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Abstract. We show that in any subset of vertices of the n-dimensional cube which contains at least
2n−1 +1 vertices (n ≥ 4), there are four vertices that induce a claw, or there are eight vertices that induce
the cycle of length eight.

We consider finite graphs G = (V, E) with vertex set V and edge set E. The graphs contain no
multiple edges or loops. The n-dimensional cube is denoted by Qn, and a claw is the complete bipartite
graph K1,3. Moreover, the vertex of a degree three in a claw is called a claw-center. Non-defined terms
and concepts can be found in [1].

The main result of the paper is the following:

Theorem 1.Let n ≥ 4 and let V ′ ⊆ V (Qn). If |V ′| ≥ 2n−1 + 1, then at least one of the following two
conditions holds:

(a) there are four vertices in V ′ that induce a claw;

(b) there are eight vertices in V ′ that induce a simple cycle.

Proof. Our proof is by induction on n. Suppose that n = 4. Clearly, without loss of generality, we can
assume that |V ′| = 9. Consider the following partition of the vertices of Q4:

V1 = {(0, α2, α3, α4) : αi ∈ {0, 1}, 2 ≤ i ≤ 4}, V2 = {(1, α2, α3, α4) : αi ∈ {0, 1}, 2 ≤ i ≤ 4}.
Clearly, the subgraphs of Q4 induced by V1 and V2 are isomorphic to Q3. Define:

V ′
1 = V1 ∩ V ′, V ′

2 = V2 ∩ V ′.

We shall assume that |V ′
1 | ≥ |V ′

2 |. We shall complete the proof of the base of induction by considering the
following cases:

Case 1: |V ′
1 | = 8 and |V ′

2 | = 1. Clearly, any vertex from V ′
1 is a claw-center.

Case 2: |V ′
1 | = 7 and |V ′

2 | = 2. It is not hard to see that V ′
1 contains a claw-center.

Case 3: |V ′
1 | = 6 and |V ′

2 | = 3. Again, it is a matter of direct verification that V ′ contains a claw-center.
Case 4: |V ′

1 | = 5 and |V ′
2 | = 4. Consider the subgraph G1 of Q4 induced by V ′

1 . Clearly, if G1 contains
a vertex of a degree three, then this vertex is a claw-center. Therefore, without loss of generality, we can
assume that any vertex in G1 has a degree at most two. It is not hard to see that this implies that G1

contains no isolated vertex. Moreover, since |V ′
1 | = 5, we can conclude that G1 is a connected graph, and,

consequently, it is the path of length four.
Now, let a1, a2, a3 be the internal vertices of G1, and let b1, b2 be the end-vertices of G1. Clearly, we

can assume that neither of a1, a2, a3 has a neighbour in V ′
2 . Since |V2| = 8 and |V ′

2 | = 4, we have that
there are five possibilities for V ′

2 . We invite the reader to check that in four of these cases one can find a
claw-center in V ′

2 , and in the final case V ′ has a vertex z such that V ′\{z} induces a simple cycle.
Now, let us assume that the statement is true for n− 1, and a subset V ′ of the vertices of Qn satisfies

the inequality |V ′| ≥ 2n−1 + 1. Consider the following partition of the vertices of Qn:

V1 = {(0, α2, ..., αn) : αi ∈ {0, 1}, 2 ≤ i ≤ n}, V2 = {(1, α2, ..., αn) : αi ∈ {0, 1}, 2 ≤ i ≤ n}.
Clearly, the subgraphs of Qn induced by V1 and V2 are isomorphic to Qn−1. Moreover, it is not hard to
see that at least one of the following two inequalities is true: |V1∩V ′| ≥ 2n−2 +1 and |V2∩V ′| ≥ 2n−2 +1.
Thus the proof follows from the induction hypothesis. ¤
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For the case of n = 3 we have:

Proposition 1.Let V ′ ⊆ V (Q3) and let |V ′| ≥ 6. Then at least one of the following two conditions holds:

• there are four vertices in V ′ that induce a claw;

• there are six vertices in V ′ that induce a simple cycle.
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