On a property of the n-dimensional cube

Rafayel Kamalian ${ }^{1}$, Arpine Khachatryan ${ }^{2}$

Abstract

We show that in any subset of vertices of the n-dimensional cube which contains at least $2^{n-1}+1$ vertices $(n \geq 4)$, there are four vertices that induce a claw, or there are eight vertices that induce the cycle of length eight.

We consider finite graphs $G=(V, E)$ with vertex set V and edge set E. The graphs contain no multiple edges or loops. The n-dimensional cube is denoted by Q_{n}, and a claw is the complete bipartite graph $K_{1,3}$. Moreover, the vertex of a degree three in a claw is called a claw-center. Non-defined terms and concepts can be found in [1].

The main result of the paper is the following:
Theorem 1. Let $n \geq 4$ and let $V^{\prime} \subseteq V\left(Q_{n}\right)$. If $\left|V^{\prime}\right| \geq 2^{n-1}+1$, then at least one of the following two conditions holds:
(a) there are four vertices in V^{\prime} that induce a claw;
(b) there are eight vertices in V^{\prime} that induce a simple cycle.

Proof. Our proof is by induction on n. Suppose that $n=4$. Clearly, without loss of generality, we can assume that $\left|V^{\prime}\right|=9$. Consider the following partition of the vertices of Q_{4} :

$$
V_{1}=\left\{\left(0, \alpha_{2}, \alpha_{3}, \alpha_{4}\right): \alpha_{i} \in\{0,1\}, 2 \leq i \leq 4\right\}, V_{2}=\left\{\left(1, \alpha_{2}, \alpha_{3}, \alpha_{4}\right): \alpha_{i} \in\{0,1\}, 2 \leq i \leq 4\right\} .
$$

Clearly, the subgraphs of Q_{4} induced by V_{1} and V_{2} are isomorphic to Q_{3}. Define:

$$
V_{1}^{\prime}=V_{1} \cap V^{\prime}, V_{2}^{\prime}=V_{2} \cap V^{\prime} .
$$

We shall assume that $\left|V_{1}^{\prime}\right| \geq\left|V_{2}^{\prime}\right|$. We shall complete the proof of the base of induction by considering the following cases:

Case 1: $\left|V_{1}^{\prime}\right|=8$ and $\left|V_{2}^{\prime}\right|=1$. Clearly, any vertex from V_{1}^{\prime} is a claw-center.
Case 2: $\left|V_{1}^{\prime}\right|=7$ and $\left|V_{2}^{\prime}\right|=2$. It is not hard to see that V_{1}^{\prime} contains a claw-center.
Case 3: $\left|V_{1}^{\prime}\right|=6$ and $\left|V_{2}^{\prime}\right|=3$. Again, it is a matter of direct verification that V^{\prime} contains a claw-center.
Case 4: $\left|V_{1}^{\prime}\right|=5$ and $\left|V_{2}^{\prime}\right|=4$. Consider the subgraph G_{1} of Q_{4} induced by V_{1}^{\prime}. Clearly, if G_{1} contains a vertex of a degree three, then this vertex is a claw-center. Therefore, without loss of generality, we can assume that any vertex in G_{1} has a degree at most two. It is not hard to see that this implies that G_{1} contains no isolated vertex. Moreover, since $\left|V_{1}^{\prime}\right|=5$, we can conclude that G_{1} is a connected graph, and, consequently, it is the path of length four.

Now, let a_{1}, a_{2}, a_{3} be the internal vertices of G_{1}, and let b_{1}, b_{2} be the end-vertices of G_{1}. Clearly, we can assume that neither of a_{1}, a_{2}, a_{3} has a neighbour in V_{2}^{\prime}. Since $\left|V_{2}\right|=8$ and $\left|V_{2}^{\prime}\right|=4$, we have that there are five possibilities for V_{2}^{\prime}. We invite the reader to check that in four of these cases one can find a claw-center in V_{2}^{\prime}, and in the final case V^{\prime} has a vertex z such that $V^{\prime} \backslash\{z\}$ induces a simple cycle.

Now, let us assume that the statement is true for $n-1$, and a subset V^{\prime} of the vertices of Q_{n} satisfies the inequality $\left|V^{\prime}\right| \geq 2^{n-1}+1$. Consider the following partition of the vertices of Q_{n} :

$$
V_{1}=\left\{\left(0, \alpha_{2}, \ldots, \alpha_{n}\right): \alpha_{i} \in\{0,1\}, 2 \leq i \leq n\right\}, V_{2}=\left\{\left(1, \alpha_{2}, \ldots, \alpha_{n}\right): \alpha_{i} \in\{0,1\}, 2 \leq i \leq n\right\} .
$$

Clearly, the subgraphs of Q_{n} induced by V_{1} and V_{2} are isomorphic to Q_{n-1}. Moreover, it is not hard to see that at least one of the following two inequalities is true: $\left|V_{1} \cap V^{\prime}\right| \geq 2^{n-2}+1$ and $\left|V_{2} \cap V^{\prime}\right| \geq 2^{n-2}+1$. Thus the proof follows from the induction hypothesis.

For the case of $n=3$ we have:

Proposition 1. Let $V^{\prime} \subseteq V\left(Q_{3}\right)$ and let $\left|V^{\prime}\right| \geq 6$. Then at least one of the following two conditions holds:

- there are four vertices in V^{\prime} that induce a claw;
- there are six vertices in V^{\prime} that induce a simple cycle.

Acknowledgement. We would like to thank Zhora Nikoghosyan and Vahan Mkrtchyan for their attention to this work.

References

[1] West D.B. Introduction to Graph Theory. Prentice-Hall, New Jersey, 1996.
${ }^{1}$ Institute for Informatics and Automation Problems, National Academy of Sciences of the Republic of Armenia, 0014, Armenia, email: rrkamalian@yahoo.com
${ }^{2}$ Ijevan Branch of Yerevan State University, 4001, Armenia, email: khachatryanarpine@gmail.com

