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tureI. CahitNear East Universityemail: i
ahit�gmail.
omAbstra
tIn this paper we have given an algorithmi
 proof of an long standingBarnette's 
onje
ture (1969) that every 3-
onne
ted bipartite 
ubi
 pla-nar graph is hamiltonian. Our method is quite di�erent than the knownapproa
hes and it rely on the operation of opening disjoint 
hambers, byusing spiral-
hain like movement of the outer-
y
le elasti
-sti
ky edges ofthe 
ubi
 planar graph. In fa
t we have shown that in hamiltoni
ity ofBarnette-graph a single-
hamber or double-
hamber with a bridge fa
e isenough to transform the problem into �nding spe
i�
 Hamilton path in the
ubi
 bipartite planar graph redu
ed. In the last part of the paper we havedemonstrated that, if the given 
ubi
 planar graph is non-hamiltonian,then the algorithm whi
h 
onstru
ts spiral-
hain (or double-spiral 
hain)like 
hamber shows that ex
ept one vertex there exists (n−1)-vertex 
y
le.1 Introdu
tionSpanning 
y
le of dode
ahedron is the origin of the famous Hamiltonian
y
le problem in graphs. Next is the Tait's "
onje
ture" of hamiltoni
ity of
ubi
 planar graphs whi
h has been shown to be wrong by Tutte is another waveof stimulation of resear
h area [1℄,[7℄. The best 
hara
terization of Hamiltoniangraphs was given in 1972 by Bondy and Chvátal theorem whi
h generalizesearlier results by Dira
 and Ore [2℄.Theorem 1 (Bondy and Chvátal). A graph is Hamiltonian i� its 
losure isHamiltonian.Given a graph G with n verti
es the 
losure cl(G) is uniquely 
onstru
tedfrom G by su

essively adding for all nonadja
ent pairs of verti
es u and v with
deg(u) + deg(v) ≥ n the new edge uv.In general hamiltonian 
y
le problem in graphs is NP-
omplete, and re-main NP-
omplete for perfe
t graphs, planar bipartite graphs, grid graphs, 3-
onne
ted planar graphs [2℄. However polynomial algorithm has been given byGihiba and Nishizeki (1989) for 4-
onne
ted planar graphs [3℄,[4℄,[5℄,[6℄. Hen
eour algorithm is important sin
e it shows that hamiltoni
ity of Barnette graphin linear time. 1
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y
le of dode
ahedron, spiral 
hamber and ESE path.Barnette has made the following 
onje
ture in 1969 [8℄:Conje
ture 1,(Barnette),1969). Every graph that is 3-
onne
ted, 3-regular, bipartite and planar has a hamiltonian 
y
le.Any graph satisfying the 
onditions of Conje
ture 1 is 
alled Barnette-graph.An ex
ellent survey together some new ideas on Barnette graphs has been givenby Luis de la Torre [4℄. In fa
t algorithmi
 proof given in this paper, is re-lated with an stronger 
onje
ture than Barnette's 
onje
ture whi
h is based onhamiltonian 
y
les of a list of Tutte embeddings of Barnette graphs from 8 to
16 verti
es (see Appendix A [4℄). We will give also an argument to rule outthe possibility of existen
e of Tutte's fragments in the Barnette graphs. Similarresults have been obtained using a di�erent approa
h by Kim and Lee in [9℄. First Temperley-Lieb algebras have been generalized to sl(3,C) web spa
es.Sin
e a 
ubi
 bipartite planar graph with suitable dire
tions on edges is a web,the quantum sl(3) invariants naturally extend to all 
ubi
 bipartite graph. They
ompletely 
lassify 
ubi
 bipartite planar graphs as a 
onne
ted sum of primeswebs and provide a method to �nd all prime webs and exhibit all prime web upto 20 verti
es. Goodey showed the 
onje
ture holds when all fa
es of the graphhave either 4 or 6 sides [10℄,[11℄. Feder and Subi generalize this by showing thatwhen the fa
es of su
h graph are 3-
olored, with adja
ent fa
es having di�erent
olors, if two of the three 
olor 
lasses 
ontain only fa
es with either 4 or 6, thenthe 
onje
ture holds [12℄. Kelmans has shown the following important theoremwhi
h is equivalent to Conje
ture 1 [13℄:Theorem 2 (Kelmans). (a) For every bipartite, 
ubi
, 3-
onne
ted andplanar graph G and for every edges a, b of G, belonging to the same fa
ial fa
eof G, there is a hamiltonian 
y
le in G 
ontaining a and avoiding b.(b)For every bipartite, 
ubi
, 3-
onne
ted and planar graph G and for everyedges a, b of G, belonging to the same fa
ial fa
e of G, there is a hamiltonian
y
le in G 
ontaining both a and b.Hertel has given stronger than Theorem 2 [17℄.2



Figure 2: Hamilton 
y
les in Barnette graphs.
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Theorem 3 (Hertel). Barnette's 
onje
ture holds if and only if any arbi-trary path P of length 3 that lies on a fa
e in a Barnette graph is a hamiltonian
y
le whi
h passes through the middle edge in P and avoids its leading andtrailing edges.Holton et.al., have shown that 3 
onne
ted 
ubi
 graphs with fewer than
66 verti
es are hamiltonian [14℄ together the relations of 3-
ut and essential
4-
ut with the possible smallest non-hamiltonian graphs. Aldler et.al., haveannoun
ed that through a 
omputer sear
h Conje
ture 1 is true at most for 84verti
es [15℄.2 Algorithmi
 proof of Conje
ture 1Let G be denote a 
ubi
, bipartite planar graph with n verti
es. Assumethat G drawn suitably in the plane that no edges 
rosses ea
h other. Co de-notes outer-
y
le of G, where |Co| ≥ 4. By H we denote a hamiltonian 
y
lewhi
h passes through all verti
es of G su
h that its edge set partitioned intotwo subsets E(H) = Ho ∪ Hi, where Ho = {ho,j ∈ E(Co), j = 1, 2, ..., k − 1}and Hi = {hi,j /∈ E(Co), j = 1, 2, ..., m}, n = k + m − 1. Hen
e the edge setof Co = {ho,1, ho,2, ..., ho,k−1} ∪ {de} where subs
ript e indi
ates the entran
eedge of the outer-
y
le whi
h is not in H . Hen
e the set of edges of G 
an beexpressed as

E(G) = Ho ∪ Hi ∪ Do ∪ Di ∪ {de}where the setDo denotes the door-edges remain outside of the region boundedby the hamiltonian 
y
le H and the set Di denotes the door-edges remain insidethe region bounded by the hamiltonian 
y
le H and {de} denotes the entran
edoor-edge. We also note that the number of entran
e door-edges may be morethan one for an single-
hamber. For example double-spiral shape hamiltonian
y
le H shown in Figure 5 (104) has two entran
e doors de1 and de2.De�nition 1. The 
y
le Cc = {Hi} ∪ {de}j is 
alled the 
hamber-
y
leindu
ed by the hamiltonian 
y
le H of G.If for an hamiltonian 
y
le H of G there is only one 
hamber-
y
le Cc asabove we say single-
hambered H (see Figures 1) otherwise we 
all it multi-
hambered H . It is easy to see that for any hamiltonian 
y
le H of G no twodoor-edges di and dj are adja
ent.In Figure 2 we have shown single-
hamber hamiltonian 
y
les of all Barnettegraphs from 8 to 16 verti
es. In Figure 4 we also give single-
hamber hamiltonian
y
les of all prime webs up to 20 verti
es [9℄. This gives us en
ourage to stateand prove the following:Conje
ture 2. All Barnette graphs with at most one 3-
ut have single-
hamber hamiltonian 
y
les.Clearly the restri
tion of single-
hamber hamiltonian 
y
le H in G makes4



the Conje
ture 2 easier to prove or disprove than the Conje
ture 1. That is,right from the beginning we assume that all outer-edges (ex
ept de) of Ho arereadily in the hamiltonian 
y
le H . Hen
e if x and y are the end points ofthe entran
e-edge de the hamiltonian 
y
le problem would redu
e to �nd anhamiltonian path PH(x, y) in the subgraph G1 = G \ {Ho}. In the Algorithmbelow hamiltonian path is 
onstru
ted step-by-step by stret
hing the entran
e-edge de onto the edges of the 
hamber. We will 
all this operation as addingelasti
-sti
ky edge.2.1 A possible threat to Conje
tures 1 and 2Tutte has given a 
ounterexample to Tait's 
onje
ture that all 3-
onne
ted
ubi
 planar graphs have hamiltonian 
y
les. The main element of the 
ounter-example now is known as Tutte's fragment shown in Figure 3(a) with three
riti
al verti
es x, y, z on the 
orners of the fragment. A sub-hamiltonian paths
PH(i, j) only exists if i ∈ {x, y} and j = z. Now if one 
an 
onstru
t a fragmentwith three 
orners by using only even 
y
les that would be a 
ounter-exampleboth for Conje
tures 1 and 2. Closest 
onstru
tions using only 
y
les of lengths
4 and 6 is shown in Figure 3(b) and (
) with 13 verti
es and fortunately theyfail. This is true in general, sin
e for any sub-hamiltonian path around aneven 
y
le no vertex of an even 
y
le 
an be left unvisited or end-vertex of thesub-hamiltonian path. This observation is equivalent, in the Algorithm 1, thatno two door-edges di and dj would adja
ent in the 
hamber 
y
le Cc. This isalways possible sin
e all fa
es in G are even. This is 
learly seen, then algorithmapplied for non-hamiltonian planar graphs (see Figure 5).2.2 The algorithm 
arve-
ubi
-planarLet us start with a useful Lemma.Lemma 1. Let G be a Barnette graph with a 3-
ut {a, b, c}, a, b, c ∈ E(G).That is G = G1 ∪ G2 ∪ {a, b, c}. Then in any single-
hamber hamiltonian 
y
le
H the entran
e-door edge de /∈ G1 or G2 .Proof: If the edges a, b, c are the 3-
ut, where a and c are outer-
y
le edges,then hamiltonian 
y
le H must 
ontains both a and b or both b and c. Either
ase implies another 
hamber by the entran
e-door edge de = c or de = a.Algorithm (Carve-Cubi
-Planar):Step 1: (Initial Chamber).Let G be a 3-
onne
ted, bipartite 
ubi
 planar graph. First sele
t a suitableouter-edge (see Lemma 1) for the entran
e door-edge de. Hen
e outer-edges of
G is Eo = {de, ho,1, ho,2, ..., ho,k}, where k + 1 is even. Initially the entran
edoor-edge de�nes a fa
ial 
y
le (fa
e) Cc,1 = {de, ein,1, ein,2, ..., ein,r}. Sin
e
|Cc,1| is even we 
an rewrite its edges as Cc,j = {de, hin,1, ein,2, hin,3, ..., hin,r}.That is ein,j = hin,j , j = 1, 3, ..., r be
omes subset of internal hamiltonian edgesand ein,j = din,j , j = 2, 4, ..., r − 1 be
omes internal door-edges. Hen
e H =
{Ho ∪Hin,c1} where Hin,c1 is the set of internal hamiltonian 
y
le edges of the5
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Figure 3: (a) The Tutte's fragment, (b),(
) unsu
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107 108Figure 4: Hamiltonian 
y
les under the quantum sl(3) invariants of Barnettegraphs up to 20 verti
es.
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3-cut no.1

3-cut no.2Figure 5: Hamiltonian 
y
les in double-spiral shape of web 104 and two edgedisjoints 3-
uts, the bridge fa
e is shown in dark-gray.
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hamber Cc de�ned by de. Similarly let Din,c1 be the set of door-edges de�nedby de.Step 2: (Kno
k-the door and enter).Repeat Step 1 for ea
h door-edge di ∈ Din,c1. If the fa
e (
y
le) de�ned by door-edge di 
ontains an edge that share a 
y
le from the set Ho then we put the edgeinto the set of internal hamiltonian edges. That is H = {Ho ∪ Hin,c1 ∪ Hin,di
},

di ∈ Din,c1. If the door-edge di de�nes a fa
e (
y
le) Ci has an edge e whi
hshare a 
y
le Cj with an outer-hamiltonian edge and with another door-edge:
Ci = {e, di, ...}, Cj = {e, hoj, dj , ...}, e = {Ci ∩ Cj}, hoj ∈ Ho, di 6= dj Thenput the edge e and door-edge into the set Hi. That is we 
all the 
y
le (fa
e)as the bridge-fa
e in the hamiltonian 
y
le H (see Figure 5). This situationarises when G has two edge-disjoint 3-
uts . Algorithm 
ontinue from the dooredge dj . If |H | = n then we have entered all fa
es through the door-edges anda hamiltonian 
y
le has been found. Otherwise we repeat Step 1 for the otherdoor-edges in the other levels. Note here that we have not sele
ted adja
entdoor-edges.Illustration of algorithm is shown in Figure 6.Theorem 4. Let G be any 
ubi
, 3-
onne
ted, bipartite planar graph G.Then the Algorithm "Carve-Cubi
-Planar" always terminate with an hamilto-nian 
y
le H of G.Proof. Let us assume that algorithm CCP has not produ
ed a hamiltonian
y
le H . Then there must be a vertex vx /∈ H and vx must be exa
tly in threefa
ial 
y
les C1, C2 and C3. Without loss of generality assume that step "kno
k-the door and enter" has been performed for C1 before C2 and C3. Then theremust be two verti
es vy and vz of C1 su
h that (vx, vy), (vx, vz) ∈ C1. Then wesee that both edges would be door-edges and the 
y
le C1 is odd.3 Non-hamiltonian 3-
onne
ted 
ubi
 planar graphsHolton et.al., have shown that all 3-
onne
ted 
ubi
 planar graphs on 36 orfewer verti
es are hamiltonian and the only non-hamiltonian examples on 38verti
es whi
h are not 
y
li
ally 4-
onne
ted are the six graphs whi
h have beenfound by Lederberg, Barnette and Bosák [16℄. We have shown non-hamiltonian
ubi
 planar graphs with 42, 46 and 44 verti
es in Figure 7 [16℄ together with
y
les of length n−1. As shown in Figures 7(a) and (b), if we 
hoose right-dooredges in the 
hamber 
y
les in the algorithm the resulting longest 
y
les arein the shape of spiral S. We 
an alternatively sele
t two entran
e door edgessymmetri
ally, the algorithm again results an (n − 1)-vertex 
y
le in the forumof a double-spiral S1 and S2.Theorem 5. For every non-hamiltonian 3-
onne
ted 
ubi
 planar graph,Algorithm 1 terminates with a 
y
le of length n − 1.4 Con
luding remarksIn this paper we have given an algorithmi
 proof of Barnette's 
onje
ture9
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ho,3Figure 6: Implementation of Algorithm Carve-Cubi
-Planar.that all 3-
onne
ted bipartite 
ubi
 planar graphs is hamiltonian. The algo-rithm given for this, whi
h we 
alled "
arve-
ubi
-planar" has some interestingfeatures: First of all it delete the edges (door-edges) in the expanding 
hamber
y
le that will not be in the hamiltonian 
y
le. Se
ondly by sele
ting spe
i�
 en-tran
e door-edge for the 
hamber, all outer-edges of the graph be
omes edges ofthe seeking hamiltonian 
y
le and hen
e the problem redu
ed of �nding hamilto-nian path in the remaining 
ubi
 planar graph. Lastly hamiltonian 
y
le as seena 
hain of fa
es by the algorithm would look like a spiral. This has been parti
-ularly demonstrated through the examples of non-hamiltoni
ity of 3-
onne
ted
ubi
 planar graphs. Sin
e spiral-
hain 
oloring algorithm has been uni�ed forthe solution of several graph 
oloring problems [18℄, it may as well be used inthe solution of other problems related hamiltonian 
y
les of planar graphs ingeneral [19℄.
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(c) NH44Figure 7: Some non-hamiltonian 
ubi
 planar graphs.
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