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In this tutorial, we demonstrate the basic principle of the two machine learning algorithms for classifications: the 

Perceptron and Adaline. We achieved this by implementing these algorithms step by step in Python and provides the code 

snippets used to train them. The code snippets will boost our understanding of the basic linear classification algorithms, 

and their effective implementation in Python. This tutorial aims to lay the foundation for understanding advanced 

machine learning algorithms for classification such as support vector machine, logistic regression, and other regression 

models. 

 

                           I.  INTRODUCTION 

We consider two simple Single-Layer Neural Networks: Perceptron and Adaline. The Perceptron algorithm is based on the 

widely known MCP neuron model [1]. It automatically learns the optimal weight coefficients that are needed to be 

multiplied with the input features in order to know whether or not a neuron will transmit signal (Figure. 1). It is used to 

predict the class a new data point belongs. The Adaline rule illustrates the basic concepts of defining and minimizing 

continuous function. The main difference between these algorithms is that, the weights are updated based on a linear 

activation function in Adaline rather than a unit step function like in the Perceptron. 

 

Figure 1: A schematic diagram illustrating the basic concept of the Peceptron algorithm 

The Perceptron Model (Figure 1) receives a set of data inputs,𝒙, combines them with the weights, 𝒘, to compute the inner 

product or net input. This inner product,𝒙𝑻𝒘 is passed onto the Heaviside step function or threshold function which 

generates a binary output of -1 or +1 (i.e., the predicted class label of the input data). The 𝑇 represent the transpose of the 

vector,𝒙.The output is used to calculate the error of the prediction during the learning rate, and thus the weights are 

updated. 

Consider the implementation of this algorithm as we train it with Iris dataset using Python. We will also consider the 

object-oriented approach to define the interface of the perceptron as Python Class. This allows the initialization of new 

Perceptron Objects which can learn from the training data via a fit method and make some predictions via a separate 

predict method [2]. 

With this definition, we initialize Perceptron objects with predefined learning rate, 𝜂, the number of epochs, n_iter or the 

passes over the training dataset. We initialize the various weights to a vector,𝑅𝑛+1, where n represents the number 

features or dimension in the dataset. We added 1 to the first element in this vector which represents the bias unit [2]. 
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We will use the Perceptron algorithm for binary classification task and take two classes -1 (negative class) and +1 (positive 

class) into account. Let’s also consider decision function 𝜙(𝑧) and takes into account a linear combination of input values, 

𝑥, alongside weight vector, 𝑤, such that 𝑧 is refers to as the net input or inner product. 

                                                                                      𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+ 𝑤𝑚𝑥𝑚                                                                                    (1) 
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When the net input for a certain example, 𝑥(𝑖), becomes greater than a predefined threshold, 𝜃, we can predict class -1 

otherwise class 1. The decision function, 𝜙(. ), is taken as a unit step function.  

such that: 

                                                                    𝜙(𝑧) =  {
1

−1     
 𝑖𝑓 𝑧≥𝜃,
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                                                                                (2) 

 

Let’s define weight-zero 𝑤0 as 𝑤0 = - 𝜃, 

 𝑥0 = −1 and 𝑧 , the net input can be written as: 

                                                                  

                                                              𝑧 = 𝑤0 + 𝑤1 + ⋯+ 𝑤𝑚 = 𝒘𝑻𝒙                                                                                              (3) 

 

and 

 

                                                              𝜙(𝑧) =  {
1

−1     
 𝑖𝑓 𝑧≥𝜃,
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                                                                                          (4) 

 

The weight, 𝑤0 = - 𝜃 is referred to as the Bias unit in Machine Leaning literature. 

The Perceptron Algorithm can be summarized as follows [2]: 

1. Initialize the weight to zero or some small random numbers. 

2. For each training example, 𝑥(𝑖): 

   (a)  Compute the output value, 𝑦̂. 

   (b) Update the weights. 

Note: The value of the output, 𝑦̂, is the class label predicted by the step function predefined above. The simultaneous 

update of each weight, 𝑤𝑗 ,in the weight vector, 𝑤, can be written as: 

                                                                                           𝑤𝑗 ∶= 𝑤𝑗 + Δ𝑤𝑗                                                                                                              (5) 
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The updated value 𝑤𝑗  is calculated as  

                                                                         Δ𝑤𝑗 = 𝜂(𝑦(𝑖) − 𝑦̂(𝑖))𝑥𝑗
(𝑖)

                                                                                                               (6) 

The learning rate, 𝜂 takes a constant value between 0.0 and 1.0, and 𝑦(𝑖)represents true class label of the 𝑖th training 

example, and 𝑦̂(𝑖) represent the predicted class label.  

Note also that we update all the weights in the weight vector simultaneously and that the predicted label, 𝑦̂(𝑖)  is not 

recomputed before all the weights are updated through the various update values, Δ𝑤𝑗 . 

 

The updates values for two-dimensional dataset can be written as follow: 

                                                                                Δ𝑤0 = 𝜂(𝑦(𝑖) − (𝑜𝑢𝑡𝑝𝑢𝑡(𝑖))𝑥𝑗
(𝑖)

                                                                                         (7) 

                                                                                 Δ𝑤1 = 𝜂(𝑦(𝑖) − (𝑜𝑢𝑡𝑝𝑢𝑡(𝑖))𝑥1
(𝑖)

                                                                                        (8) 

                                                                               Δ𝑤2 = 𝜂(𝑦(𝑖) − (𝑜𝑢𝑡𝑝𝑢𝑡(𝑖))𝑥2
(𝑖)

                                                                                          (9) 

The output is used to compute the error associated with the prediction during the learning phase and the weights are 

updated. 

The learning rate, 𝜂 , as well as the number of epochs, (n_iter), are the so-called hyperparameters (or tuning parameters) 

of the Perceptron and Adaline learning algorithms. Using these parameters, we can now initialize new Perceptron objects 

with a given learning rate, eta, and the number of epochs, n_iter (passes over the training dataset). Via the fit method, we 

initialize the weights in 𝒔𝒆𝒍𝒇. 𝒘_self to a vector, 𝑹𝒏+𝟏,where n stands for the number of dimensions (features) in the 

dataset, and we add 1 for the first element in this vector that represents the bias unit. Remember that the first element in 

this vector, 𝑠𝑒𝑙𝑓. 𝑤_[0], represents the so-called bias unit (for more information check out the code snippets in the 

Appendix). 

After the weights have been initialized, the fit method loops over all individual examples in the training dataset, and 

updates the weights according to the perceptron learning rule (for more information check out the code snippets in the 

Appendix). 

The predict method predicts the class labels, which is called in the fit method during the training of the datasets in order 

to get the class label for the weight updates. It can also be used to predict the class label of new dataset after fitting our 

model. Furthermore, the misclassifications of the class labels can be collected during each epoch in the 𝑠𝑒𝑙𝑓. 𝑒𝑟𝑟𝑜𝑠_𝑙𝑖𝑠𝑡 in 

order to analyze the performance of our Perceptron model during the training process. The np.dot function that is used in 

the net input method simply calculates the vector dot product, 𝑤𝑇𝒙. 

We limit the analysis of our Peceptron model to four feature variables; (I) sepal length and petal length and (II) sepal 
width and petal width to visualize the decision regions of the trained models in scatter plots. We also consider two classes 
for flowers, Setosa and Versicolor in the Iris dataset. The Iris Dataset can be accessed via this is web link:  
UCI server at https:// archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data. 
 
  
 
                                                                               II.  RESULTS AND DISCUSSIONS 

For the Sepal length and petal length, we run the Perceptron codes given in Appendix A. We assigned them to a feature 

matrix, 𝑋 𝑎𝑛𝑑 𝑋1  , which can be visualize through the 2D-scatterplots in Figures 2(a, b) below. The sepal length and petal 

length are assigned to X, while sepal width and petal width are assigned to 𝑋1. 

The distribution of flower examples in the Iris Dataset can observed in the two-dimensional scatter plots (Figures 2(a, 

b)). The scatter plot in Figure 2(a) shows the two features’ axes: Petal length and sepal length, while Figure 2(b) shows the 

two feature axes: petal width and sepal width. From these plots, we can see that linear decision boundary can be used to 

differentiate Setosa flowers from Versicolor flowers. The Perceptron, been a linear classifier, can be used to classify the 

flowers in the Iris dataset perfectly. 



4 
 

 

Figure 2(a): Scatterplot showing the distribution of flower examples in the Iris dataset along the two feature axes: petal 
length and sepal length. Figure 2(b): Scatterplot showing the distribution of flower examples in the Iris dataset along the 

two feature axes: petal width and sepal width. 
 
 
To check whether our algorithm converges or not, we plot the misclassification error for each epoch and locate a decision 

boundary that will separate the two Iris flower classes.  

 

Figure 2(c): Plot of the misclassification errors versus the number of epochs for Iris dataset along the two feature axes: 
petal length and sepal length. Figure 2(d): Plot of the misclassification errors versus the number of epochs for Iris dataset 

along the two feature axes: petal width and sepal width. 
 

After executing the python code (Appendix B & C), we can see the plots of miscalculation errors versus the number of 

epochs Figures 2(c, d). The Perceptron algorithm converge after the sixth and nineth epochs in both graphs, and thus 

classified our training examples perfectly. 

To visualize the decision boundaries for the two-dimensional datasets, we execute a small convenience function (code 

snippets in the Appendix C. We draw contour plot via Matplotlib's contour function. This maps various decision regions to 

different colors for each predicted class in the grid array. The results are given in Figures 2(d, e) which show the plots of 

the decision regions. We can also observe that the resulting contour plots show that our Peceptron Algorithm learned a 

decision boundary that it uses to classify all of the flower examples in the Iris data subset perfectly. 
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Figure: 2(e) A contour plot mapping the different decision regions to different colors for each predicted class in the two-
dimensional grid array, Figure: 2(f) A contour plot mapping the different decision regions to different colors for each 

predicted class in the two-dimensional grid array. 
 
 
 

III.  ADAPTIVE LINEAR NEURON (ADALINE) 

Let’s consider another type of single-layer neural network (NN): Adaline [3]. It illustrates the key concepts of defining and 

minimizing continuous cost functions. The main difference between this and the Perceptron algorithm is that the weights 

are updated based on a linear activation function instead of using a unit step function like in the Perceptron. In Adaline 

figure 3, this linear activation function, 𝜙(𝑧), which is simply the identity function of the net input, such that: 

                                                                                     𝜙(𝑤𝑇𝒙) = 𝑤𝑇𝒙                                                                                                    (10) 

While the linear activation function is used for learning the weights, the threshold function is used to make the final 

prediction, which is similar to the unit step function.  

 

Figure 3: A schematic diagram illustrating the basic concept of the Adaline algorithm. 

The Adaline model does compare the true class labels with the linear activation function's continuous valued output to 

compute the model error and update the weights in Figure 3. Conversely, the Perceptron algorithm compares the true 

class labels to the predicted class labels. 
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IV.  USING COST FUNCTION TO MINIMIZE COST FUNCTIONS 

Optimizing the objective function is key to supervised machine learning algorithm, and is often taken as a cost function. In 

the case of Adaline Algorithm, we define a cost function, 𝐽, to learn the wights as the sum of the squared errors (SSE) 

between the true class label and the calculated outcome. The activation function is linear, continuous and has an edge over 

the unit step function, in that, it is differentiable. It is also convex in nature such that gradient descent (an optimization 

algorithm) can be used to locate the weights that minimize the cost function in order to classify the flowers in the Iris 

Dataset. 

                                                               𝐽(𝒘) =
1

2
∑ (𝑦(𝑖) − 𝜙 (𝑧(𝑖)))

2
𝑖                                                                                             (11) 

                                                              
∂J

∂𝑤𝑗
= −∑(𝑦(𝑖) − 𝜙(𝑧(𝑖)))𝑥𝑗

(𝑖)
                                                                                              (12) 

The update of the weights,𝑤𝑗 , can be written as 

                                                          Δ𝑤𝑗 = −𝜂
∂J

∂𝑤𝑗
= 𝜂 ∑(𝑦(𝑖) − 𝜙(𝑧(𝑖)))𝑥𝑗

(𝑖)
                                                                                 (13) 

The Adaline algorithm has updated weights as: 

                                                                                        w ∶= w + ∆w                                                                                                 (14) 

And the Squared Error Derivative is given as: 

                                                                    
∂J

∂𝑤𝑗
= −∑ (𝑦(𝑖) − 𝜙(𝑧(𝑖)))𝑥𝑗

(𝑖)
𝒊                                                                                               (15) 

 
Even though Adaline algorithm looks identical to perceptron’s, it is noteworthy that the weight update is calculated based 
on all examples in the training dataset instead of updating the weights incrementally after each training example (i.e., in 
Peceptron’s algorithm). The Adaline learning rule is also referred to as batch gradient descent. 
 

 

V.  IMPLEMENTATION OF ADALINE ALGORITHM IN PYTHON  

To implement the Adaline algorithm in Python, we change the fit method in the Perceptron code provided in the Appendix 

F. The weights are updated by the minimizing the cost function using gradient descent discussed in the previous session. 

We compute the gradient based on the whole training dataset using self.eta*errors. Sum () for the zero-weight (bias 

unit), and via selt.eta*X.T.dot (errors) for the weights 1 to m, where X.T.dot (errors) represents the matrix-vector 

multiplication between the error vector and the feature matrix. 

As we can see in the resulting cost-function plots, we encountered two different of problem. The left chart in Figure 4(a) 

shows what could happen if we choose a learning rate,  𝜂 = 0.01, that is too large. Instead of minimizing the cost function, 

the error becomes larger in every epoch, because we overshoot the global minimum. Conversely, in Figure 4(b), we can 

observe that the cost function decreases and the errors become smaller for every epoch with a learning rate of 𝜂 =

0.0001. This learning rate will require us to have large number of epochs to converge to the global cost minimum. 

 



7 
 

 

Figure: 4(a) illustrates the case of choosing a learning rate that is too large 𝜂 = 0.01 and the errors become larger in every 

epoch. Figure: 4(b) illustrates the case of a well-chosen learning rate,  𝜂 = 0.0001 , where the cost decreases gradually, 

moving in the direction of the global minimum. 

 

To visualize the decision regions using the Adaline codes provided in Appendix A, we execute the code snippets and 

obtained the results in Figures 4(c, d) given as follow. 

 

Figure 4(c) A contour plot mapping the different decision regions in the two-dimensional grid array using Adaline 

Algorithm. Figure 4(d): The Plot of a declining cost function. 

We draw contour plot in Figure 4(a) via Matplotlib's contour function. This map shows various decision regions to 

different colors for each predicted class in the grid array. We can observe that, the resulting contour plots show that our 

Adaline Algorithm learned a decision boundary that was used to classify all the flower examples in the Iris data subset 

perfectly. 

As we can see in the plot in Figure 4(d), Adaline has now converged after training on the standardized features using a 

learning rate of 𝜂 = 0.01. However, note that the SSE remains non-zero even though all flower examples were classified 

correctly (Figure 4(d)). 
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                                                                                 VI. CONCLUSION 

We demonstrated the basic principle of linear classification algorithms in Python with a special focus on the Perceptron 

and Adaline algorithms. The Iris dataset was used to train these algorithms, and Spyder Interactive Development 

Environment was used to implement the Python codes. We also explore how the tuning parameters, 𝜂 and epochs, affect 

the cost function, and the convergence of both algorithms. In overall, the algorithms learned the decision boundary and 

classified all the flower examples in the Iris dataset perfectly. This brief tutorial aims to provide the foundation for 

understanding single-layer Neutral Network in preparation for more sophisticated Multi-layer Neural Networks.  
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Appendix A: Code snippets used to load the Iris Dataset and generate the scatter plot in Figure 2(a). 
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Appendix B: Code snippets used to generate plot in Figure 2(c) 
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Appendix C: Code Snippets used to generate the contour map in Figure 2(e). 
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Appendix D: Code Snippets used to generate the contour map in Figure 2(b) and 2(d). 
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Appendix E: Code Snippets used to generate the contour map in Figure 2(f). 
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Appendix F: Code Snippets used to generate the contour map in Figures 4(a - d). 
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