

V (qi − qj |T ) = 0. Indeed, if proteins are situated in points of the lattice we

mentioned above, then

∑

i>j

V (qi − qj |T ) ∼
N

r6
, (39)
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where r is a minimal distance between proteins. But r ∼ ( V
N
)1/3. Therefore:

∑

i>j

V (qi − qj |T ) ∼ N(
N

V
)2. (40)

Further we show that if the potential energy of protein molecules interaction is neglected,

then, when the cell is dying, the quantity of emitted heat and the number of potassium ions

released from the cell, calculated for one protein molecule, is a linear polynomial in N
V

with

an accuracy up to logarithmic factors. So, as follows from (40), in (37) in the limit of low

density the potential energy of protein interaction in Hv−d−W can be neglected just kinetic

energy Hk. Eventually, for the statistical weight:

W (E) =

∫ N
∏

i=1

dpidqi

N
∏

j=1

δ(qj − q′j)δ(Hk +H ′ −E). (41)

Since H ′ ≪ Hk we can write over this expression in the following way:

W (E) =

∫ N
∏

i=1

dpidqi

N
∏

j=1

δ(qj − q′j)δ(
N
∑

i=1

p2i
2M

− E). (42)

Consequently with an accuracy of inessential multiplier, the statistical weight W equals to

the statistical weight for the ideal gas. Therefore, in our model thermodynamic variables for

the living protoplasm take the form of:

El = E0 + Eid,

Sl = S0 + Sid. (43)

Here El and Sl are entropy and energy of the living protoplasm. Obviously Ed < El, i.e.

our model predicts that activation and death of the protoplasm is an exothermal reactions.

Numerical evaluations are given in the next section. So, we have the following amount for

the quantity of released heat:

Q =
N2a

V
. (44)

The ability of variables qi or closed to them play the role of motion integrals in our model

is appeared from the following additional conclusions. Let’s denote by Ekin a kinetic energy

of one protein molecule. Obviously

|q̇i| ≤
√

2Ekin

M
∼

√

T

M
. (45)
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Therefore, in the limit M → ∞ (very large mass of protein) q̇i = 0 and qi are motion

integrals.

Now we define the number of potassium ions releasing from the dying cell. In our previous

work (Prokhorenko and Matveev, 2011) the following formula was obtained. Let’s suggest

that the number of first integrals in the involution is so large that the number of active

integrals can be characterized by continuous parameter s ∈ [0, 1]. In addition, the number

of active first integrals is increasing function of s and a case of s = 0 corresponds to the

case when none of integrals is active, and case of s = 1 corresponds to the case when all

the first integrals are active. Supposes s infinitesimally varies s 7→ s′ = s − δs, δs > 0,

where s is infinitely small. Now, let’s define the function of entropy (δf)(S) by the condition

(δf)(S) = (δS)E, ( s 7→ s′ = s − δs). This definition is correct due to a proven assertion

(Prokhorenko and Matveev, 2011) that (δS)E ( s 7→ s′ = s− δs, δs > 0) is a constant along

any adiabatic process. So, let s 7→ s′ = s − δs, δs > 0, δs, is infinitely small. As it was

shown in (Prokhorenko and Matveev, 2011), the increasing of number of potassium ions in

the cell δN can be found using the following formula:

δN = T (δf)′(S)(
∂S

∂µ
)T , (46)

where µ is a chemical potential of potassium ions in the cell.

First, let’s define (∂S
∂µ
)T . Suppose by definition F̃0(V, T ) is the free energy of the proto-

plasm where potassium ions absent.

Suppose by definition F̃0(V, T ) is the free energy of the ideal gas at temperature T while

its mass equals to the mass of potassium ion M and the gas contains only one molecule. It

is known (Landau and Lifshitz, 1995) that

φ(V, T ) = −T ln[V (
MT

2π~2
)
3
2 ]. (47)

Suppose by definition ψ(V, T ) is potassium solvability in the protoplasm, i.e. change of the

free protoplasm energy during transition of one potassium ion from the infinity to the given

point. Then the change of the free protoplasm energy after adding one potassium ion to this

protoplasm is just a sum of ϕ(T, V ) and ψ(V, T ). So, the free energy of all the protoplasm is

F̃0(V, T ) 7→ F̃ (V, T ) = F̃0(V, T ) + ϕ(T, V ) + ψ(V, T ). (48)

If there are N potassium ions inserted to the protoplasm, but N is still very small, then an

17



interaction between different potassium ions can be neglected and we have:

F̃0(V, T ) 7→ F̃ (V, T ) = F̃0(V, T ) +Nϕ(T, V ) +Nψ(V, T ) +NT ln(
N

e
). (49)

The last summand arises because of a common combinatorial multiplier 1
N !

included to

definition of the partition function of potassium ions.

We neglect the solvability of potassium ions in our calculations, in other words we accept

ψ(V, T ) = 0.

Put by definition

A(V, T ) := V (
MT

2π~2
)
3
2 . (50)

Eventually, after introduction of N potassium ions into the protoplasm, the free proto-

plasm energy changes as follows:

F̃0(V, T ) 7→ F̃ (V, T ) = F̃0(V, T ) +Nψ(T, V ) +NT ln(
N

eA(V, T )
). (51)

Notice that the quantity N
A(V,T )

≪ 1 since by order of magnitude this value is a density of

particles in phase-space cells of constant-energy surface and thus it is very small, because

the gas of potassium ions, as we admitted, is strongly rarefied (particularly, this allows us

to use formulas of the classic statistical mechanics).

Potassium adsorption is taken into account in the solvability ψ(V, T ). We supposed that

this solvability equals to zero but this assumption is not quite right. After cell death the

chemical potential of potassium ions, obtained by differentiating the free energy over with

number of potassium ions, remains constant. Since while the cell is dying, it issues ≈ 0.98

of the total amount of potassium ions, solvability ψ(V, T ) increases by T ln 50. Though this

section contains exact equalities, actually this equalities are approximate because we neglect

a unity compared to ln( N
eA(V,T )

) and change of ψ(V, T ) by value of T ln 50. However, the

following analysis establishes that contribution of those omitted summands is inessential.

When N potassium ions are inserted into the protoplasm,the entropy changes as follows:

S̃0(V, T ) 7→ S̃(V, T ) = S̃0(V, T )−N ln(
N

eA(V, T )
). (52)

We have

(
∂S̃

∂µ
)T =

( ∂S
∂N

)T

( ∂µ
∂N

)T
. (53)
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Further:

(
∂S̃

∂N
)T = − ln(

N

eA(V, T )
). (54)

And:

µ = (
∂F̃ (V, T,N)

∂N
)T = T ln(

N

eA(V, T )
). (55)

Therefore:

(
∂µ

∂N
)T =

T

N
. (56)

Eventually:

(
∂S̃

∂µ
)T =

N

T
ln[
eA(V, T )

N
], (57)

and

δN = N(δf)′(S) ln[
eA(V, T )

N
]. (58)

4 Van der Waals Model of Protoplasm. Numerical

Evaluations 1. Potassium Ions Efflux from the Cell

and Heat Release

This section is concerned with getting numerical evaluations basing on the Van der Waals

model (see above) and comparing them with experimental data. To specify model parameters

(cell size, quantity of proteins and ions in the cell) we chose a human erythrocyte, the well-

studied cell having a relatively simple structure-function organization.

It’s known that potassium ions density in the living erythrocyte is estimated as n =

6.02×1019cm−3. Let’s assume that when an erythrocyte is dying the potassium concentration

in this erythrocyte becomes equal to the potassium concentration in the blood plasma,

2 − 4mmol/l, i.e. about 0.96 − 0.98 of potassium ions, which the living cell contained,

release from the erythrocyte.

We consider the cell at a temperature of 300K. A potassium nucleus contains 19 protons

and 20 neutrons, therefore, the mass of potassium ions can be estimated as 39mn where mn

is the mass of neutron.
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In the previous section the formula was derived describing the change of a number of

potassium ions in the cell when the infinitesimal change of a number of active integrals

s 7→ s′ = s− δs, δs is infinitely small. Let’s write it one more time:

δN = N(δf)′(S) ln[
eA(V, T )

N
]. (59)

The last formula (58) can be interpreted as a differential equation on N . Being integrated

this equation expresses of potassium efflux from the dying cell through other cell parameters.

First, let’s find (δf)′(S). We have:

δf(S) = (δS)E = (δS)T − (δE)T (
∂S

∂E
)T . (60)

But

(
∂S

∂E
)N =

1

T
(61)

Therefore

δf(S) = (δS)E − 1

T
(δE)T . (62)

Using the fact that (see Prokhorenko and Matveev, 2011)

∂(δS)T
∂(δE)T

=
1

T
, (63)

we find

dδf(S(T ))

dT
=

1

T 2
(δE)T . (64)

And finally

(δf)′(S) =
1

T 2
(δE)T

∂T

∂S
=

1

CV T
(δE)T , (65)

where CV is the heat capacity of the cell at the constant volume. Now, we assume the heat

capacities of living and dead cells are almost the same, and in all following formulas the heat

capacity of a cell can be replaced by an average value CV which does not depend on the

number of active first integrals in the involution. Eventually, we have

δN

N
= − 1

TCV

(δE)T ln[
N

eA(V, T )
]. (66)
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For convenience of further calculations let’s introduce a new variable

Λ :=
N

eA(V, T )
. (67)

Then we have:

δ ln Λ = − 1

TCV
(ln Λ)(δE)T . (68)

As before, we use lower indexes l and d to denote variables relating to the living and

dead cell respectively. Equation (68) is easy to integrate resulting:

ln Λd

ln Λl

= exp(
Q

CV T
), (69)

where Q is a heat amount released from the cell while it is dying.

The last formula gives an implicit expression for heat generation Q and its derivation was

based just on common thermodynamic considerations without regard to properties of any

certain model. Therefore, it can be used for verification of our generalized thermodynamics.

However, note that (69) is inconvenient for calculations, so, let’s simplify it using small-

ness of Λl. For this purpose let’s consider the expression ln x, where x is a very small positive

number. Then ln x value is very large in modulus and has a sign minus. Let’s increase x

by factor of k where k is not too large natural number lnx 7→ ln x + ln k i.e. practically

unalters. We have:

lnΛd

ln Λl
= | lnΛd

ln Λl
| = exp{

| lnΛd|
∫

| ln Λl|

dx

x
}. (70)

According to the newly stated remark, on the whole integrating interval we can replace x

by | lnΛl| and eventually we obtain:

ln Λd

ln Λl
= {Λl

Λd
}

1
| ln Λl| . (71)

Eventually, we receive the following implicit expression for heat generation:

Nl

Nd
= exp{| lnΛl|

Q

CV T
}. (72)

Data listed in this section are enough to calculate | lnΛl|. Omitting corresponding numerical

calculations, we present the result: | lnΛl| ≈ 16.1. The resulting formula for heat generation

is:

Nl

Nd
= exp{16.1Q

CV T
}. (73)
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From here it is easy to find Q
CV T

. Nl

Nd
≈ 50. ln 50 = 3.93. By taking a logarithm of both parts

we find:

Q

CV T
≈ 0.24. (74)

To check this heat generation value we can carry the following qualitative reasoning. Let’s

consider a human cell at temperature Th = 37C = 310K or 370C. The room temperature

(normal for a man’s functioning) Tr = 20C = 293K. According to Ling’s theory, the cell

life activity is expressed as the cycle motion ”resting↔exciting”. If the cell was always in

thermodynamic equilibrium with the thermostat, then, at transition ”resting↔exciting”, the

Q heat would released. Let’s accept that in the resting state a cell has a room temperature.

Let a be a digit making Q = αCV T . If the cell is heat sealed, then in transition from the

resting state to the excited state the temperature of the cell rises from Tr to Te and it is

likely to be correct that there is an approximate correlation (Te − Tr)/Th = α. Now, as the

cell moves through time cyclically, we have a mean temperature for time Th. It is reasonable

to suggest that Th = (Te+Tr)/2, or in other words Te−Tr = 2(Th−Tr). But Th−Tr = 17K.

Therefore Te − Tr = 34K and α = (Te − Tr)/Th = 34/310 = 0.11, which coincides with our

result in the order of magnitude. The fact that the calculation for heat emission of the dying

erythrocyte using data on potassium efflux from the cell appears approximately 2.5 times

higher than just stated value is reasonable because the exciting can be considered as a stage

towards death (Matveev, 2005).

The assumption we stated that the erythrocyte temperature at rest equals to the room

one Troom can be explained in the following way. Since the erythrocyte moves through time

cyclically: resting↔exciting, then the erythrocyte can be considered as a heat engine, and

room temperature is a temperature of a cooler of this engine. As the room temperature is the

most comfortable for a man, we may consider that the erythrocyte at the room temperature,

as at the cooler temperature, operates in the most optimum mode. The resting temperature

Tr is the lowest temperature achieved by the erythrocyte during all the resting ↔ exciting

cycle. If Tr > Troom is correct, then heat transfer from the erythrocyte to the cooler will

beat tended by heat transfer from a warmer body to a colder one, i.e. entropy increase. This

means the erythrocyte as a heat engine would operate not optimally. Conversely suppose

that Tr < Troom. If the erythrocyte is functioning in the optimum mode (without entropy

increase), then the erythrocyte have to pass the part of the cycle when the erythrocyte

22



temperature T < Tr being surrounded by an adiabatic ”cover”. It becomes incomprehensible

why does the erythrocyte need this part of the cycle and also, according to Carnot’s theorem

on the efficiency of heat engines, erythrocyte efficiency could be raised by means of the cooler

temperature (room temperature) decreasing.

Now let’s try to calculate Q basing on our investigated (Van der Waals) model. For this

purpose we should find an interaction constant C in the law V (r) = C
r6
. To do this, we

proceed from the formula taken from (Lifshitz and Pitaevsky, 1978). Suppose there are two

parallel non-overlapping semi-spaces and a distance between them is l. Let ε be a dielectric

permittivity of the semi-spaces and ε′ is a dielectric permittivity of the cavity between them.

Suppose l is such a large that if ω is a frequency of the electromagnetic wave distributed in

the cavity between semi-spaces and having wavelength l, then ~ω ≪ T . That is obviously

our case. Then, the force of attraction between two semi-spaces as per unit area of the

border space of each semi-space is equal to:

P =
T

16π2l3

+∞
∫

0

x2[{ε+ ε′

ε− ε′
}2ex − 1]−1dx. (75)

Now, suppose that the semi-spaces consist of folded hemoglobin molecules and the cavity

between them is filled with water. The dielectric permittivity of the water ε = 81 and the

dielectric permittivity of the hemoglobin ε′ ≈ 2. Therefore, the factor { ε+ε′

ε−ε′
}2 ≈ 1 and the

force of attraction between two semi-spaces as per unit area of the border space of each of

them is equal to

P =
T

16πl3

+∞
∫

0

x2[ex − 1]−1dx. (76)

The involved integral can be easily calculated with any desired degree of precision, for ex-

ample:

+∞
∫

0

x2[ex − 1]−1dx =

+∞
∫

0

x2e−x[1− e−x]−1dx =

=

+∞
∫

0

x2[e−x + e−2x + e−3x + .....]dx =

= 2[1 +
1

23
+

1

33
+ ....] = 2[1 + 1/8 + 1/27 + 1/64 + ...] ≈ 2.35. (77)
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Therefore, we come to the following formula for the force of attraction between the semi-

spaces:

P =
2.35T

16πl3
. (78)

Let V1H be a volume of one hemoglobin molecule. Now, we can calculate a potential energy

U(l) per unit of the surface plane using a formula for attraction potential of two hemoglobin

molecules (23) in the following way:

U(l) = − C

V 2
1H

2π

+∞
∫

0

rdr

+∞
∫

0

dx

+∞
∫

0

dy
1

(x+ y + l)2 + r2)3
. (79)

Omitting rather trivial integrating we find

U(l) = − πC

12V 2
1H

× 1

l2
. (80)

Differentiating the last expression with respect to l we find:

P =
πC

6V 2
1H

× 1

l3
(81)

Comparing the last formula with (78) gives the following result:

C = V 2
1H

7.05T

8π2
. (82)

It follows

a = V1HT × 7.05

72
= 9.79× 10−2V1HT (83)

Note that everywhere above we measured the temperature T in energy units. Let T ′

be an absolute temperature expressed in Kelvin degrees. There is a relation T = kBT
′

where kB = 1.38 × 10−16ergK−1. Hereafter Qv means the heat released from a cell within

the framework of the Van der Waals model. We want to estimate Qv

CT
. Then, for heat

generation:

Ov = 1.35× 10−17N2(
VH
V

)(
V1H
VH

)erg ×K−1T ′ (84)

where VH is the volume of all hemoglobin contained in the dead erythrocyte.

We need to know the cell volume V , volume of all hemoglobin VH contained in the

dead cell, mass of all the hemoglobin MH , specific heat capacity of hemoglobin per unit
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mass CM . Calculating this data we find V = 10−10cm3 (Levine et al., 2001). CM = 3.2 ×
107erg g−1K−1 (Kholodny et al., 1987). Further it’s known that hemoglobin concentration

CH = 5mmol × L−1, CH = 5× 10−6mol × cm−3 (Van Beekvelt et al., 2001). The volume of

”dead” hemoglobin is VH = 32.6 × 103cm3/mol (Arosio et al., 2002). N = 3.02 × 108 (Van

Beekvelt et al., 2001). Therefore,

VH
V

= 0.163 (85)

But hemoglobin concentration in the human erythrocyte is 0.33g/cm3 (Van Beekvelt et

al., 2001) and its density in the dead cell (in the supercluster) is approximately two times

greater than the water density (Van Beekvelt et al., 2001; Arosio et al., 2002). It follows

the mass of the erythrocyte MC = 1.16 × 10−10g. The heat capacity CV is CV = MCCM =

3.71× 10−3 erg K−1.

Let’s calculate N2 VH

V
. Taking into account that N2 = 9.12× 1016, we find

N2VH
V

= 1.49× 1016. (86)

Eventually

Qv

CV T
= 54

V1H
VH

(87)

Here we see that if we take a true value ≈ 3.3 × 10−9 for V1H

VH
, then the resulting value for

Qv

CV T
is many times smaller than Qv

CV T
= 0.24 we found before.

This fact has the following explanation. Our derivation of corrections to the free energy

was correct only upon the following condition:

min2r0<r |V (r|T )|
T

≪ 1 (88)

Let’s calculate the value in the right part of this inequality. Suppose two protein molecules

are situated so that a distance between their centers is slightly more than 2r0. Then, the

potential energy between them is U = −C 1
(2r0)6

. We have shown above that C = V 2
1HT

7.05
8π2 .

Here, after elementary calculations, we find

U

T
=

7.05

288
≈ 2.5× 10−2, (89)

i.e. our criterion is really fulfilled. However, when two protein molecules come to each other

such close that 2π~ c
l
≈ 1, the forces whose contribution we did not take into consideration
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before begin to play a significant role. We mean Casimir forces caused by the energy of

zero-point oscillations of the electromagnetic field in the space between proteins, and which

significantly exceed forces we took into consideration before. These forces can be interpreted

as chemical ones. As a result, considering these new forces, it is reasonable to expect that in

the real dead protoplasm the protein molecules stick together to balls or superclusters, and

we should consider this effect in derivation of ∆F̃ (V, T ). The following section generalizes

the derivation of corrections to the free energy in case of possible clustering, and it becomes

clear that if VKH denotes the volume of such a cluster and Qv is a heat generation of the Van

der Waals model, and Qkv is a heat generation for the same model (considering the possible

clustering), then

Qkv = Qv
VKH

V1H
. (90)

As a result, we have

Qkv

CV T
= 54

VKH

VH
(91)

If this new formula considering collective phenomena is correct, then we shall find that

the dead protoplasm should contain ≈ 225 superclusters or aggregates, the properties of

which we cannot characterize yet because the conclusion about the number of clusters is a

result of a rather common theoretical analysis. On the other hand, the protein aggregation

in case of the cell death is a well-known phenomenon.

5 Van der Waals Model of Protoplasm. Numerical

Evaluations 2. Clustering of Protein Molecules

In this section we estimate a correction to the free protein energy ∆F with respect to their

clustering. The correction ∆F (V, T,N) is

∆F = −T ln

∫

d3q1
V

...
d3qN
V

e−
U(q)
T . (92)

Here q1,...,qN are Cartesian coordinates of all molecules having numbers 1, ..., N and

symbol q means coordinates of all molecules: q := (q1, ..., qN). U(q) is given by

U(q) = Uu(q) + Us(q). (93)
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Here Uu is a potential energy of the Van der Waals attraction between particles:

Uu(q) =
∑

1≤i<j≤N

Vu(qi − qj),

(94)

where

Vu(q) = −C 1

|q|6 . (95)

Hereafter C value is considered as a small parameter used to make any asymptotical expan-

sions.

Us(q) = U1
s (q) + U2

s (q), (96)

where U1
s (q) is a potential energy of repulsion between protein molecules, arising due to their

volume is low bounded. For example:

U1
s (q) =

∑

1≤i<j≤N

V 1
s (qi − qj),

V 1
s (q) = 0, if|q| > 2r0,

V 1
s (q) = +∞ if|q| ≤ 2r0, (97)

r0 is a radius of the protein molecule. U2
s is a potential energy of Casimir forces, arising in

very closed distances between protein molecules due to zero-point oscillations of the electro-

magnetic field in the gap between separate proteins. These forces are short-ranged but they

have a high degree of cooperativity which contributes to clusters formation.

Potentials Us, U
1
s , U

2
s we sometimes call superpotential, and forces corresponding to

them, superforces, as U1
s , U

2
s are much greater than Uu(q) and the effective consideration

of Us in the Gibbs exponent comes down to the fact that the whole configuration space of

molecules is replaced by its part.

Let’s represent ∆F in the following form

∆F = ∆F0 +∆F1 + ..., (98)

where ∆F0 is a zero-order value of vanishing on C, ∆F1 is a value of the first order of

vanishing on C and so on.

Let’s begin from the definition of ∆F0, in other words, put C = 0 and U(q) = Us(q).
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Due to presence in Us all the molecules stick together to clusters (balls B) ofNB molecules

in each. Let Nk be a number of such balls (clusters). Obviously N = NBNk.

By definition all the clusters identical and there are

1

Nk!

N !

(NB!)Nk
(99)

of equivalent ways to distribute molecules by clusters. Let’s fix one of these ways which we

will follow hereafter, where molecules having coordinates q1, ..., qNB
belong to the first cluster

B1, molecules having coordinates qNB+1, ...., q2NB
belong to the second cluster B2 and so on.

During F0 calculation we naturally neglected interaction between clusters, so:

∆F0 = −T ln
N !

Nk!
[
1

NB!

∫

d3q1
V

....
d3qNB

V
e−

UB(q1,...,qNB
)

T ]Nk , (100)

where by definition we set:

UB(q1, ..., qNB
) =

∑

1≤i<j≤NB

V 1
s (qi − qj) + U2

s (q1, ..., qNB
). (101)

We proceed from the assumption that the cluster is a ball and bonding forces between

molecules in the cluster are so strong that the cluster volume equals to a sum of volumes of

molecules it consists of (that why cluster density can exceed the water density).

Further, one of variables q1,....,qNB
is a center of inertia of cluster B. The choice of such

a variable can be performed in NB ways. Supposing the center of the cluster inertia is q1 we

find by integrating it:

∆F0 = −T ln
N !

Nk!
[

1

(NB − 1)!

∫

d3q2
V

....
d3qNB

V
e−

UB(0,...,qNB
)

T ]Nk , (102)

And the center of cluster B is 0.

Then,we assume every molecule in the cluster moves in an effective field W and

U2
s (0, ..., qNB

) = W (NB − 1). Instead of integral
∫

B×...×B

d3q2...d
3qNB

the presence of mul-

tiplier e−
U1
s (q1,...,qNB

)

T imposes the use of integral

′
∫

B×...×B

d3q2...d
3qNB

, (103)

where prime points at the incompressibility of molecules. Using N ! ≈ (N
e
)N we receive:

∆F0 = −T ln
1

Nk!
[

1

(NB − 1)!
(
N

e
)NB

′
∫

B×...×B

d3q2
V

....
d3qNB

V
e

−W (NB−1)

T ]Nk . (104)
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But integral
′
∫

B×...×B

d3q2....d
3qNB

is easy and equals to

′
∫

B×...×B

d3q2....d
3qNB

= (NB − 1)!(
VB
NB

)NB−1, (105)

where VB is the cluster volume and Vb :=
VB

NB
is the volume of one protein molecule. As a

result, we obtain:

∆F0 = −TNk lnNB[(
VB
Vk

)NB−1 1

eNB−1
e

−W (NB−1)

T ], (106)

where Vk :=
V
Nk

is the volume which falls on one cluster.

Now, let’s derive the equilibrium condition for the cluster B from which we essentially

can define the volume of this cluster. Let’s consider one equilibrium cluster in the volume

Vk. Now we are generally interesting in configuration part of the free energy since it splits

from the kinetic one.

Let’s add one more protein molecule to the volume Vk. Its free energy is

f1 = −T ln

∫

Vk

1

Vk
d3q = 0. (107)

If this protein falls to the cluster, then NB is increased by a unit, but since the cluster is

equilibrium ∆F0 should not change. In other words, the following equality should take place:

d∆F0

dNB
= 0. (108)

The equilibrium condition (108) is actually a common thermodynamic condition of equi-

librium if we suppose a number of protein molecules in a cell N to be a parameter which

has an influence on the system condition. But we can use this condition only if N is not

preserved, put it otherwise, is not a motion integral. But the fact that N is not a motion

integrals follows from the fact that in the living cell the quantity of protein molecules does

not remain invariant because of permanently proceeding processes of proteins synthesis and

degradation.

The equation (108) leads to the equality:

1

NB

+ ln(
VB
Vk

) + (NB − 1)
Vb
VB

− 1− W

T
= 0. (109)
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In other words:

VB
Vk

= e
W
T . (110)

Finally:

∆F0 = −TNk lnNB + T [N −Nk]. (111)

As the number of clusters is small (Nk ≪ N), then in square bracket of the second summand

Nk can be neglected as compared with N . Since NB conversely is very large, we can neglect

a logarithmic term as compared with TN . As a result, we find:

∆F0 = TN. (112)

This term just comes down to the additive renormalization of the entropy and therefore in

can be omitted.

Now, let’s calculate ∆F1(V, T,N). We have:

∆F1 = ∆F −∆F0 +O(C2). (113)

Let’s recall, that C is considered as as mall parameter. It won’t be a great mistake if

instead of ∆F0 we take ∆F0 calculated by N − 2 molecules in the same volume V at the

same temperature T . We have:

∆F1 = −T ln

∫

d3q1
V

....
d3qN
V

e
−U(q)+∆F0

T +O(C2)

= −T ln

∫

d3q1
V

....
d3qN
V

∏

1≤i<j≤N

[e−
Vu(qi−qj )

T − 1 + 1]e
−Us(q)+∆F0

T +O(C2)

= −T ln

∫

d3q1
V

....
d3qN
V

{1 +
∑

1≤i<j≤N

[e−
Vu(qi−qj )

T − 1]}e
−Us(q)+∆F0

T +O(C2)

= −T ln{1 +
∫

d3q1
V

....
d3qN
V

{
∑

1≤i<j≤N

[e−
Vu(qi−qj )

T − 1]e
−Us(q)+∆F0

T }+O(C2). (114)

Eventually, we obtain:

∆F1 = −T ln{1 + N2

2

∫

d3q1
V

....
d3qN
V

[e−
Vu(q1−q2)

T − 1]e
−Us(q)+∆F0

T }+O(C2). (115)

Since the number of clusters Nk is still sufficiently large, we neglect cases when q1 and q2 are

in the same cluster and suppose them lying in different clusters B1 and B2. Values q1 and
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q2 are simultaneous centers of the corresponding clusters with probability 1
N2

B

. Taking this

into account:

∆F1 = −T ln{1 + N2

2
N2

B

∫

d3q1
V

....
d3qN
V

[〈e−
Vu(q′1−q′2)

T 〉 − 1]e
−Us(q)+∆F0

T }+O(C2). (116)

Here variables q1 and q2 are already centers of inertia of clusters B1 and B2. Variables q
′
1, q

′
2

are equiprobably and independently distributed along clusters B1 and B2 and angle brackets

mean the averaging over positions q′1 and q′2.

Considering the meaning of ∆F0, the last equation can be rewritten in the following way:

∆F1 = −T ln{1 + N2

2V
N2

B

∫

|q|>2rB

d3q[〈e−
Vu(q′1−q′2)

T 〉 − 1]

×[
NNB−1

(NB − 1)!

∫

B×...×B

d3q2
V

....
d3qNB

V
e

−Us(0,...,q2)
T ]2}+O(C2) =

∆F1 = −T ln{1 + N2

2V
N2

B

∫

|q|>2rB

d3q[〈e−
Vu(q′1−q′2)

T 〉 − 1]

×[(
VB
Vk

)NB−1e
−W (NB−1)

T ]2}+O(C2), (117)

where rB is a radius of a cluster VB = 4π
3
r3B. But taking into account the clusters equilibrium

conditions we derived, the expression inside the last square bracket equals to 1. Eventually:

∆F1 = −T ln{1 + N2

2V
N2

B

∫

|q|>2rB

d3q[〈e−
Vu(q′1−q′2)

T 〉 − 1]}+O(C2)

= −T N
2

2V
N2

B

∫

|q|>2rB

d3q[〈e−
Vu(q′1−q′2)

T 〉 − 1] +O(C2). (118)

This formula assumes that cluster B1 has a center of inertia in zero, q is a coordinate of

center of inertia of cluster B2, q
′
1 and q

′
2 are variables which are uniformly and independently

distributed over cluster B1 and B2 respectively.

This formula particularly proves the rule (90) quoted in the end of the previous section.

Now, let’s define a part which ”dead” protein in the protoplasm occupies in the whole

cell volume. Suppose the cluster of dead protoplasm proteins is situated in the volume and

has an V ′ := V
Nk

equilibrium volume. If the cluster has the equilibrium size, then inserting

one protein molecule to it needs a zero work A, in other words, an average potential energy

of the protein molecule in the cluster equals to zero. But all the protein molecules are
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situated in the neutral external field outside the cluster and in the field W inside the cluster.

Let’s consider the chosen protein B, it has three degrees of freedom described by Cartesian

coordinates q1, q2, q3 and radius q4 (the protein can be compressed). The only thing we can

do is to take a positively defined quadratic form of coordinates q1, ..., q4 as a raw estimation

for the potential energy of protein inside the cluster V (q1, ..., q4):

V (q1, ..., q4) =W +
∑

i,j=1,...,4

(qi − qi0)Bi,j(q
j − qj0), (119)

where q10, ..., q
4
0 are equilibrium coordinates of the protein molecule. For kinetic energy of

the chosen protein B as a raw estimation too we take a positively defined form of velocities

q̇1, ..., q̇4:

Ekin =
∑

i,j=1,...,4

q̇iAi,j q̇
j (120)

Note, that protein molecule in the water does not behave as an oscillator along q4 because

a water is incompressible.

But in the case of classical mechanics the average potential energy of one-dimensional

oscillator equals to 1
2
T . Therefore, the condition A = 0 leads toW = −2T . This equilibrium

condition cluster lets us find:

VB
V ′ = e

W
T = e−2 ≈ 0.136, (121)

which is in a good agreement with true value VB

V ′ = 0.163 (see section 4).

6 Superfluid Bose Gas on Protein Configuration Space

as Model of Living Cell Protoplasm

In this section we discuss the second model of the living cell protoplasm, the superfluid Bose

gas on the protein configuration space. The common description of this model is given in

the introduction section. While investigating this model we’ll show that when the Ling’s

protoplasm dies, the folding of protein molecules occurs, how the Ling’s theory postulates

on the qualitative level (Ling, 2001).

The protoplasm is considered at zero temperature. This allows us to apply essential

tools of theoretical physics but conclusions made for such extreme conditions are useful for

understanding the properties of the real cell.
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Let’s proceed to conclude our ”superfluid” model. Suppose there are N protein molecules

in the protoplasm, xi, i = 1, ..., N are coordinates of their centers of inertia and σi are

parameters, passing some space X with measured dµ describing inner freedom degrees of the

protein molecule (its configuration). Then, the state of N protein molecules is described by

the wave function Ψ(x1, σ1, ..., xN , σN ) depending on coordinates xi, σi of protein molecules.

This wave function fulfills the normalizing condition:

∫

|Ψ(x1, σ1, ..., xN , σN)|2dx1, ..., dxndµ(σ1)...dµ(σN) = 1 (122)

and symmetry condition ∀P ∈ SN permutation of the set of N elements

(P̂Ψ)(x1, σ1, ..., xN , σN) := Ψ(xP (1), σP (1), ..., xP (N), σP (N)) = χ(P )Ψ(x1, σ1, ..., xN , σN),(123)

where χ(P ) ≡ 1 if protein molecules satisfy to the Bose — Einstein statistics, and

χ(P ) = sgn(P ) (signum of permutation) if protein molecules satisfy to the the Fermi —

Dirac statistics.

To describe this system, by using common considerations we’ll try to find its Hamiltonian

as per the adiabatic limit method (see the previous section). Suppose V (x1, σ1, ..., xN , σN)

is a change of the smallest eigenvalue of the protoplasm Hamiltonian while adding there N

protein molecules having coordinates x1, σ1, ..., xN , σN , and V̂ is an operator of multiplica-

tion of wave function of our system on V (x1, σ1, ..., xN , σN ). Then, obviously, the effective

Hamiltonian of our system is

Ĥeff =

N
∑

i=1

T̂i + V̂ , (124)

where T̂i is a kinetic energy operator of i-th protein as a material point:

T̂i = − 1

2M
∇2

i . (125)

To simplify our model let’s suppose V̂ describes only a pair interaction of protein molecules.

V̂ =
N
∑

i=1

V̂i +
∑

N≥i>j≥0

V̂i,j, (126)

where in Dirac notation

〈σ1, x1, ..., xn, σn|V̂i|x1, σ′
1, ..., xnσ

′
n〉 = U1(xi, σi|x′i, σ′

i) (127)
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for some function U1(x
′
i, σ

′
i|x′i, σ′

i) fulfilling obvious conditions arising from the Hermitian

nature of V̂i. Similarly

〈σ1, x1, ..., xn, σn|V̂i,j|x1, σ′
1, ..., xnσ

′
n〉 = U2(xi, σi, xj , σj|x′i, σ′

i, x
′
j , σ

′
j) (128)

for some function U2(xi, σi, xj , σj |x′i, σ′
i, x

′
j , σ

′
j) fulfilling evident conditions arising from the

Hermitian nature of V̂i,j.

We consider the protoplasm at the zero temperature (measured in the energy scale).

The following objection may arise against this acceptance: at zero temperature all the

metabolic process in cell are stopped and the cell dies (it is the way how the non-equilibrium

thermodynamics understands the life and the death). However, it is well-known that cells

(even embryos including human ones) come back to life after freezing in the liquid nitrogen

when there are no flows of matter or energy at all. Our approach differs: we consider the

living state as stationary and thermodynamically sustainable, but not the equilibrium one.

Precisely this state is ”freezing” and can keep its properties even at the absolute zero. That’s

why the frozen cell comes back to life when temperature conditions became normal again.

The thermodynamic identity of the resting state of the living and cells allows us to apply

the same analytical apparatus.

As the average kinetic energy of a heat motion of the protein molecule Ti at temperature

T is equal to kT , so at the zero temperature kinetic energy equals to zero. Therefore, we can

omit the term corresponding to kinetic energy from the Hamiltonian Heff . In other words,

when T = 0 we have the following expression for Heff :

Ĥeff =
N
∑

i=1

V̂i +
∑

N≥i>j≥0

V̂i,j. (129)

With regard to the protein molecules themselves, according to Ling’s model of the cell

(Ling, 2001), they are situated in points of a lattice and emerged into the volume of water

associated with these proteins (the water is as well structured and ordered), while i-th point

has coordinates xi. Ψ(x1, σ1, ..., xN , σN) has the following form:

Ψ(x1, σ1, ..., xN , σN) = C
∑

P∈SN

N
∏

i=1

δ(x′i − xP (i))A
P (σ1, ..., σN )χ(P ), (130)

where AP fulfills the following property arising from the property of Ψ(x1, σ1, ..., xN , σN) to

fulfill the Bose-Einstein or Fermi-Dirac statistics:

APQ−1

(σQ(1), ...., σQ(N)) = AP (σ1, ..., σN), (131)
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and a divergent constant C is chosen from the condition

C

∫

dx1, ..., dxN(

N
∏

i=1

δ(xi − x′i))
2 = 1. (132)

At T = 0 the whole protein system is in the ground state Ψ0(x1, σ1, ..., xN , σN ) which

can be defined based upon the requirement of minimality of the averaged Hamiltonian Heff

over all normalized states. In other words, in the state Ψ0 the averaged value 〈Ψ|Ĥeff |Ψ〉 of
the effective Hamiltonian reaches its minimum value

E0 = min
‖Ψ‖=1

〈Ψ|Ĥeff |Ψ〉. (133)

Taking into account the aforesaid, in searching the minimum value of 〈Ψ|Ĥeff |Ψ〉 we can

restrict ourselves to states of the form (130). Since for states of the form (130) the coordinates

of inertia centers of proteins are localized, we may say that V̂i acts only in L2(X, dµ) and V̂i,j

acts in L2(X2, dµ×dµ). Then, our variational problem comes down to finding the functional

minimum

∫

dµ(σ1)...dµ(σn)A
⋆(σ1, ..., σN ){(

N
∑

i=1

V̂i +
∑

N≥i>j≥0

V̂i,j)A}(σ1, ..., σN) (134)

upon the additional condition

∫

|A(σ1, ..., σn)|2dµ(σ1)...dµ(σN ) = 1. (135)

Let’s introduce a function V2(σ1, σ2|σ′
1, σ

′
2|x′i, x′j) with a formula

V2(σ1, σ2|σ′
1, σ

′
2|x′i, x′j) = U2(x

′
i, σ1, x

′
j, σ2|x′i, σ′

1, x
′
j, σ

′
2). (136)

Then, in obvious notations

〈σ1, ..., σN |V̂i,j|σ′
1, ...., σ

′
N〉 = V2(σi, σj |σ′

i, σ
′
j |xi, xj). (137)

Let P be any permutation from SN . Let’s define the operator V̂
P
i,j with the following formula

〈σ1, ..., σN |V̂ P
i,j|σ′

1, ..., σ
′
N〉 = V2(σi, σj |σ′

i, σ
′
j |xP (i), xP (j)). (138)

Let by definition

V̂ e
ij :=

1

|SN |
∑

P∈SN

V̂ P
i,j. (139)
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Let’s renumber protein molecules in such a way that the protein which starts the numer-

ation is situated sufficiently far from the cell surface. Then

〈σ1, ..., σn|V̂ e
ij|σ′

1, ..., σ
′
n〉 =

1

N

N
∑

k=1

V2(σi, σj |σ′
i, σ

′
j |x0, xk); (140)

Let by definition

U2(σ1, σ2|σ′
1, σ

′
2) :=

1

N

N
∑

k=1

V2(σ1, σ2|σ′
1, σ

′
2|x0, xk). (141)

Now, we’ll show that within the framework of some approximation the class of functions,

where solution of variational problem we just set up is searched, can be narrowed down to

symmetrical functions, i.e. such functions that ∀P ∈ SN

AP (σ1, ..., σN) = Aid(σ1, ..., σN) =: A(σ1, ..., σN ). (142)

We suppose that V̂i,j is proportional to real constant λ which is a small parameter. Therefore,

if parameter λ is enough small, the different protein molecules can be considered as non-

correlated ones, in other words, behaving independently. This means that the wave function

A(σ1, ..., σN ) can be represented in the following form:

A(σ1, ..., σN ) =

N
∏

i=1

ξ(σi) (143)

for a function ξ(σ) ∈ L2(X, dµ) fulfilling the following normalizing condition:
∫

|ξ(σ)|2dµ(σ) = 1. (144)

Let Û1 be an operator in L2(X, dµ) which have matrix elements in σ-representation

defined by function U1, and Û2 be an operator in L2(X × X, dµ × dµ) which have matrix

elements in σ-representation defined by function U2. Let’s denote U2(ξ) as an operator in

L2(X, dµ) defined from the following relation:

〈f |U2(ξ)|g〉 = 〈f ⊗ ξ|U2|g ⊗ ξ〉. (145)

The approximation we’ve just described is called a mean field approximation and time evo-

lution of function ξ in it is defined by the following equation:

i
∂

∂t
ξ = V̂ 1ξ +NV̂ 2(ξ)ξ. (146)
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Any how, in our approximation

A(σ1, ..., σN) ∼
N
∏

i=1

ξ(σi). (147)

As the class of test functions is narrowed down to the symmetrical ones in our variational

problem, then, instead of Ĥeff minimum eigenvalue calculation, we can seek the minimum

eigenvalue of the Hamiltonian:

Ĥ ′
eff =

N
∑

i=1

V̂i +
∑

N≥i>j≥0

V̂ e
i,j. (148)

Within the framework of our approximation the energy of the ground state of Ĥ ′
eff is

equal to the energy of the ground state of Ĥeff .

Proposition. There exist functions U ′
1(σ1|σ′

1), U
′
2(σ1, σ2|σ′

1, σ
′
2) such as if V̂ ′

i, V̂
′
i,j oper-

ators defined by the following relations

〈σ1, ...., σN |V̂ ′
i |σ′

1, ..., σ
′
N〉 = U ′

1(σi|σ′
i),

〈σ1, ...., σN |V̂ ′
ij|σ′

1, ..., σ
′
N〉 = U ′

2(σi, σj |σ′
i, σ

′
j), (149)

the operators V ′
i and V ′

ij are Hermitian ones,

Ĥ ′
eff =

N
∑

i=1

V̂ ′
i +

∑

N≥i>j≥0

V̂ ′
i,j. (150)

and operators V ′
i and V ′

ij fulfill one more condition being as follows. Let {ϕ′
n|n = 0, 1, ...}be

an orthonormal basis of eigenfunctions of operator Û ′
1 in L2(X, dµ) defined by the following

equation:

(Û ′
1ϕ)(σ) =

∫

U ′
1(σ, σ

′)ϕ(σ′)dµ(σ′). (151)

Let U ′
2 is the operator in L2(X ×X, dµ× dµ) specified by the relation

(Û ′
2ϕ)(σ1, σ2) =

∫

U ′
2(σ1, σ2|σ′

1, σ
′
2)ϕ(σ

′
1, σ

′
2)dµ(σ)dµ(σ

′). (152)

Let (Û ′
2)mn,m′n′ be a matrix element of operator Û ′

2 with respect to the basis {ϕi⊗ϕj |i, j =
0, 1, ...}.

(Û ′
2)mn,m′n′ = 〈ϕm ⊗ ϕn|Û ′

2|ϕm′ ⊗ ϕn′〉. (153)
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Then, for any n = 1, 2, 3...

(U ′
2)00,0n = 0 (154)

and similar equalities take place where index n stands on remaining three places and other

have zeros.

Proof. Let Û1 be an operator in specified by the following relation:

(Û ′
1ϕ)(σ) =

∫

U ′
1(σ, σ

′)ϕ(σ′)dµ(σ′), (155)

and let {ϕn|n = 0, 1, ...} be an orthonormal basis of eigenfunctions of operator Û1.

We represent the operator V̂ e
i,j as a sum of three summands:

V̂ e
i,j = V̂ e,1

i,j + V̂ e,2
i,j + V̂ e,3

i,j , (156)

where operators V̂ e,1
i,j , V̂

e,2
i,j , V̂

e,3
i,j are based on functions (U1

2 )(σ1, σ2), (U
2
2 )(σ1, σ2), (U

3
2 )(σ1, σ2)

defined below by the principle which the V̂ e
ij is based on U2(σ1, σ2|σ′

1, σ
′
2). The functions

U1
2 , U

2
2 , U

3
2 are defined by the following condition. Let Û1

2 , Û
2
2 , Û

3
2 be operators based

on functions U1
2 , U

2
2 , U

3
2 using the same scheme as used by the operator Û2 based on the

function U2. Among all matrix elements of operators Û1
2 , Û

2
2 only the following elements

are non-zero: (U1
2 )00,0m, (U

1
2 )00,m0, (U

2
2 )m0,00, (U

2
2 )0m,00, m = 1, 2, ... and among all matrix

elements of the operator Û2
3 only remained elements are non-zero. It is easily seen that if

we redefine V̂ e,3
i in a proper manner, then we can include summands corresponding to V̂ e,1

i,j ,

V̂ e,2
i,j into V̂i.

But V̂ij and, consequently, V̂
e
ij are first-order values by the constant of protein interaction

λ. Therefore, in just described substitution, the basis of eigenfunctions of operator Û1

{ϕn|n = 0, 1, 2, ...} passes to the basis of eigenfunctions of redefined operator Û ′
1 {ψn|n =

0, 1, 2, ...} such that ϕn − ψn are the first-order of vanishing values by a coupling constant λ

∀n = 0, 1, 2, ....

The matrix elements of just redefined V̂ e
ij of the form (Û2)00,0m m = 1, 2, ... (Û2 is coupled

with V̂ e
ij by the relation we’ve mentioned above) relating to the basis {ϕn} are equal to zero.

But since V̂ e
ij are of first-order of vanishing by the interaction constant, then matrix elements

of the form (Û2)00,0m of redefined (Û2) related to the basis {ψn} are of the second order of

vanishing by the coupling constant.
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The procedure described above can be continued endlessly by sequentially lowering the

order of vanishing of those terms we want to omit in the Hamiltonian.

The proposition may be considered as a proven one even without discussing a problem of

convergence of the above described iteration procedure, as all formulas which may be derived

hereafter will be just asymptotic expansions in a small parameter λ.

So, the effective Hamiltonian for considered system of protein molecules, which we want

to use for defining the ground state of our system, has the following form:

H ′
eff =

N
∑

i=1

V̂i +
∑

1≤i≤j≤N

V̂ e
ij . (157)

Here operators V̂i have ”act” only on coordinate σi of the wave function and differ from

each other only by a number of the coordinate on which they ”act”. Operators V̂ij ”acts”

only on coordinates of numbers i and j of the wave function and differ from each other only

by numbers of coordinates on which they ”acts”.

Operator V̂ij ”acts” only on coordinates of numbers i and j of the wave function and

differ from each other only by numbers of coordinates on which they ”acts”.

If in (157) we evidently extract the dependence from the interaction constant and number

of particles, then we shall find

Heff =

N
∑

i=1

V̂i +
λ

N

∑

1≤i≤j≤N

Ṽ e
ij, (158)

where prime of Heff is omitted and Ṽ e
ij does not depend on N (asymptotically at N → ∞).

We intend to investigate the Hamiltonian Heff using the apparatus of secondary quan-

tization.

Let {ϕn|n = 0, 1, 2...} be still an orthonormal basis of eigenfunctions of operator Û1. Let

F = Γ(L2(X, dµ)) be a boson Fock space over L2(X, dµ). Let a
+
i , ai be operators of particles

creation and annihilation in the state ϕi acting in F . ∀i = 0, 1, ... operators a+i and ai are

conjugated to each other and fulfill the following canonical commutating relations:

[ai, aj ] = [a+i , a
+
j ] = 0, i, j = 0, 1, 2...,

[ai, a
+
j ] = δij, (159)

where δij is a common Kronecker delta. We suppose that eigenfunctions ϕn are numerated in

such a way that En increases with increasing of number n. In representation of the secondary

39



quantization the Hamiltonian Heff is given by:

Heff =
∞
∑

n=0

Ena
+
n an +

λ

2N

∑

m,n,m′,n′

a+ma
+
n (U2)mn,m′n′am′an′. (160)

But it is a common Hamiltonian studied in the superfluid theory, and we can use the same

methods for its investigation.

At T = 0 a portion of proteins is in the ground state ϕ0. Let N0 be a number of protein

molecules in the ground state. As λ
N

≪ 1, then N−N0

N0
≪ 1. Because of this reason in the

right part of relation a0a
+
0 − a+0 a0 = 1 we can neglect a unity and suppose a0 and a+0 are

usual c-numbers.

So, we can simply suppose that a0 =
√
Ne−iϕ and a+0 =

√
Neiϕ and for some real number

ϕ.

Now let’s consider the second summand in the right part of (160). According to the

assumption proven above we can suppose that this summand has no terms linear by a+i , ai,

i = 1, 2, .... Quadratic terms have an order of λ, cubic λ√
N
, and quartic λ

N
. Therefore,

supposing the number of proteins in the cell is finite but a sufficiently large and interaction

constant λ is small, in the Hamiltonian (160) we can keep only quadratic terms on operators

a+i , ai, i = 1, 2, ....

Consequently, the effective Hamiltonian Heff is given by:

Heff = πcN0 +
∞
∑

n=1

Ena
+
n an

+λ{
∞
∑

m,n=1

Amne
−2iϕa+ma

+
n +

∞
∑

m,n=1

A⋆
mne

2iϕaman +
∞
∑

m,n=1

Bmna
+
man}. (161)

Here c is a material constant (does not depend on N0), Amn, Bmn are some matrixes Amn =

Anm, B
⋆
mn = Bnm, ⋆ is a sign of complex conjugation.

There is a classical variable ϕ which is canonically conjugated to variable J = πN0.

Variable ϕ satisfies the equation ϕ̇ = c and, therefore, value ψ = ϕ − ct (t is time) is a

motion integral. Whole our system (denoted by M) has a structure of a direct product of

two systems M =M1×M2 where, roughly speaking, the system M1 is described by variables

ϕ and J , and the M2 system is described by (noncommutative) variables a+n , an, n = 1, 2....

Now, let’s consider two cases: when the cell is a live and when it is dead. In the case of

the living cell, the expression under the integral for statistical weight contains a multiplier
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δ(ϕ − ϕ′), ϕ′ is a fixed real number, and now the free energy F (ϕ′) is a function of ϕ′.

However, one can readily see that the free energy F (ϕ′) does not depend on ϕ′. Indeed, the

change of ϕ′ to the value δϕ can really be compensated by proper canonical transformation

of operators a+n , an, n = 1, 2...:

a+n 7→ a+n e
iδϕ,

an 7→ ane
−iδϕ. (162)

Now, integral ϕ fulfills the equivalence principle we have considered above (Prokhorenko

and Matveev, 2011). As the formula of the generalized microcanonical distribution includes

a multiplier factor δ(ϕ − ϕ′), the M2 system may be described by using the Hamiltonian

(161) where ϕ is given as a some value and N0 is given taking into account that the total

system particles number is equal to N .

Now, let’s consider a dead cell. In this case the cell is described by means of the equilib-

rium Gibbs distribution. Let’s write out Hamilton’s equations for ϕ and J . So, we have:

ϕ̇ = c,

J̇ = 0 + λL(a+, a), (163)

where L(a+, a) is a quadratic function of operators a+n , an, n = 1, 2.... But if N → ∞,

then J ∼ N , and L(a+, a) ∼ 1. Therefore, when N values are high enough, L(a+, a) value

may be neglected in the Hamiltonian equations for ϕ and J and the following equations are

obtained:

ϕ̇ = c,

J̇ = 0. (164)

Thus, when N values are high enough, dynamics of the M1 system separates from the

dynamics of M2. This means that dynamical variables for M1 and M2 systems are indepen-

dent and the probability distribution for theM1 system, corresponding to Gibbs distribution

for the whole system, is defined by the formula:

ρ(ϕ, J) = constδ(J − J ′). (165)

Now, let’s define the distribution function for the system M2. For this we use a classical

analogy. Suppose the Hamiltonian system K has a structure of direct product of systems
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K1 and K2, K = K1 ×K2 and H(x, y) is the Hamiltonian of the whole system, x ∈ K1, y ∈
K2. If the K system is described by the Gibbs canonical distribution corresponding to T

temperature, then the probability distribution for the K2 system is the following:

ρ(y) =
1

Z
e−

F (y|T )
T , (166)

where

F (y|T ) = −T ln

∫

dΓxe
−H(x,y)

T , (167)

and Z is a normalized factor. Alternately, as can be seen above, the effective Hamiltonian

for the K2 system can be obtained in the following way. Let’s write out the Hamiltonian

equations for the system K2. Assume p and q are canonical coordinates and momenta for

the system K2 system. Then:

ṗ = −∂H(x, y)

∂q
,

q̇ =
∂H(x, y)

∂p
. (168)

Now, if we average right parts of the two last equations by the conditional Gibbs distri-

bution for K1 w(x|y) having a specified value y ∈ K2, then we obtain closed with respect to

y Hamiltonian equations where F (y|T ) is the Hamiltonian.

Therefore, in order to define the effective dynamics for the M2 system for a dead cell,

the following method, reasoning by analogy, can be used. Heisenberg equations for a+n , an,

n = 1, 2... can be written out and averaged over ϕ and J . However, as shown above,

if N → ∞, then ϕ is independent of a+n , an, n = 1, 2... and distribution for ϕ is uniform.

Direct calculation shows that if the right parts of Heisenberg equations for a+n , an, n = 1, 2...

are averaged by the uniformly distributed ϕ, we obtain Heisenberg equations where the

Hamiltonian is:

Heff = cN0 +

∞
∑

n=1

Ena
+
n an

+λ

∞
∑

m,n=1

Bmna
+
man. (169)

It’s evident, when T = 0 N = N0, i.e. all protein molecules are folded.

Now, let’s pass to analysis ofHeff using a well-known theory of normal forms of quadratic

Hamiltonians. For Hamiltonians of a general type this theory was developed by H. Poincare
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and G.D. Birkhoff (see Arnold, 2003) and for quantum mechanics it was adapted by N.N.

Bogoliubov (Bogoliubov and Bogoliubov (jr), 1984). This theory was established only for

dynamical systems with a finite number of degrees of freedom, but we use it for systems with

an infinite number of degrees of freedom, as it is a standard practice in physics. For this

purpose we replace the Hamiltonian Heff by cuted Hamiltonian Hc
eff describing the system

having L degrees of freedom:

Hc
eff = πcN0 +

L
∑

n=1

Ena
+
n an

+λ{
L
∑

m,n=1

Amne
−2iϕa+ma

+
n +

L
∑

m,n=1

A⋆
mne

2iϕaman +
L
∑

m,n=1

Bmna
+
man}. (170)

In this case, the theory of quadratic Hamiltonians confirms that for general matrixes Amn,

Bmn there is such a linear transformation of creation and annihilation operators a+n , an,

n = 1, 2... to operators ξ+n , ξn,

ξ+n =
L
∑

m=1

Unma
+
m +

L
∑

m=1

Vnmam,

ξn =

L
∑

m=1

U⋆
nmam +

L
∑

m=1

V ⋆
nma

+
m

(171)

that ∀n = 1, 2... ξn is conjugated to ξ+n ; this transformation is canonical:

[ξn, ξm] = [ξ+n , ξ
+
m] = 0,

[ξn, ξ
+
m] = δnm, m, n = 1, 2, 3... (172)

and using new variables, Hamiltonian Hc
eff is:

Hc
eff =

K
∑

i=1

ωnξ
+
n ξn +

L
∑

i=K+1

χn(ξ
+
n ξ

+
n + ξnξn). (173)

ωn, χn are some real numbers. However, the physical considerations make clear that Hc
eff

should be low bounded. Let’s denote Hc as Hilbertian space where Hamiltonian Hc
eff acts.

This Hilbertian space is represented by the tensor product of Hilbertian spaces Hc
i

Hc =
L

⊗

i=1

Hc
i , (174)
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where every Hc
i is isomorphic to L2(R) and this isomorphism can be chosen in such a way

that the following condition is fulfilled. In L2(R) the operators of coordinate q̂ and momenta

p̂ operate in the standard way:

p̂q̂ − q̂p̂ =
1

i
. (175)

ξ+n and ξn operate only on the n-th multiplier in (174). The isomorphism between Hc
i and

L2(R) mentioned above can be chosen in such a way that due to this is isomorphism the

following is correct:

ξn =
1√
2
(p̂− iq̂),

ξ+n =
1√
2
(p̂+ iq̂). (176)

But due to the isomorphism between Hc
n and Ln(R) mentioned above the operator ξ+n ξ

+
n +

ξnξn equals to the operator p̂2− q̂2. Evidently, the last operator is not neither low nor upper

bounded. Therefore, the physical requirement of positiveness of Hc
eff results in the fact that

in the right part of (173) only the first summand in the right part is non-zero. As a result:

Hc
eff =

L
∑

i=1

ωnξ
+
n ξn, (177)

and for any n = 1, 2, 3... ωn is a real positive number.

Operators ξ+n , ξn are creation and annihilation operators of some quasi-particles. As the

formula (177) indicates, at zero temperature all occupation numbers of these quasi-particles

are equal to zero: nξ
l = 0, l = 1, 2....

Now, we are interested in the average:

〈a+n an〉, n = 1, 2... (178)

for the ground state of our effective Hamiltonian. Evidently, the condition nξ
l = 0, l = 1, 2...

implies ∀n = 1, 2...

〈a+n an〉 =
∞
∑

m=1

|V ′
nm|2, (179)

where matrix V ′
nm is defined according to following equation:

a+n =
L
∑

m=1

U ′
nmξ

+
m +

L
∑

m=1

V ′
nmξm. (180)
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Clearly for the interaction of general form Û2 between protein molecules
L
∑

m,n=1

|V ′
nm|2 > 0.

This means that 〈a+n an〉 > 0 at least for one n = 1, 2....

So, if the cell is live, then the number of protein molecules in the unfolded state is

non-zero.

As a conclusion of this section we note that according to above reasoning, the number of

protein molecules in the unfolded state approaches the finite value, if the cell volume tends

to infinity. The last should mean that the number of the unfolded protein molecules in the

real cell is negligible. The possible solution of this difficulty is the fact that the protoplasm

has a quasi-crystalline structure only locally within the range of a small volume we call a

domain consisting of several physioatoms. Therefore, we can supply the stated analysis only

within the range of one domain. Since the domain number in the cell is proportional to its

volume, then the number of protein molecules in the unfolded state is also proportional to

its volume and has anon-zero value (per unit volume) in the thermodynamic limit.

7 Discussion of Relation between Mean Field Model

and Superfluid Bose Gas Model on Protein Config-

uration Space

In the previous section we quoted the nonlinear Schrodinger equation describing our system

in a mean field approximation:

i
∂

∂t
ξ = V̂ 1ξ +NV̂ 2(ξ)ξ,

ξ ∈ L2(X, dµ), (181)

where ξ ∈ L2(X, dµ), and V̂
1, V̂ 2(ξ) are operators in L2(X, dµ).

The question arises, to which degree the results obtained within the framework of the

mean field method (superfluid model) correlate with results obtained within the model of

the superfluid Bose gas on the protein configuration space. Now, we’ll show that these two

models give the same result for spectrum of single-particle excitations.

Suppose Û2 used to construct V̂ 2(ξ) fulfills the condition which defines, as was said, that

all the matrix elements of Û2 such that for them three of four indexes equal to zero and
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fourth is non-zero equal to zero. Here we discussed matrix elements regarding the basis of

eigenfunctions of operator V̂ 1.

Since the interaction constant λ is small and almost all protein molecules are in the

normal unfolded state, then ξ is given by:

ξ = ϕ0 + η, (182)

where η is orthogonal to ϕ0, ϕ0, ϕ1, ϕ2... are an orthonormal basis of eigenfunctions of oper-

ator V̂ 1, and ϕ0 corresponds to the minimum eigenvalue of V̂ 1. The value η is a first-order

value by the coupling constant λ. Let ηn be Fourier coefficients of vector η with regard to

basis ϕn

η =

∞
∑

n=1

ηnϕn. (183)

If in (182) we keep only terms linear on η, then complex conjugate to (182) has the

following form:

− i
∂

∂t
η⋆n = Enη

⋆
n +

∞
∑

m=1

Bmnη
⋆
m + 2

∞
∑

m=1

A⋆
mnηm, n = 1, 2, ... (184)

A similar derivation can be made for the equation for ∂
∂t
ηn. On the other hand in superfluid

model, after suitable canonical transformation, a+n , an, satisfy the Heisenberg equation:

ȧ+n = i[Heff , a
+
n ], ȧn = i[Heff , an]. (185)

If we write down these equations in close detail, then we receive:

− i
∂

∂t
a+n = Ena

+
n +

∞
∑

m=1

Bmna
+
m + 2

∞
∑

m=1

A∗
mnam, n = 1, 2, ... (186)

and an equation obtained from the previous one by the Hermitean conjugation.

But equations (184) and (186) have the same form, therefore, if variables {a+n , an} and

{η+n , ηn} are subjected to linear transformation of the same form, then equations (184) and

(186) for transformed variables coincide. Particularly, if the linear transformation transfers

{a+n , an} into {ξ+n , ξn}, then ηn transformed under the same transformation are changed

according to the following law:

ηn = conste−iωnt. (187)
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So η is given by

η =
∞
∑

n=1

fne
−iωnt. (188)

This formula shows that Bogolyubov’s frequencies also describe a spectrum of single-particle

excitations in the mean field model.

8 Comparison of Van der Waals Protoplasm Model

and Superfluid Bose Gas Model on Configuration

Space of Protein Molecule

The present work considers two models of Ling’s cell protoplasm microstructure.

In the first model called Van der Waals model, we supposed that nontrivial first integrals

of the system are so that their fixing by predefined values characterizing the resting state

of a cell leads to the fact that protein molecules are situated in points of a lattice in the

unfolded conformation. In addition, if the rapid descending of Van der Waals interaction

between protein molecules with distance increasing is taken into account, the thermodynamic

features of the living protoplasm can be calculated just as for the ideal gas of proteins. The

thermodynamic features of the dead protoplasm can be calculated using a well-known Van

der Waals interpolation formula for the free energy of a system. With this model we’ve

obtained an expression for the quantity of heat the cell released while dying, and for a

number of potassium ions releasing from the cell during this process.

In the second model we emphasize the analysis of internal protein molecules structure.

As we have already mentioned, the protein molecules are supposed to be situated in points

of a lattice, but have nontrivial internal degrees of freedom; and we study the structure of

the ground state of this molecular system. The present work shows that within the range

of weak interaction between protein molecules, the ground state of the interacting proteins

system should be outlined as a ground state of the Hamiltonian of the Bose gas with a weak

interaction on the protein molecule configuration space. To analyze this Hamiltonian we

used standard methods of the superfluid theory. Taking into account that the interaction

between protein molecules is weak and the bulk of protein molecules of the system is in the

ground folded state, our Hamiltonian can be replaced with an effective quadratic one, but
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it has different forms depending on if the cell is live or dead. In addition, it clears up which

nontrivial motion integrals in the involution should be included to the generalized Gibbs

distribution describing the living cell. The use of these effective quadratic Hamiltonians

reveals that in the dead cell all the protein molecules significant for model properties are

folded, while in the resting living cell the number of unfolded protein molecules is non-zero.

The question arises: what is the relation between considered protoplasm models? Partic-

ularly, how do conservation laws postulated for them link? We think, the considered models

complement each other and connection of the named conservation laws comes down to the

following. If we fix the motion integrals for the second model by some predefined values,

then protein molecules are in the unfolded state, and we can suppose that the nature of

interaction between different protein molecules provides the formation of a lattice being an

energetically favorable structure. In other words, the conservation laws for the first model

appear to be consequences of the conservation laws for the second model. If we conversely

consider the Van der Waals protoplasm model as the main one and assign conservation laws

to it, according to which the protein molecules in the living state are situated in points of a

lattice, then it is reasonable to suggest that such a space configuration of protein molecules

would be favorable for the unfolded (not folded) state of protein molecules for a number

of reasons. In other words, the conservation laws for the second model are consequences

of the conservation laws for the first model. This situation is certainly very inexact and

hypothetical.

The questions, on which principles should new models be constructed(except ones con-

sidered here) and how to develop the kinetic theory of the living cell, are the subject of

further investigations.

9 Conclusion

In the present work we have constructed and investigated properties of two complementary

models of protoplasm — physical basis of life. The work was realized basing on generalized

thermodynamics we proposed (Prokhorenko and Matveev, 2011). Within the framework of

stated assumptions we explained a number of properties and phenomena observed in living

cells, formalized (in the extended sense) by the physical theory of the living cell by Ling
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(2001). However, the results we had formerly obtained, were inequalities and denoted only

processes direction (in excitation and death of a cell heat releases, volume reduces and so on),

there were no certain numerical evaluations obtained. To obtain them we need to specify

the properties of intermolecular interactions which escape from the point of view of available

analyze methods. That’s why, we should construct different protoplasm models emphasizing

one system parameter after another.

In the present work we constructed and investigated two models of protoplasm: one

of them is naturally called Van der Waals model, and other is the model of superfluid

Bose gas on the protein molecule configuration space. Our aim in this work was not to

construct a model giving the most exact agreement with experimental data but to show that

the constructing of such models is reasonable and possible. Qualitative agreement of the

obtained results with experimental data gives an evidence of vitality of the thermodynamic

theory of the living cell we proposed (Prokhorenko and Matveev, 2011).

Our theory can face the misapprehension from devotees of the non-equilibrium thermo-

dynamics, as it is based on the equilibrium statistical physics and thermodynamics. Their

main argument is evident: in the equilibrium state the maximum entropy is reached, there-

fore, the cell cannot perform the biological work. However, the other fact is also evident:

the non-equilibrium thermodynamics still haven’t given the quantitative description even for

elementary phenomena, for example, electric resting potential. In addition, if we accept that

the cell is living under the laws of non-equilibrium thermodynamics, we must also recognize

that 200 years experience in successful modeling properties of the cell by non-living systems

is untenable in principle. It would ruin all our knowledge about the living cell without giv-

ing anything in return. As for our generalized thermodynamics, the essential clarification is

required: though the states which it operates are static by time, they are not equilibrium in

the sense that their entropy is not the maximum one of all the states having the same energy

(this is an essential feature of the state of the living material). The existence of such states

even for the most realistic statistical mechanics systems is proven by one of us (Prokhorenko,

2009).

We are very grateful to P. Agutter, A.V. Koshelkin, Yu. E. Lozovik, A.V. Zayakin, E.N.

Telshevskiy and N.V. Puzyrnikova for valuable critical comments on this article and very

useful discussions.
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10 Appendix 1. Transition of Cell from Living to Dead

State in Weak External Alternating Field

Here and in our previous work (Prokhorenko and Matveev, 2011) we considered two extreme

states of a cell: non-equilibrium state of rest and equilibrium state corresponding to death.

Now, let’s ask a question, can we describe death of the protoplasm within the framework

of our generalized thermodynamics, i.e. to construct an example of a process transferring

a cell from the living state of rest to the state corresponding to death. If we could not

construct an example of such a process, all our theory would appear to be doubtful. In

addition, up till now we considered only equilibrium statistical mechanics of the living cell,

and the constructing of an example of the transformation process is the first step toward the

construction of the non-equilibrium statistical mechanics of the living cell.

Let’s start the analysis of the cell death mechanism from a certain problem of the non-

equilibrium statistical mechanics. Let’s consider the Hamilton system having n degrees

of freedom which is described by the Hamiltonian H(p, q) in the field of external forces

εf(t), ε ∈ R such that the complete Hamiltonian of the system is as follows:

Γ = H + εf(t)P, (189)

where P (p, q) is a function of canonically conjugated momenta and coordinates of a system.

We suppose that applied force f(t) is a real function of time of the following form:

f(t) =
∑

ν

aν cos(νt+ ϕν), (190)

where phases ϕν are independent random values uniformly distributed by a circle. We

suppose the frequency spectrum of the applied force is essentially continuous, so that sums

of the following form

∑

ν

F (ν)a2ν (191)

with continuous F (ν) in the limit can be replaced by integrals

+∞
∫

0

F (ν)I(ν)dν. (192)

This problem was considered by N.N. Bogoliubov (1945) and here we briefly quote the results

obtained by them (relevant only to classical mechanics).
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Let’s denote Dt is a probability density of coordinates and momenta in a time t provided

that phases ϕν have some defined values. The probability density for distribution p and q

in the common sense, i.e. when phase values ϕν are inessential, can be found from Dt by

averaging over all phases:

ρt = Dt. (193)

In the initial moment t = 0 we suppose that distribution of coordinates and momenta does

not depend on phases, in other terms

D0 = ρ0. (194)

Temporal evolution of Dt should be passed in accordance with a well-known Liouville’s

equation:

∂Dt

∂t
= (Γ, Dt) + εf(t)(P,Dt), (195)

where (A,B) is a Poisson bracket defined by the following formula:

(A,B) =

n
∑

i=1

(
∂A

∂qi

∂B

∂pi
− ∂B

∂pi

∂A

∂qi
). (196)

Let’s introduce more one-parameter group of operators Tt t ∈ R acting on dynamical

variables according to the formula:

TtF (p, q) = F (pt, qt), (197)

where pt, qt is a solution of canonical Hamilton equations

dpt
dt

= −∂H(p, q)

∂q
,

dq

dt
=
∂H(p, q)

∂q
, (198)

having initial data

p0 = p, q0 = q. (199)

Using these assumptions and designations (Bogoliubov, 1945), in the limit of small ε the

following equation for ρt was derived:

∂ρt
∂t

= [H, ρt] + ε2
t

∫

0

∆(t− τ)(P, (Tτ−t(P, ρτ ))dτ, (200)

51



where

∆(τ) =
1

2

+∞
∫

0

I(ν) cos(ντ)dτ. (201)

Further Bogoliubov (1945) considered the case when the system exposed to external force is

a harmonic oscillator of n-dimensions having incommensurate frequencies ~ω = (ω1, ..., ωn).

Let’s denote through a σt = ρt function of action variables obtained from ρt by averaging

by angular variables θ1, ..., θn. Function P (p, q) becomes a function of action-angle variables

and can be expanded to the Fourier series:

P =
∑

~n

P~ne
i~θ·~n. (202)

In this case, at the same initial conditions on Dt, in the limit of small ε the evolution of σt

is described by the Fokker-Planck equation:

∂σt
∂t

= ε2
n

∑

k=1

n
∑

s=1

∂

∂Is
Ask(I)

∂σt
∂Ik

, (203)

where

Ask(I) =
π

4

∑

~n

nknsI(~n · ~ω)|P~n(I)|2. (204)

This equation, particularly, describes diffusion of distributions which at the initial moment

can be distributions concentrated in one point, i.e.

σ0(t) =
1

(2π)n

n
∏

k=1

δ(Ik − I0k). (205)

But the last distribution is a generalized microcanonical distribution which we used to de-

scribe the states of rest of the Ling’s cell. Therefore, it seems to be natural if the method

proposed by Bogoliubov (1945) can be used to construct an example of a cell transformation

process from the living to dead (equilibrium) state. Now, we shall show how it can be done

using the results of Appendix 1 of the work by (Prokhorenko and Matveev, 2011).

So, assume there is a Hamilton system M with n + k degrees of freedom where k ≪ n,

which is described by the Hamiltonian H and where k independent first integrals in the

involution are defined. There was shown in the Appendix 1 of the above-mentioned work

that some covering Hamiltonian system M ′ of system M can be represented as a direct
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product of M ′ = M ′
1 ×M ′

2, so that the canonically conjugated coordinates on M ′
2 are first

integralsK ′
1, ..., K

′
k (more properly, their lifting toM ′) playing a role of momenta and ”angle”

variables ϕ1, ..., ϕk, passing all the real axis and playing a role of coordinates.

Let π be a canonical projection of M ′ on M . The function f on M ′ we (Prokhorenko

and Matveev, 2011) called a periodic one if f(x) = h(π(x)) for some function h defined

on M . It has been suggested (Prokhorenko and Matveev, 2011) to represent the mixed

state of the M ′ system using some positive periodic function ρ on M ′. Put by definition

RL := {x ∈ M ′||ϕ1| < L, ..., |ϕk| < L}. If A is a periodic function on M ′, then its average

over the state corresponding to distribution ρ was suggested (Prokhorenko and Matveev,

2011) to calculate using the following formula:

〈A〉 = lim
L→∞

∫

RL

ρ(K1, ..., Kk, ϕ1, ..., ϕk)A(K1, ..., Kk, ϕ1, ..., ϕk)dK1...dϕk

∫

RL

ρ(K1, ..., Kk, ϕ1, ..., ϕk)dK1...dϕk

. (206)

In this work we have shown that the limit (206) always exists. We shall call the distribution

function ρ(K1, ..., Kk, ϕ1, ..., ϕk) as a normalized one if

lim
RL→∞

1

Lk

∫

RL

ρ(K1, ..., Kk, ϕ1, ..., ϕk)dK1...dϕk = 1. (207)

The entropy of a state corresponding to the normalized distribution ρ(K1, ..., Kk, ϕ1, ..., ϕk)

is defined by the following formula

S = − lim
RL→∞

1

Lk

∫

RL

ρ(K1, ..., Kk, ϕ1, ..., ϕk) ln ρ(K1, ..., Kk, ϕ1, ..., ϕk)dK1...dϕk. (208)

The last limit exists while the proof of its existence is the same as for the limit (206).

The Hamiltonian of the covering system M ′ we also (without a risk to make an error)

denote as H . If our Hamilton system is a Ling’s cell, then n ≫ k. In this case, as shown

(Prokhorenko and Matveev, 2011), the dynamics of the system M ′
2 can be considered sep-

arately. This dynamics is a Hamiltonian one and is defined by Hamiltonian F (x|T ) where
F (x|T ) is the free energy of the system M ′

1 at temperature T provided that the M ′
2 system

is situated in point x:

F (x|T ) = −T ln

∫

dΓ1
ye

−H(y,x)
T , (209)

y ∈M ′
1, x ∈M ′

2, dΓ
1
y is an element of phase volume on M ′

1.
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But K1, ..., Kk are the motion integrals, therefore F (x|T ), does not depend on angular

variables ϕ1, ..., ϕk, but depends only on K1, ..., Kk. Put by definition

F ′(K1, ..., Kk|T ) := F (x|T ). (210)

Further, we are interested in the case when F ′(K1, ..., Kk) reaches its minimum in the whole

area (of non-zero volume) O. In the work by Prokhorenko and Matveev (2011) the cor-

responding thesis is called the equivalence principle and there was shown that only under

condition of F ′(K1, ..., Kk) constancy in the whole area O of the non-zero volume our gen-

eralized thermodynamics gives new results in comparison with the common one and can

provide the thermodynamic descriptions of resting state of the Ling’s cell.

So, F (x|T ) is a constant on the direct product O×R
k and, therefore, it defines a trivial

dynamics in this area, i.e. if (p0, q0) ∈ O × R
k, then ∀t ∈ R (pt, qt) = (p0, q0).

Using the last circumstance the equation (200) can be simplified as follows

∂ρt
∂t

= ε2
t

∫

0

∆(t− τ)(P, (P, ρτ))dτ. (211)

However, in the limit of small ε ρτ (z) varies with time slowly and is almost constant wherever

∆(t − τ) noticeably differs from zero. Therefore, in the integral from the right part of the

last equation we can replace ρτ by its value at τ = t. As

+∞
∫

0

∆(t)dt =
πI(0)

2
(212)

we can find

∂ρt
∂t

=
ε2πI(0)

2
(P, (P, ρt)). (213)

This equation of Fokker-Planck type is correct in the area O × R
k.

As for behavior of function ρt outside the area O×R
k, the physical considerations make

clear that the probability to find the system M ′ outside the domain O × R
k is negligible.

Therefore, it is sufficient to investigate the behavior of ρt inside the domain O × R
k by

applying the appropriate boundary conditions for ρt on the boundary of O × R
k which

provide the self-adjointness of equation (213) and keeping the probability:
∫

O×Rk

ρt(x)dΓ
2
x = 1, (214)
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where dΓ2
x is an element of phase volume on M ′

2. However, we won’t make an ascertaining

of the form of these boundary conditions but just make an assumption that the domain O
is a compact manifold (without boundary).

The self-adjointness condition of operator from the right part of the Fokker-Plank equa-

tion is a consequence of equality of forward and backward probabilities of arbitrary transition.

This equality of forward and backward probabilities of transitions is a consequence of com-

plete Hamiltonian invariance with respect to the time sign conversion operation (See the

principle of kinetic coefficients symmetry by L. Onsager).

Now, following Bogolyubov (1945), we can show that the entropy of a state defined

by relation (208) is increased monotonically in course of time due to equation (213). The

entropy (208) reaches its maximum at the constant distribution function, i.e. at t = +∞

ρ+∞(K1, ..., ϕk) = const. (215)

But if the distribution function ρ+∞(K1, ..., ϕk) is constant, then it corresponds to the

Gibbs equilibrium microcanonical distribution.

So, an example of the Ling’s cell transformation from the living (resting) to the dead

state is its evolution in the weak external field which is a sum of harmonic oscillations with

continuous frequency spectrum and random independent phases uniformly distributed along

the circle; at that, for spectral density of intensity of this field I(ν), I(0) 6= 0 is required to

be fulfilled.

The fact that the Fokker-Planck equation includes the spectral density of intensity only

through I(0) is very significant and can be verified experimentally. This conclusion is in a

good agreement with observed destructive influence of infrasound, magnetic storms and any

white noises to living organisms.

11 Appendix 2. On ATP Structuring Role as Part of

(ATP)m-(Protein)n-(H2O)p-(K+)q Complex

In this Appendix we discuss the theoretical relation between the capability of an ATP

molecule to define the structure of a physioatom in the resting state and non-ergodicity

of the Ling’s cell. The purpose of this Appendix is to represent a demonstrative physical
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view of the structuring ATP influence on the physioatom. We do not give a mathematically

consistent characteristic of ATP-protein-water-K+ interaction here.

We are interested in the following issues. How much is a number of protein molecules in

the water-protein complex managed by one ATP molecule? Why the physical disturbance

generated by the ATP propagates without dissipation to the large number of proteins and

how does this disturbance influence on their conformation?

The fact that, according to our main assumption, the Ling’s cell represents a Hamiltonian

system having a vast number of first integrals in the involution makes us think, can we use

the theory of completely integrable (in the sense of Liouville) systems to describe such a cell?

The Korteweg—de Vries equation (Arnold, 2003) which can be an example of a completely

integrable system

ut = 6uux − uxxx (216)

was originated in the shallow water theory (in narrow ship channels). This equation is re-

markable by allowing the solutions in a form of solitary waves (solitons) propagating without

dissipation. The only parameter characterizing the soliton is its velocity. The Korteweg—de

Vries equation also allows for multi-solitonic solutions which break into separate solitons

propagating with different velocities at t → ±∞. A significant property of multi-solitonic

solutions is the fact that in case of solitons collision their velocities do not change.

We consider that the distribution of the ATP molecule physical influence on surrounding

protein molecules has something similar to the propagating of solitons because there are

many commutative first integrals for the Ling’s cell, therefore, this case should be somewhat

similar to the case arising in the theory of completely integrable systems.

So that one ATP molecule could effectively manage the surrounding complex of water and

proteins, the disturbance transferred by solitons should not dissipate. For analysis simplicity

let’s suppose that the distribution of the physical impulse from the ATP is described by a

one-dimensional Korteweg—de Vries equation. Then every soliton is unambiguously defined

by the only parameter, its velocity. Therefore, to prevent loss of information from the ATP

molecule, solitons’ velocities shall not change after their collision. But the last property is

fulfilled for multi-solitonic solutions of the Korteweg—de Vries equation, as we’ve mentioned

above.

The theory of completely integrable systems is a rather developed one (Bullaf and Caudry,
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1999). A lot of integrable equations were constructed on the line, for example: nonlinear

Schrodinger equation, sine-Gordon equation, Toda chain and so on. The main method of

integrating such equations is a method of inverse scattering problem (Bullaf and Caudry,

1999). The property of isolated solutions to pass through each other without velocity changes

can be common for all of them and is explained by the presence of the complete set of

independent commutative first integrals.

Let’s take, for instance, the finite Toda chain consisting of N particles in the line (Mozer,

1975). The state of this system is fully described by defining N particle coordinates {xi|i =
1, ..., N} and N momenta {pi|i = 1, ..., N}. By definition the Hamiltonian of this system is:

H =
N
∑

i=1

p2i
2

+
N−1
∑

i=1

exi+1−xi. (217)

As shown by Mozer (1975), at t → ±∞ the distances between different particles tend

to infinity. This system is completely integrable (Mozer, 1975) and there is a set of N

independent first integrals in the involution for this system. If distances between particles

are so large so their interaction can be neglected, then those integrals are just elementary

symmetrical polynomials of momenta (velocities) (Mozer, 1975).

I1 = p1 + p2 + ...+ pN ,

I2 = p1p2 + ...+ p1pN + ..+ pN−1pN

........................................................

I3 = p1p2...pN (218)

As before and after particles’ collisions the values of integrals I1, ..., IN coincide, to define

the velocities after collision we have a system of N algebraic equations which implies that

velocities of particles after collision are the roots of algebraic equation

(v − v1)...(v − vN) = 0, (219)

where v1, ..., vN are velocities of particles before collision and v is an unknown variable. So,

velocities of particles after collision coincide with velocities of particles before collision with

an accuracy of transmutation.

Yet notice that for integrable systems with a number of freedom degrees N → ∞ the

equivalence principle is fulfilled. Suppose I1, ..., IN are action variables, and ϕ1, ..., ϕN are
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angle variables conjugated to them. We can take I2, ..., IN as independent first integrals in

the involution, which are included in the generalized microcanonical distribution. We have:

S(E, I2, ..., IN) = ln

∫

dI1dϕ1

N
∏

i=2

dϕiδ(H(I1, ..., IN)− E). (220)

Integrating this formula by dI1 results in:

S(E, I2, ..., IN) = ln
1

|∂H(I1,...,IN)
∂I1

|
+N ln 2π. (221)

But ω1(I1, ..., IN) is a frequency corresponding to ϕ1; and it is reasonable to restrict our

choice to systems for which ω1 is an asymptotically constant at N → ∞. So:

S(E, I2, ..., IN) = − lnω1(I1, ..., IN) +N ln 2π (222)

But since ω1(I1, ..., IN) is an asymptotically constant, in the limit of N → ∞ can be ne-

glected, and the equivalence principle is fulfilled for integrals I2, ..., IN in the limit of N → ∞.
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