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We theoretically analyze the anisotropic magnetoresist§d AMR) efects of bce Fe«), fcc Co @),
fcc Ni (+), FeN (-), and a half-metallic ferromagnet). The sign in each ( ) represents the sign of
the AMR ratio observed experimentally. We here use the twoetit model for a system consisting of a
spin-polarized conduction state and localized d statdsspitn—orbit interaction. From the model, we first
derive a general expression of the AMR ratio. The expressisists of a resistivity of the conduction
state of ther spin ( =1 or ), ps,, and resistivities due to s—d scattering processes fromdhduction
state to the localized d states. On the basis of this expressie next find a relation between the sign
of the AMR ratio and the s—d scattering process. In additiam obtain expressions of the AMR ratios
appropriate to the respective materials. Using the exjmesswe evaluate their AMR ratios, where the
expressions take into account the valuep9fps of the respective materials. The evaluated AMR ratios
correspond well to the experimental results.

KEYWORDS: anisotropic magnetoresistance effect, weak ferromagnet, strong ferromagnet, half-metallic
ferromagnet, spin—orbit interaction, s—d scattering, spin-polarized conduction electron, two-
current model

1. Introduction ing temperature. For such ferromagnets, however, theateti
The anisotropic magnetoresistance (AMRjeet19) jn  Studies to systematically explain their AMR ratios haverbee

which the electrical resistivity depends on the relativglan Scarce so far. In particular, a feature that stronglgdas the

between the magnetization direction and the electric oarreSign of the AMR ratio has not yet been revealed.

direction, is one of the most fundamental characteristies i  Theoretically, expressions of the AMR ratio have been de-

volving magnetic and transport properties. The AMReet rived by taking into account a resistivity due to the s—d scat
; : : L ingl34.7,9,10,12, 18 hi :

has been therefore investigated for various magnetic inatef€ng: 218 his scattering represents that the con-

als. In particular, the AMR ratio has been measured to evdluction electron is scattered into the localized d stateisnby

uate the amplitude of theffect. The AMR ratio is generally Purities. The d states have exchange field and spin-orbit
defined as interaction, i.e.AL - S, whereA is the spin—orbit coupling con-

Ao pi—pr stant,L (=Lx,. Ly, L) i; the orbital angular momentum, agd
—_ = (1) (=Sx Sy, Sy)isthe spin angular momentum. Here, the d states
P pL are spin-mixed owing to the spin—orbit interaction.
wherep; (0.) represents a resistivity for the case of the elec- The applicable scope of the previous theories, however, ap-
trical current parallel to the magnetization (a resisyititr the  pears to be limited to specific materials because only the par
case of the current perpendicular to the magnetizatiom)eTa tial components in the whole resistivities have been adbpte
I shows the experimental values of the AMR ratios of typFor example, Campbell, Fert, and J&(CFJ) derived an ex-

ical ferromagnets, i.e., body-centered cubic (bcc) Face-  pression of the AMR ratio of a strong ferromagiesuch as
centered cubic (fcc) CB, fcc Ni,® FeN, 61" and the half- Ni-based alloys, i.6-?

metallic ferromagnet!~1® Here, bce Fe is categorized as a A

weak ferromagnet?) in which its majority-spin d band is not 2P e -1), (2)

filled (see Fig. 1(a)). In contrast, fcc Co, fcc Ni, and,Neaare p

strong ferromagnets) in which their majority-spin d band is with y = (3/4)(1/Hex)? anda ~ ps_q,/ps- 2% Here ps, was a

filled (see Fig. 1(b)). In addition, the half-metallic femag- resistivity of the conduction state (namedsy®f the o spin,

net is defined as having a finite density of states (DOS) at théith o- =1 or |. In addition,ps 4. Was a resistivity due to the

Fermi energyEr in one spin channel and a zero DOSEatn  s—d scattering, in which the conduction electron was seatte

the other spin channel (see Figs. 1(d) and 1(e)). As remarikto the localized d states of tkespin by impurities. The

able points, F& Co® and NP exhibited positive AMR ra- spin represented the spin of the dominant state in the spin-

tios, while F@N'® ) and the half-metallic ferromagnéts'®  mixed state, where the up spig €1) and down sping =)

showed negative AMR ratios. Furthermore, in the case ofeant the majority spin and the minority spin, respectively

Fe3041213 of the half-metallic ferromagnet, the sign of theNote that the CFJ model adopted oply andps .q; on the

AMR ratio changed from negative to positive with increasbasis of scattering processes between the dominant states a
Er. The processes wess!— s1,sT—d |, ands |- d |,?

“E-mail address: tskokad@ipc.shizuoka.ac jp wheress — so represented the scattering process between
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Table I. AMR ratiops; /ps and Did)/ng) of the various ferromagnets. The AMR ratios represent éxygrtal values. Note that for every material except
for FeN, the AMR ratio defined in each papetamr = (o — p.)/[(0)/3) + (20,/3)], has been transformed intip/p of eq. (1) by usingAp/p =
3xamr /(xamr +3). The ratiops; /ps;’s of bee Fe, fee Co, fee Ni, and k8l are the respective theoretical values evaluated fronysesiusing a combination
of the first principles calculation and the Kubo formula. TFHB%d)/Did)’s are roughly estimated from the respectDEf/Dgf’s. Here,ng) is the DOS of
each d state of the spin atEg (see eq. (27)), whel‘égd) is set to beng) = Dﬁ)q by ignoringM for Dg\',lj)q of eq. (B18). In addition,Dgf is the partial DOS
of the d band aEr obtained by the first principles calculation. In a simpleertyeDst> = Z%/I:—Z D(h‘j)g is realized. The ratiogs /ps’s and D%d)/D(Ld)’s of the

half-metallic ferromagnets are, respectively, assuméwht@ps, /ps; — 0 or co and D%d)/Did) — 0 or oo, judging from the DOS's akEr of Figs. 1(d) and
1(e).

Category Material AMR ratia\p/p (experimental value) Psi/Pst D%d) / Did)
Weak ferromagné?) bce Fe 0.0030 at 300 K (ref. 8) 381071 (ref. 22)  ~ 2.0 (ref. 39)
Strong ferromagn@?t) fcc Co 0.020 at 300 K (ref. 8) 7.3 (ref. 22) ~ 0 (ref. 40)
fcc Ni 0.022 at 300 K (ref. 8) 1.6 10 (ref. 23) ~ 0 (ref. 41)
FeN —0.043 --0.005 for 4.2 K - 300 K (ref. 16) 1.6 1073 (ref. 25) ~ 0.2 (ref. 42)
—0.07 --0.005 for 4 K - 300 K (ref. 17)
Half-metallic ferromagnet  GdMnAl;_4Six  —0.003 --0.002 at 4.2 K (ref. 11) — o0 — o0
Lag7Sr53MnO3 —0.0015 at 4 K (ref. 15) — 00 — 00
Lag7Cap3MnO3  —-0.0012 at 75 K (ref. 12) — o0 — o0
—0.004 at 100 K (ref. 14)
Fe304 —0.005 - 0.005 for 100 K - 300 K (refs. 12 and 13)~ 0 ~0

the conduction states of the spin, whiles- — dg¢ was the s attributed to the fact that the s and p states are coupltbéto
scattering process from the conduction state ofcttepin to  d states with exchange splitting through the transfer natisg
the o spin state in the localized d states of thespin. On  Second, in the case of the half-metallic ferromagnet, the ex
the other hand, Malozenid' 19 extended the CFJ model to pressions of the resistivities should take into accounsfiie
a more general model which was applicable to the weak fedependence of theffective mass and the number density of
romagnet as well as the strong ferromagnet. This model todke electrons in the conduction band.
into accounpsgy, ps;, Ps—dr, @Ndps,q; 0N the basis of the scat-  In this paper, we first derived general expressions of the
tering processes &1— s1,sT—dT,sT—>d|,s]— s, resistivities and the AMR ratio. We here treajed/ps as a
sl— d |, ands |— d 7. In the actual application to mate- variable and took into account the spin dependence of the ef-
rials, however, he often used an expression of the AMR ratfective mass and the number density of the electrons in the
with ps; = pg, = ps,>i.e., conduction band. Second, on the basis of the expressions,
A 7 3 )2 we roughly determined a relation between the sign of the
20 VPsodl ~ Psodi , (3) AMR ratio and the dominant s—d scattering process. Namely,
P (ps+pssdan)(Es + psody) when the dominant s—d scattering process waks— d |
which was always positive. Equation (3) was an expressi@r s |— d T, the AMR ratio tended to become positive.
for the weak ferromagnet, while Eq. (3) with,¢y = O was In contrast, when the dominant s—d scattering process was
that for the strong ferromagnet. st—>dTors |- d |, the AMR ratio tended to be nega-
Furthermore, we point out a problem, namely, that the prdive. Finally, using the expression of the AMR ratio, we sys-
vious theories have not taken into account the spin depetematically analyzed the AMR ratios of Fe, Co, NisNeand
dence of the fective mass and the number density of electhe half-metallic ferromagnet. The evaluated AMR ratios co
trons in the conduction band in expressions of the resistiviiesponded well with the respective experimental resutts. |
ties. For example, the half-metallic ferromagnets whickeha addition, the sign change of the AMR ratio of 382 could
the DOS’s of Figs. 1(d) and 1(e) may show significant spibe explained by considering the increase of the majority spi
dependence. DOS atEg.
On the basis of this situation, we suggest improvements The present paper is organized as follows§2nwe derive
for a systematic analysis of the AMRrects of various ferro- general expressions of the resistivities and the AMR rafte.
magnets. First, the expression of the AMR ratio should tre#iten find the relation between the sign of the AMR ratio and
psi/psy @s a variable. The reason is that/ps actually de- the s—d scattering process.§8 and§4, from the general ex-
pends strongly on the materials (see Table I). Namelyps;  pression, we obtain expressions of AMR ratio appropriate to
has been evaluated to be %80! for bcc Fe?? 7.3 for fcc  the respective materials. Using the expressions, we amalyz
Co022 1.0x 10 for fcc NiZ32¥and 1.6x 1073 for Fe4N,2>28  their AMR ratios. Concluding remarks are presented ir§the
from analyses using a combination of the first principles caln the Appendix A, we obtain wave functions of the localized
culation and the Kubo formula within the semiclassical apd states (i.e., the spin-mixed states) from a single atomeinod
proximation. The half-metallic ferromagnet is also assdmethat involves the spin—orbit interaction. In Appendixes rigla
to haveps, /ps ~ 0 0rps; /pst — oo. Itis noteworthy here that C, we derive expressions of s—d and s—s scattering rates, re-
the conduction state (callexin suffixes ofps,) is considered spectively. In the Appendix D, we show matrix elements in
to consist of not only the s and p states but also the conductithe s—d scattering rate. Some parameters are formulated in t
d state. In addition, the exchange splitting of the s andtgsta Appendix E.
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E E bitals® The d orbitals are obtained by applying a perturbation

theory to a Hamiltonian for the d electron in a single at@im,

H=Ho+H', 4)

EE ———I —E 52

\ d \ d 7’{0 = —EVZ + V(r) + Hesz, (5)

s p “~sp H =AL-S. (6)
Here, the unperturbed termily is the Hamiltonian for the

) hydrogen-like atom with Zeeman interaction due Hgy,

(a) bcc Fe (b) fcc Co and fcc Ni

whereHgy is the exchange field of the ferromagneg, is the

E electron mass, antlis the Planck constaiiit divided by 2r.

The termV/(r) is a spherically symmetric potential energy of
the d orbitals created by a nucleus and core electrons, with
r = |r|, wherer is the position vector. The perturbed term
H’ is the spin—orbit interaction withl/Hey < 1. Here, the
azimuthal quantum numbérand the spin quantum number
~_ S are chosen to be=2 andS=1/2, respectively. From this
model, we obtain the spin-mixed states within the second-
order perturbation (see Appendix A).

(c) FaiN 2.2 Resistivity

Using the localized d states and the conduction state, we

by, Of Fe (B) can obtain the resistivity for the case of a parallgldr per-
Fe (A) pendicular () configuration. As a starting point, we consider
E the two-current modél) composed of the up spin and down
E, e, of Fe (B) spin current components. In addition, this model is impdove
by including the spin-flip scattering, which is due to, for ex

y: Fe (A) ample, spin-dependent disoréef® and magnor?3Y The
d resistivity of ¢ configurationp, (¢ =|| or L) is then written
as?

PerPel t PeapPe it T PPt

(d) Half-metallic ferromagnet  (e) B®, (half-metallic ferromagnet) pe = T S
peq +pe + A+ @)per + (L+a e

(7)

Fig. 1. Schematic illustration of the density of states (@Bthe vari- with
ous ferromagnets. (a) The partial DOS of bc@¥F¥) of the weak fer- i}
romagnet. (b) The partial DOS of fcc ¢ and fcc N#44Y of the m, ®)

strong ferromagnet. (c) The partial DOS of s88%42 of the strong Pto = N €27,

ferromagnet. (d) The DOS of the half-metallic ferromagnatts as ’

CoMnAl1_,Siy,* Lag7Sih3Mn03,4>49) and La7Ca3Mn03.47) (e) _ m, 9
The DOS of Fg045253) of the half-metallic ferromagnet. In (a) - (c), light- Ptoo = Y=T— I 9)
gray areas (dark-gray areas) correspond to the sp band D@$ ¢hand

DOS). The sp band is partly covered by the d band (see lightasan the mI M

d band). The d band consists of the conductive and localizetdtds, and a= . (10)
the respective portions are unspecified here. In (d) andi) the DOS’s mT !

in the vicinity of Er (i.e., the d band DOS) are shown. In (e), Fe (A) andvvhei-ep[(r is a resistivity of theor spin state for the® con-
Fe (B) denotes sublattices, agg andt,y are 3d orbitals of the Fe iot®) figuratiohl& 31,33-37\yhile Otoor (0_ + 0”) is a resistivity due
to the spin-flip scattering process from thespin state to the
o’ spin state for the& configuration. It is noted that eq. (7)
2. Theory with p, =0 corresponds to the resistivity of the two-current

We derive general expressions of resistivities due to elef10del. The constargis the electronic charge, amg ()
tron scattering by nonmagnetic impurities and then obtainig the number densﬁ_fr %) (the efective ”_133%8)) of the elec-
general expression of the AMR ratio. On the basis of theresi§0ns in the conduction band of the spin, where the con-
tivities and the AMR ratio, we explain a feature of the AMRduction band consists of the s, p, and conductive d stat&s. Th

effect. In addition, we find a relation between the sign of thguantityr,,, is a relaxation time of the conduction electron of
AMR ratio and the scattering process. the o spin for the! configuration, and .. is a relaxation

time of the spin-flip scattering process from thespin state
21 Model to theo” spin state for thé configuration. The scattering rate

Following the Smit modél and the CFJ modél,we use a 1/7e, is expressed 48)

simple model consisting of the conduction state and thddoca 1 1 2 1
ized d states. The conduction state is represented by a plane e + Z Z o (11)
wave, while the localized d states are described by a tight- b 7 M=—2¢=1.1 Tsr—dMg

binding model, i.e., the linear combination of atomic d or-
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Here,rs, is a relaxation time of the conduction state of theaerings, respectively. The quanti is the matrix element of

o spin, where this state consists of the s, p, and conductithee impurity potential for the s—s scattering (see eg4)(¢

d states. In add|t|onr“) LdMe is a relaxation time of the s—d while Vs, _q, is that for the s—d scattering (see eqs.1®,
scattering for the conﬂguratlon. This s—d scattering meangB-17), and (A11), and Appendix D), wherle . is the Fermi
that the conduction electron of thespin is scattered into “the wavevector of ther spin in the current direction. Here, each
o spin state in the localized d state Mfand¢” by nonmag- impurity is assumed to have a spherically symmetric scatter
netic impurities. The quantitie®l (M = -2, -1, 0, 1, 2) and ing potential which acts only over a short range. The quantit
s (¢ =7 or]) are, respectively, the magnetic quantum numbed,’ % is the DOS of the conduction state of ihespin atEr (see
and the spin of the dominant state |n the spin-mixed state (seq. (G5)), andD(d) is that of the d state d¥ and¢ atEr (see
Appendix A). The expressions of/'&S‘HdNIS and ¥rs, are eq. (B18)). FurthermorenImp is the impurity density, andil,

derived in Appendixes B and C, respectively. is the number of the nearest-neighbor host atoms around the
Using egs. (BL7), (A1) - (A-10), and (D1) - (D-3), we impurity (see eq. (B.4)).
obtainp, - of eq. (8) as When theM dependence dbﬁf,’,)g in eq. (20) is ignored in a
it = pst + 2ypsioans + (1 - 2Y)pstodors (12) conventional manné¥,egs. (12) - (15) become
P = pst + (1= 2y)psi-doy + 2yPsi—d-11, (13) P11 = Pst + 2yPsidy + (L= 20)psioar, - (22)
L7 LY L3 piL = pst + (L= 2y)psi-d + 2ypsi»ar,  (23)
P11 = Pst T 5Ps1-d1l T 5Ps1-d-1) T 5Pst—d27
2 2 8 pLt = Ppst + Ypst—dl + (L= ¥)pstodrs (24)
+g (1 - gy) Pstd-21 + % (1-2y)psiodo,  (14) P11 =pst + (1= ¥)psidl + YPsi-ars (25)
respectively, with
. 3 N 3 ( 1 4 ) P Y n
PLl = Ps| 8p3l‘>d*2l 8 3’}/ Psl—d2] ps(r—>dg — ez (% , (26)
1 y y N, Tsor—ds
+- (1= 2y) psj—doy, + 5Psi—dit + 5Psi-d-115 (15) 1 21
4 2 2" = NimpNolVer—ar"D, (27)
with Tsrods
3/ 1 \2 wherey, ps, and|VS(Hd(,|j are given by egs. (16), (17), and
Y= (H_) (16) (21), respectively. Her® is the DOS of each d state of the
e s spin atEe, whereD is set to beD{” = D)), by ignoring
M M for DI of eq. (B18).
L (17) we Of ed. (B18)
B m;, (18) 2.3 AMR ratio
Per—dMs = No€Tsr—dMc Using egs. (1), (7), and (22) - (25), we obtain the general
1 21 expression of the AMR ratio as
a = fnlmp|vs| D(s) (19) % B A+B o8
=y ; (28)
1 2 2H@ p cb
TordMe = ;nimpNn|V&r—>d(r| DM,;, (20) with
Ver—aol? = A= (st = pstan) X
2
% Vimp(Rn) f f f R()(Z - x?) exp(ike.+2) dxdydzl . {(pSi + psi-d)(Psy + Psi-dy + P11~ P11)
(21)

_ +|@+a)or, + (1 +app| (s, + psia + Pn)}’ (29)
Here, terms higher than the second orderigHcx have

been ignored. Accordingly, terms witps,.ac in €9s. (12) - B = (ot — psydy) X
(15) correspond to terms obtained from only the $hsipin-
mixing mechanisth® with (1/2)(L,S- + L_S.) (see Ap-
pendix A). In contrast, terms related to the,S, operator
have been eliminated. A resistivity of the conduction stdte
the o spin,ps, is due to the s—s scattering, in which the con-  + [(1 +a)or +(1+ a‘l)p“] (ost + Psp—dp + p”)}, (30)
duction electron of the- spin is scattered into the conduction

state of ther spin by nonmagnetic impurities (see AppendixC = (os; + Pst—ar)(0s) + Psi—dl +P11) + (Os, + Psi—dL)OT1s
C). In addition ps,_,dmc IS a resistivity due to the s—d scatter- (31)
ing. The s—d scattering means that the conduction elecfron o

theo spin is scattered into “the spin state in the localized d D = ps; + psydr + sy + Psi—d, + (L + @)y + (1 +a” )p”,
state ofM andg” by the impurities, wheréM andg are as ex- (32)
plained above (see Appendixes A and B). The quantities

andrs,.dme are the relaxation times of the s—s and s—d scat-

{(psT + psi—an) (st + Psisdr + P11~ PLT)
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Table Il. s—d scattering terms jn of egs. (12) - (15) or egs. (22) - (25). The configuratida ¢ =|| or L, ando is o =7 or |. The terms wittps, ,dams are
listed for eachm. Here,mis the magnetic quantum number of the d orbtal-(r), wheregm(r) corresponds to the final state in the s—d scattering process
(see egs. (A) - (A-10)). For eaclp,, terms withps,_,qm; are written in the upper line, while those with,_.qmq are given in the lower line. For each
line, the summation of the s—d scattering terms is writtethénright-hand column, wheygy, qwm¢ iS put to beos,—dme = Psr—de-

m=-2 m=0 m=2 Summation
il 2ypstdiy 2ypsp-dy
(1 -2y)pstdor (1-2y)psr—dr
Pl (1= 2y)ps)>doy (1-2y)psi-dy
2yps|—»d-11 2yps|—dr
y Y
PLY  3Pst-d-1l 2Ps1-d1l YPs1—dl
3 (1 - %7) psiod-2t 3 (1=2Y)psmdor  3Pst—d2 (1= 7)pst—dr
PLl  Epsiod-2) 1(1-2)pgoa0r 3 (1 - %7) psi—d2y (1= 7)psi—dy
%paﬁdflr %Pswdn YPs|—dt
m, : @ 2 i
Do = eziv (33) Here, Uqﬁm(,(r)d)Mg(r)dr is adopted on the basis of the
NG€ Ty ,

N L . scattering rate irnps,q. (see Appendix B), andgﬁ,l}2
wherepy, (o # o) is aresistivity due to the spin-flip scat- ., mes from that in the right-hand side of eq. (11). In additio
tering process from the spin state to the”’ spin state, and 1/4, 38, and 38 in Y,.. correspond to the cdcients of

’ ’ a,6

7,0 IS arelaxation time of this scattering. Herg,~ has been Varoaol? Of €q. (21) in the scattering rates pt=0, 2, and

assumed to be independent of the configuration{sge of —2, respectively (see Appendix D). Suh, andX(m, o ¢)

eq. (9)). have been based on the following (i) - (ii):

(i) By comparing egs. (22) and (24) or egs. (23) and (25),
we find that the AMR #ect arises from the fference

of s—d scattering terms betwegiand L configurations.
All the s—d scattering terms withs,_,q¢ in €gs. (22) -
(25) are listed in Table I, where terms with,_,qm in
egs. (12) - (15) are also listed. The s—d scattering terms
in p;- originate from a transition from the plane wave
to the d orbital ofm=0, ¢q(r) (see Appendix DY) In
contrast, the s—d scattering termgin, are due to tran-
sitions from the plane wave to the d orbitalsmof= +2
and 0,¢.2,(r) andgo(r). The d orbitals ofm = +1,
¢+1.(r), give no contribution te - andp, .

In such s—d scattering terms, only terms wjbs_,q. ac-
tually contribute to the AMR £ect. Theyps 4. terms
are induced by the spin—orbit interaction. As found from
egs. (22) - (25) or the summation in Table II, the case of
v # 0 leads tq; # p. s andpy, # p.,;, While the case

2.4 Feature of the AMRfect
On the basis of the above results, we introduce a certain
quantity based on the AMR ratio and then reveal a feature
of the AMR dfect. In particular, we find that the sign of the
AMR ratio is determined by the increase or decrease of “exis-
tence probabilities of the specific d orbitals” due to theaspi
orbit interaction. In addition, we roughly determine a tiela
between the sign of the AMR ratio and the scattering process.

241 Z..

Taking into account the after-mentioned (i) - (iii), we in-
troduce the quantity based on the AMR ratio. Here, the AMR(”)
ratio reflects the dierence of “changes of the d orbitals due
to the spin—orbit interaction” betweenfiirentm's, wherem
is the magnetic quantum number of the d orhital(r) of eq.
(A-11). Such a quantity,,.. is written as

Zse = X(0,0756) = Yo, (34) of y=0 leads tqy; = p.,y andpy,y = poy.
1 3 3 (iii) The yps.q- terms stem from the change of the d orbitals
Yoo = ZX(O, o;5) + §X(2, o;6) + §X(—2, T3 5), (35) due to the spin—orbit interaction. The d orbital is slightly

) changed by the spin-mixing term/2)(L,S_+L_S,) in
X(M. o) = Z ( the spin—orbit interaction. It is noteworthy that the con-
T =, tributions due to thell,S, term are eliminated by ig-
noring terms higher than the second orden(flx (see
where d)ﬁ?g(r) is given by egs. (A) - (A-10). Appendix A).
Roughly speaking,Z,. may correspond to the nu-
merator of the AMR ratio of e(;. (Wpy = pr- Inpar- 242 Sign of Z. and s—d scattering
ticular, ¥2,_., U(pav(r)q)ﬁ?c(r)dr' in X(0,0;¢) and In order to obtairZ,,.., we first investigat&X(m, o; s) of eq.
) N . @ 2 . @ 21(36). As seen from Table 11IX(2, {; ), X(O, |; 1), X(0,T; 1),
ZM:—Z[Z ’f(po,o'(r)(DM,g(r)dr' + § Zm=s2 f(pm,o'(r)(DM,g(r)dr’ ]and X(=2,7;1) become negative, whilX(0, 1; 1), X(-2,1
in Yo, may be related tq, and p,, respectively. This ;l), X(2,1;1), and X(0,|; 1) are positive. Here, the former
X(m, o; ¢) represents the change of “the existence probabilitt(m, o; ¢)’s are obtained from the first terms in the right-
of the d orbital ofmando” due to the spin—orbit interaction. hand sides of egs. (&) - (A-4) and (A7) - (A-10). The latter

2
f ¢;‘w(r)<l>$\‘,|’?§(r)dr' —6mM6m¢),(36)
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Table Ill. Change of the d orbital due to the spin—orbit iatgion
X(m, o; ¢) of eq. (36) (=0, +2), Z,.- of eq. (34), andsc — dg. Here,
terms higher than the second ordee@£.1/Hey) have been ignored. In ad-
dition, o andg of so — dg are extracted fronxX(m, ; ¢). SinceZ,.. may
correspond approximately tg —p, of the AMR ratio, we can roughly de-
termine a relation between the sign of the AMR ratio and tlikssattering
process.

(0. 6) (0 ™1 ™1 {1 ¢=t ¢=l
s — dg sl-d]l s?t—-d] s?t—»d?T sl-d?
(@1=0 (b)2#0

X(2,0;¢) —€2 0 0 €2

X(0.0¢) _3_52 3_52 _3_52 3_52 Fig. 2. Htfect of the spin—orbi_t interact_ion on_the DQS of a typical ddan
(a) The case oft = 0. Here,1 is the spin—orbit coupling constant (see eq.

X(-2,07¢) 0 € -2 0 (6)). (b) The case oft # 0. In (b), the partial DOS of the pure d orbital

with ¢m is indicated by the gray areas, while that of the other d arbit

with ¢m. is shown by the black areas, where# ¢. The orbital¢m or

dme IS given by eq. (Al1), wheres denotes the spin of the dominant state

in the spin-mixed state. In (b), a slight amouniggf,- is mixed withgm,.

This mixing reduces the existence probability¢a{. (see Appendix A).

X(m, o; ¢)’s are obtained from the second terms in them. The The dashed curves in (b) represent the shape of the DOS of (a).

negative sign of the former means that the existence prbbab

ity of the pure d orbital omdecreases owing to hybridization

with the other d orbital in the presence of the spin—orbéiint 3

action (see the gray areas in Fig. 2(b)). In contrast, thiipes

sign of the latter represents the addition of the existenal-p

Zo ~¥ (<o) €0 -¥(<0 ¥ (>0

ability of the other d orbital (see the black areas in Fig)R(b Ol 2+ 1
Note that the spin of the other d orbital is opposite to that o o
the pure d orbital under the influence®f in the spin-mixing o
term. S .

Furthermore, we find a relation ofX(0,0;¢) >
[X(£2, o; ¢)| for each set of- andg. The relation is attributed
to the mixing dfect of the d orbitals due th, = Ly = ily Or
in the spin-mixing term. This féect is verified from them
dependence oE. (=+(LFm)(L + m+ 1)) in Fig. 3, where
Li¢mo(r)=Cidpme1(r) andL=2. The cofficientC,. atm=0
becomes larger than thatmt= +2; that is, the mixing flect  Fig. 3. mdependence of. = V(LFm)(L+m+1) with L=2 andm =
atm = 0 is larger than that ah = +2. —2, -1,0, 1, 2. Here, we havie: ¢pme ()= Cidme1o(r), Wheregm(r) is

Using suchX(m, o} ¢)’s, we can obtairZ,. of eq. (34) as ~ 9Ven by ed- (ALD).
shown in Table Ill. In addition, we find the following relatio

between the sign &, and the s—d scattering process —
dg: 2, <Ofors|—d|,Z, >0forst—d |, Z, <0 2.5 Signofthe AMR ratio and s—d scattering of real mate-

fors 1—- d 7, andZ;, > 0 fors |— d T (see Table IlI). _fi?\' - _ _
Here,so — dg indicates that the conduction electron of the Within a unified framework, we find the sign of the AMR
o spin is scattered intgm(r) in <D$)C(r) of M = —2 - 2. ratio and the dominant scattering process of each material i

The o spin is conserved in the scattering process. The spifigble I. We here utilizgs, /o5 andD'” /D' from Table I.

o andg of s — dg are extracted fronX(m, o-; ¢). Roughly

speaking, the negative sign &f., andZ;, originates from 2.5.1 A simple model

the decrease of the existence probability of the pure dairbit Toward the unified framework, we present a simple model

while the positive sign oZ;;; andZ,; is due to the addition of with n; = n, (# 0), mi = M}, Verap = Vsioay, andpyy =

the existence probability of the other d orbital (see Figp)R( ©11=0. This model has a relation pf++py,; = p..1+p. | from
Since Z,.. may correspond approximately g — p, of €ds. (22) - (25). The AMR ratio of eq. (1) is then expressed as

the AMR ratio, we can roughly determine the relation be- Ao PP = PirPLl

tween the sign of the AMR ratio and the s—d scattering pro- (37)
. . . Y P1PLl
cess. Namely, when the dominant s—d scattering process is. ) _
sl—dlorst— d 1, the AMR ratio tends to become nega-Using egs. (22) - (27), eq. (37) is rewritten as
tive. In contrast, when the dominant. s—d scattering prgic_aess Ap  (Psidt = Psiodl | Psi—dl — Psiodr 28
sT—d ] ors|— d T, the AMR ratio tends to be positive. — =Y + (38)
. . . . P Pl P
Such a relation agrees with a trend for real materials, ds wil
be shown in§2.5. D(Td) - Did) D(ld) - ng)
oy + (39)
Py P
1 1
- (d) (d)
=y(Dy’ - D (———), (40)
G pL P
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Dfd) - Dfd) 2.5.2 Application to materials
Applying ps; /ps and ng)/D(ld) of Table I to the results of
Negative Positive Fig. 4, we can roughly determine the dominant s—d scattering
+ spin , spin aqd the .sign of the A_MR ratio of gach material. The deter-
S - dr s o dr mined signs agree with the experimental results of Table I.
_ The details are written as follows:
Co,MnAl,_Si, (bce Fe)
|:Laol7Sr0‘3Mn03;| (i) bcc Fe
L2108 MNO 0 —p The dominant s—d scattering & ]— d 1 because of
- 0 _ v D > DY andp; > p,. The AMR ratio is thus positive.
Positive Negative Here,p; > p, originates fromps > ps; andps_ar >
1 spin 1 spin Psi—dy due toD(Td) > Did).
st - di st » du

fcc Co
fcc Ni

(o]

(ii) fcc Co and fcc Ni

The dominant s—d scattering 87— d | because of

D < DY andp; < p,. The AMR ratio is then positive.
Here,p; < p, is obtained fronpg < ps; andpsr—ar <
Psi—d;, due toD(Td) < Did).
(i) Fe4N
The dominant s—d scattering & |— d | because of
DY < DY andp; > p,. The AMR ratio is thus neg-
ative. Here,p; > p; mainly results frompg/ps =
(1.6x 10731 (see Table I). The relatign_q4;=0 is as-
sumed by considering thﬂ%d) is considerably smaller
thanD(ld), where it is reported that this model has# 0.

In addition, we assume thatdl < pg—d;/ps < 0.5,
which will be estimated ir§3.3.

Fig. 4. Sign of the AMR ratic\p/p and the dominant s—d scattering pro-
cessso — dg in a simple model withy = ny, mp = M}, Vepap = Vg dy,
andpq; = p;1=0. They are shown in th@{—pl)-(D%d) - D(Ld)) plane, where
Po = Psr +Psr—do- IN €ach quadrant, the first, second, and third lines from
the top denote the sign of the AMR ratio, the spin of the cotidoelec-
trons contributing dominantly to the transport, aad— dg, respectively.
Here, the sign of the AMR ratio can be judged from eq. (40).dditon,
so — dg is extracted fromps,_.qdc, Which contributes dominantly to the
sign of the AMR ratio. Namely, thips-—.dc corresponds to the greater of
psi—dr andps_.q; in the case op; > p; and the greater gfs;_.q; and
psi—ar in the case opy < p;. Furthermore, materials in Table | are as-
signed to the respective quadrants on the basis of resulfi$ ofv) of

§2.5.2.
(iv) Co,MnAl;_«Six, Lag7Sr3Mn0Osz, and La7CazsMnO3
The dominant s—d scattering 87— d T because of
with D%d) > D(ld) andp; < p;. The AMR ratio is thus negative.

Here,p; < p, mainly originates frompg; /ps; = 10° (see
(i) of §4.1 or§4.3). The relatioms;,q4;=0 is roughly set
on the basis oD@ ~ 0, wheren, # 0. In addition,

(41)

whereps, is given by eq. (17), ands, 4. iS Written by eq.

(26) with ¢ = . This p, corresponds approximately to the ~ We assume thatsar ~ pst, which will be estimated in

resistivity of theo spin for a system with no spin—orbit inter- §4.3.

action, i.e., egs. (22) - (25) with=0. Note here thaDﬁﬁ’) N (v) FeOs

Psr—do IN €Q. (41) actually contains théect of the spin—orbit The dominant s—d scattering &]— d | because of

interaction, as found from eq. (B3). D%d) < D(ld) andp; > p;. The AMR ratio is then negative.
_ From egs. (38) - (40), we can finq the relation betvyeen the Here,p; > p, mainly stems fromps; /ps, > 10° (see (i)

sign of _the AMR_ratlo and the domlngnt s—d spatterlng Pro-  of §4.1 or§4.3). The relatiops; a1 =0 is roughly set on

cess. First, the sign of(dt)he A%R ratio is sh_own in each quad- the basis OfD%d) ~ 0, wheren, # 0. In addition, we

rant of the by — p,)-(D}" - D;”) plane of Fig. 4. The AMR assume thaps, .4y ~ ps,, Which will be estimated in

: L d d db = L .
ratio becomes positive in the casef> p, andD{” > D §4.3. Note that, in this system, the direction of each spin
or in the case op; < p, and D(Td) < Did)' In contrast, the in (iv) has been reversed by taking into account the DOS

AMR ratio is negative in the case pf > p; and D%d) < Did) of Fig. 1(e).

Po = Pso + Psor—dos

or in the case opy < p; andD'” > D. Here, the case of 3. Application 1: Weak or Strong Ferromagnet

pr > py (pr < p)) shows that the down spin electrons (the o the pasis of the theory §2, we obtain the expressions
up spin electrons) contribute dominantly to the transgart: ¢ 1o AMR ratios of “bee Fe of the weak ferromagnet” and

thermore, the dominant s—d scattering process is indidated «. Co, fcc Ni, and FgN of the strong ferromagnet.” Using

s — dg in each quadrant of Fig. 4. The process — d¢  the expressions, we analyze their AMR ratios.
is extracted fromps,_,qc, Which contributes dominantly to the

sign of the AMR ratio. Concretely speaking, tiis 4. cor-
responds to the greater pf g andps;—q, i.n the case of eq. (28), we first derive an expression of the AMR
p1 > py and the greater Gisiq) andpsi—qr in the case of a4 of the weak or strong ferromagnet. The weak or strong
pr < py. Itis also noteworthy that the relation in Fig. 4 'Sferromagnet has the sp band DOS of the up and down spins
consistent with the result i§i2.4.2 or Table III. .
atEr (see Figs. 1(a), 1(b), and 1(c)). We thus use the conven-
tional approximation in order to reduce parameters. Namely
we setn; = ny, Mg = M}, Verar = Vgioay, andry = 7.
Meanwhile, thes- dependence dﬁff) and theg dependence

3.1 AMR ratio
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of D are taken into account (see egs. (17), (19), (26), and 0.01 e
(27)). The AMR ratio of eg. (28) is then given simply by i P a /Py 1
Ap ——:0.001 |
— = :0.01
P 0.005 o1 A
Y(Ps—dr = Psod1))(0st — Psi + Psodr — Ps—dy) a — 05 ]
(o1 + psoar)(Pst + Psdy) + pri(ost + Pst + Psodr + Psoal)’ 3 —1
42 —:2 ]
(42) .
where - .
m’ | ]
= : 43 - ]
Pso nezTS(,— ( ) | Te
. -0.005 Ly sl Bl i il i
Psode = —a . (44) 10° 10 10" 10 10" 100 10°
NETss p. [P,

Here, we haver, = m', n, = n, andrs,dc = Tsode, Where

1/7g DL(TS) and Yrsqc o D(cd)_ In addition,p,- of eq. (33) Fig. 5. (Color) Quantitys; /ps dependence of the A_M_R ra_lt'mp/p of bcc

is rewritten by,O(m/ — m*/(nez,r(m/)_ Itis noteworthy thapu Fe for anyps,q; /pst- The expression of the AMR ratio is given by eq. (42).

has no influence on the sign of the AMR ratio of eq. (42) Here,y=0.01,psa1/ps-~a, =2.0, andpy, =0 are set. In addition, an arrow
) 9 . g. " indicates the theoretical value of; /ps; (=3.8x 107) (see Table I).

Also, eq. (42) witho,; =0 corresponds to an expression of the

AMR ratio obtained by Malozenfh?

3.2 Weak ferromagnet: Fe 10°
Using eq. (42), we analyze the AMR ratio of bcc Fe of

the weak ferromagnet. Hergs ,dy/ps-d; (=D(Td)/D(ld)) is as-

sumed to b .41/ps-dq;=2.0 on the basis oID%d)/Did)zz.O

of Table 139 The constany is chosen to bg=0.01 as a typ-

ical value. Meanwhile, we ignoie,; which does not change

the sign of the AMR ratio. It is noteworthy that the spin-

dependent disordéf;>?which gives rise to the spin-flip scat- 10°r ~~ —: Our model
tering, may be weak for the present ferromagnets with non- /,’ with o, /p, =0.38
magnetic impurities. 10° 1/ - - Malozemoff model

In Fig. 5, we show theg, /ps; dependence of the AMR ratio C a
for anyps_q;/pst. The AMR ratio behaves as a smooth step- with A, /p. =1
like function. In addition, the AMR ratio tends to be positiv 10" — | s 1
for ps;/psy < 1 or negative fopg /ps = 1. In the case of 10 510 510 510
ps/pst=3.8x1071 of Table I, the AMR ratio becomes positive P a [Py

irrespective 0fpsq;/p«. In particular, whems,q;/05=0.5,

the AMR ratio agrees fairly well with the experimental valueFig. 6. Quantityos .q; /o5 dependence of the AMR ratip/p of bee Fe.
i.e., 0.003. The solid curve represents our model, i.e., eq (42) piffiog =3.8x 102
(see Table 1) angy;=0. The dashed curve is the Malozeffhmodel with

Figure 6 shows thps ,q;/ps dependence of the AMR ra- pulpa=19ie. eq. (3). Herey0.01 andos a1 /s .y =2.0 are set.

tio. Our model withps; /p=3.8x10"! is compared with the
MalozemdF model with pg /p5=1.2 i.e., eq. (3). The dif-
ference of the AMR ratio between them becomes prominent

for ps.ai/pst < 1. For example, in the case of the aboveHere, wherpg /ps is suficiently small or séiciently large,
mentionedps g, /p5=0.5, the AMR ratio of our model is €d. (45) witho, =0 is approximated as

about four times as large as that of the Malozé&muodel. Posdl f sl Pl
Ap yp——l, or p—<<1,p s
3.3 Strong ferromagnet: Co, Ni, and fi¢ — = b o pena O (46)

Utilizing eq. (42), we investigate the AMR ratios of fcc Co, 4 pst for Ost > 1 pst

fcc Ni, and FgN of the strong ferromagnet. The DOS of this
system is schematically illustrated in Figs. 1(b) and 1Tbe
fcc Co* and fcc N4 4D have little d band DOS of the up
spin atEg. As to FgN,*? the d band DOS of the up spin is
considerably smaller than that of the down spi&atWe thus
assumed@=0 and then havps_,41=0. Substitutingps ,4;=0
into eq. (42), we obtain the AMR ratio as

where ps ,q;/ps iS set to be 0< ps.q;/ps < 5 in the
present calculation. The respective expressions of efir{46
crease with increasings.q;/0s; andy, while the magnitude
of the diference between the two expressions is givery.by
We also mention thag(psq;/psy — 1) corresponds approxi-
mately to the CFJ mod®lof eq. (2), which is applicable to
the strong ferromagnet. Here,in eq. (2) is originally de-
Ao YPs—d) (—Pst + Ps| + Ps—dy) (45) fined bya = p,/p. 1 (see egs. (24) and (25)). Thiscan
o pst (0s, + Psody) + P11 (st + PsL + Psody) be rewritten asr ~ ps.q;/ps under the following condi-
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tions: One is the condition of the CFJ model, ig,.qy = 0, it can be negative fops /ps < 1 andps.q;/ps < 1. Note

pst/psi—dy = 0,7 < 1, andps, 4, = psdy- The otheris the thatthe system qfs; /ps; > 1 corresponds to Co and Ni, while

condition ofyps_.q;/pst < 1. The latter reflects that=0.01 that ofpg /ps < 1 corresponds to RBl.

andps_q;/ps < 10 are set in the present study (see Figs. 7 Whenpg, /ps's of Co, Ni, and FgN are respectively set

and 8). to be 7.3, 1.810, and 1.&10°2 of Table I, we obtain the
ps—di/pst dependence of the AMR ratios as shown in Fig.
8. The main results are as follows:

(i) The fcc Co and fcc Ni exhibit a positive AMR ratio ir-

: o respective ops_,q;/pst, While FgN can take the nega-
0.02¢ Pra/Ps =2 tive AMR ratio depending oms_q;/ps. Such tenden-

i 1 cies roughly correspond to the experimental results (see
Table I). On the basis of the experimental values of the
AMR ratios, ps_.q;/ps;’s of Co, Ni, and FgN are eval-
uated to beps,q/pst ~ 2.2, pssdyi/pst ~ 2.5, and

i 15 1 0.01 S pssai/pst < 0.5, respectively. It is noted here
Or 1/100 | that the large AMR ratio of FN (e.g.,—0.07) cannot be
i Ni ] obtained in the present theory. Eventually, a theoretical
0.0l ;F N COJ E model that takes into account a realistic band structure
R € | may be necessary for a quantitative analgis.
103 162 161 160 161 162 16 (i) The AMR ratios calculated for fcc Co and fcc Ni are
o, /P, clearly diferent from the CFJ model of eq. (2) because

psi/ps’s of Co and Ni are largely dierent from that

Fig. 7. (Color) Quantitys, /ps dependence of the AMR ratity/p of the in the CFJ model (i.eps,/psy — 0). In contrast, the

strong ferromagnet for anys_q; /os;- The expression of the AMR ratio AMR ratio calculated for FeN agrees well With the CFJ
is given by eq. (45). Herey=0.01 ando;; =0 are set. In addition, arrows model, becausgg; /ps (=1.6 x 1073) of FeN is much
indicate theoretical values gk, /ps Of the respective materials, i.e., 7.3 smaller than 1.

for Co, 1.0x 10 for Ni, and 1.6<1073 for Fe4N (see Table I). . .
(i) The AMR ratios calculated for fcc Co, fcc Ni, and e

deviate from the Malozentbmodel withpg /p=1, i.e.,
eg. (3). The reason is that theig /ps’s are diterent

from 1.
0.05 ‘ ‘ ‘ ‘ 4. Application 2: Half-Metallic Ferromagnet
0.041 Our model On the basis of the theory 2, we derive an expression
—: Co o of the AMR ratio of the half-metallic ferromagnet. Using the
0.03" : Ni '/' | expression, we obtain an accurate condition for the negativ
—: FgN P or positive AMR ratio and further analyze the AMR ratio.
2 0.02} A ] _
3 s 4.1 AMR ratio
0.01} e i We first report the feature of the half-metallic fer-
y /'/ ———: CEJ model romagnet of Table I. The DOS of @MnAI 1,XSi_X,44)
0 k=" Lag7Srp3MNn03,%546) or Lag7Cay3sMn0O3*") is schematically
/ ——: Malozemoff model illustrated in Fig. 1(d). The conductive and localized d dan
-0.01 with o, /o, =1 | DOS's of the up spin are present B¢, while there is little
! b DOS of the down spin. In real systems, however, there may
0 1 ’02 Ip 3 4 S be a slight DOS of the down spin in the presence of disorders
s di s

or defects. According to previous studies, such a featutfeeof
_ _ _ DOS of CaMnAl_,Siy originates from atomic disordef®),
Fig. 8. (Color) Quantityps ,q; /s dependence of the AMR ratityp/p of while that of |_®.7Sr0.3|\/|r.|0349,50)0r Lay7Ca3MnOs; may be

Co, Fe, Ni, and F&N. The AMR ratio of our model is given by eq. (45) . . .
with pr,=0, whereps, /ps; is Set to be 7.3 for Co, 1.8 10 for Ni, and 1.6 due to oxygen vacancié¥. It is also noted that, by reversing

x 10-3 for FesN (see Table I). The dashed curve represents the CFJ modél€ direction of each spin, we can treat the opposite case (i.
of eq. (2), wherex is given bye ~ s, /ps;. The dot-dashed curve is the Fe30,4%%5%) of Fig. 1(e)), in which the DOS of the down spin

Malozemdt model withos, /pst =1, i.€., €q. (3), whergsar=0is adopted. s present aEg, while there is little DOS of the up spin.
Here,y=0.01is set. Focusing on the half-metallic ferromagnet with the DOS
of Fig. 1(d), we now obtain an expression of the AMR ratio
as accurately as possible. We here utilize the AMR ratio of
InFig. 7, we show thpg /ps; dependence of the AMR ratio eq. (28) because, andn, are considered to have the signif-
of eq. (45) witho;; =0. The quantityy is chosen to bg=0.01 icanto dependence. Meanwhilp;; andp,; are ignored in
as a typical value. We find that the AMR ratio behaves asthe same manner as §8.2. The AMR ratio of eq. (28) with
smooth step-like function with the limiting values of eq6j4
In particular, the AMR ratio is positive fgrs; /psy > 1, while
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o1y = pyr = 0 is rewritten as 10° reported above, we find the relation ofu =
vew(u+1\? (B./8)DY/D 2 1C°, wherep; ~ B, has been as-
r——— ( ) sumed.
40 = —y( u- t) u-tiw+l , (47) (iv) The parametew of eq. 852) may take a finite value, al-
P u+1 u+l though bothD(ld) and D‘f are extremely small. In addi-
w1 tion, the relation ofv/v = Did)/D(Td) < lisrealized.
with On the basis of egs. (48) - (52) and the above suggestions,
sl m; 4 D(TS) 2 we next obtain an approximate expression of eq. (55). We here
r=—-= (—] 0@ | (48) assumgs; ~ 8, andu ~ wand also take into accouwyv < 1
P M) AD] in (), r > 1, andr > v/u ~ D¥/DY, whereD®/D® »
psiodl Tebady D(ld) 10° andm; /m; ~ 0.1 in (i) have been adopted. Equation (55)
t= =—7 =bi_3 (49) has thus been written as
Pst T DT A B
1 D@ = u*li 1 (°6)
PEREEC N e (50) o f .
Pst Tng D(TS) The AMR ratio of eq. (56) always takes a negative value.
Psimdr  Telodr D(Td) 4.2 Sign of AMR ratio
V= “pa " ='Blﬁ’ (51) From eg. (55), we can find the condition for the negative
st ! or positive AMR ratio of the half-metallic ferromagnet. $hi
sl Tgll—wu Did) condition is more accurate than t_he.result in the unified &am
=——=—"= ﬂlﬂ’ (52) workof §2.5. Because of//v < 1in (iv), we focus on the nu-
Psl Tsl Dy merator in [ ] of eq. (55). The numerator is written bi(u)
\WVarao ey
Fr=t=yge 9 f(u) = ICEEV 1, (57)
where eg. (48) has been derived in the Appendix E and egs. su
(49) - (52) have been obtained by using egs. (17), (19), (26), r(w+ 1)?
and (27). We also have assum@‘) # 0 and D(f) # 0on &= VR (58)

the basis of the above-mentioned feature of the DO(S)of t%ﬁereg > 0 andu > 0. Here,f(u) > 0 andf(u) < O corre-
: . e : :
down spin. Here, the conduction state (named@s D;’)  gonq to the negative and positive AMR ratios, respectively

may correspond to_ the conductive d statg in the case of the, eq. (57), we first find that the AMR ratio becomes pos-
present half-metallic ferromagnet (see Figs. 1(d) and)1(e};, e whené < 4. Second, in the case ot 4, the AMR ratio
From egs. (49) - (52), we find the following relation: is negativé for

% = V_\:/ (54) U < U<y, (59)
Using this relation, we express eq. (47) as while it is positive for
viu+1\? 0O<u<pu_andu, <u, (60)
S " (W+ 1) (55 Withu = (6-2- V= 48)/2andu, = (¢-2+ & - 48)/2.
P ul+1 v N u+1l Note that the AMR ratio becomes Owlat ..

wW+1 Figure 9 shows the sign of the AMR ratio in theu plane

based on the above results. From this figure, we can find signs

of the AMR ratios of various systems. We here focus on a

simple system wittg; = 8, andD{®/D{ = D/D (i.e.,

(i) The parameter of eq. (48) may become extremely largeu = w). For this system, we first determine the specific sets of
owing to ps; > pg. This relation is based on the fact£ andu. The relation betweefiandu has been obtained as
that the resistivity of semiconductors is more thart 10 1
times larger than that of metaid. As a typical sys- &= p(u+ -+ 2), (61)
tem, we consider to ber > 10° on the assumption of u
D¥/D{Y 2 10° andm; /m; ~ 0.1. Here,m;/m; has been yjth p = (m;/m:)*D{¥ /DY (see eq. (B)). In Fig. 9, we show
roughly estimated on the basis of thieetive mass of eq. (61) withp=0.1, 0.5, 2, 3, 5, and 7 by the dashed curves,
the carrier of the semiconductor divided by the electrofhere eq. (61) witlp=1 corresponds tp_ andy,.. Itis found
mass>¥ that eq. (61) withp >1 exists in the region of the negative

(i) The parameten of eq. (50) takes a finite value, whereAMR ratio. For example, the case m?)/Djs) > 10° and
D%d) £ 0 andD(TS) # 0. In the present calculatiom,is  M;/mM; ~ 0.1 in (i) leads top > 10. This case thus can take
treated as a variable number 000 < u < 50. the negative AMR ratio. Negative AMR ratios been experi-

mentally observed, as shown in Table I.

Here, parameters in eq. (5%),u, v, andw, are suggested as
follows:

(iif) The parametew of e%. (51) may be diiciently large

because oD(Td) > Dis. In the case of theD(TS)/DiS) >
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Fig. 9. (Color) Sign of the AMR ratid\po/p of the half-metallic ferromag- r |
net in the¢-u plane. The negative and positive AMR ratios are shown by 0.01
the dark and white regions, respectively. The AMR ratio Inees zero at ’

u = .. Here,u = u_ andu = u, are shown by the solid curves with> 1
andu < 1, respectively. The relation betweé¢randu of a half-metallic

ferromagnet, eq. (61), is shown by the dashed curves, wkebel, 0.5, 2, I 0
3,5, and 7. In addition, eq. (61) @1 corresponds tp_ andu.. 2‘
4.3 Evaluation of AMR ratio -0.01r
Using the results 0§4.1 and§4.2, we evaluate the AMR
ratio. Theu dependence of the AMR ratio is shown in Fig. 10. ,
The dashed curves represent eq. (55) with the parameters of -0.0%0_2 5107 5 10° 5 100 p
y=0.01, 0< u < 50,v = (D¥/DP)u, r = (0.1)/(DY /D)2, U

w=1, 10, andD%S)/Dis)zlo“, 10°, 10°, wherem; /m:=0.1 and
(i) _ (iV) in §4.1. We observe that each AMR ratio exhibits a half-metallic ferromagnet. Upper panek=1. Lower panel:w:lo. In

. . .. each panel, the dashed curves show the AMR ratios of eq. (86) w
convex downward curve with a negative minimum value. The 5,p(9_1¢¢ 15, and 16. In addition, the solid curve is the AMR ratio
AMR ratio approaches 0 with decreasingwhile it changes  of eq. 656). Herey=0.01,m; /m'=0.1, ands; = , are set.
from negative to positive with increasing In addition, the
AMR ratio comes close to eq. (56) witf=0.01 (the solid
curve) with increasingD(s)/D(f). It is noted that eq. (56) is
obtained from eq. (55) under the conditionra$> (v/u)[(u+
1)/(w+ D], r > (u+ 1)/(w+ 1), andw/v < 1 in (iv). Also,

0.005 at temperatures higher than 200 K. As a cause of this
phenomenon, he considered that the majority spin band (i.e.

in the case oD(TS /Dis) > 10°, the AMR ratio becomes about Er Eand) camr(]e_ clé)sedtﬁp with increasi.ngr:emhpehrature, and,
~0.004 atu = w = 1 (see the upper panel of Fig. 10), whererurt ermore, this band was presentatin the high tempera-

the system ofi = w corresponds to the simple systen§h2. ture region (e.g., the region higher than 200 K). On the basis

This AMR ratio agrees well with the experimental results on such an idea, he proposed a two-band model comppsed
Table I. of tog, andey bandsjtyg, andey bands have been shown in

Fig. 1(e). Using the model, he primarily found that the AMR
ratio became 0.005 for the specific values of the minority-to
P’lajority resistivity ratio and the reduced spin-flip scettg
resistivity. Meanwhile, he also showed that the sign of the

rfsgg%;i’v:an t;vgggitit\l: :slgtrr]\eOIetr?w(:)eﬁxig?rt]frggsggazgomAMR ratio changed from negative to positive with increas-
: ' N0 psady/Psodr D Here ps.a; /ps—ar is reduced t(D(ld)/D(d)

Fe;O,4 has been theoretically predicted to have a half-metallur:] our formulation Ssee eq.. (44)). From the standpoint of the

property at the ground state in the absence of the spin—othMR ratio versuD'® /D@, however, we see a problem: that
interaction®® The DOS of FgO, is schematically illustrated i the sian chanae of this’model a ' ears to be contrar, to the
in Fig. 1(e)>>5% the DOS of the down spin is presentm, ’ 9 9 bp y

while there is little DOS of the up spin. experimental trend of the inset of Fig. 11 or the above idea.

i in@ /p@ i
Recently, Ziese has experimentally observed that th®fe In fact, with decreasm@l /B the sign may change from

film on MgO with film thickness of 50 nm or 200 nm changeo,g sg:ii\{se ;? opn?SII:'\]/ee.r(l,rs]i;?v?tlit:aosnc,jlﬁet;?rﬁzi_tzastc:tltsebmwel
the sign of the AMR ratio from negative to positive with y Uty

increasing temperature (see the inset of Fig.21§) This ?heeglsecitst(;?i?] resrlsgzgys/ Efefcvzgr?rfggitgf dﬂ;?\??j ' S%th;?
Fe;04 eventually exhibited positive AMR ratios of about gp

4.4 Sign change of the AMR ratio in &,
Utilizing eq. (55), we analyze an experimental result o
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this situation, we believe that there is a need to reexarhime t5. Conclusion
sign change of the AMR ratio by using a model that takes into \ye systematically analyzed the AMRFects of bce Fe

account both resistivities. _ of the weak ferromagnet, fcc Co, fcc Ni, andsReof the
We, therefore, demonstrate the sign change of the AME, g ferromagnet, and the half-metallic ferromagnet. We

ratio using our model with both resistivities. On the basifgre ysed the two-current model for a system consisting of
of the behavior of thes;; band reported above, we assume, gpin_nolarized conduction state and localized d statés wi
that the DOS of the up spin & increases with increasing spin—orbit interaction.

temperature. Our concem, thus_, is with how the DOS _Of the Erom such a model, we first derived general expressions of
up spin influences the AMR ratio. To clearly show the influyggistivities composed ¢fs, andps,a.. The resistivityps,

; i ) /P — p@d,/p@ . ! : h

en(::e, we COﬂdSIdeI’ a simple cased? /DY = DI?/D? (or 41056 from the s—s scattering, in which the conduction elec-
D@/D® = DY/D!Y) andg; = 5,. By paying attention to the tron of thes- spin was scattered into the conduction state of
DOS of Fig. 1(e), i.e., the reversion of the direction of eackhe o spin by nonmagnetic impurities. The resistivity, qc
spin of eq. (55), eq. (55) is then rewritten as was due to the s—d scattering, in which the conduction elec-

Y tron of theo spin was scattered into the spin state in the
(m/m) %o ) localized d states of the spin by the impurities, where the
— . ; . :

(mr/ml) + XZD spin represented the spin of the dominant state in the dsstate

. d) ;@ /

with xo = DO/DP = DYDY andu = py a/py

(i.e., the spin-mixed states).

Using the resistivities, we next obtained a general expres-
:ﬂlD(d)/D(s). Figure 11 shows theo dependence of the sion of_th.e. AMR ratio. On the basis of the AMR ratio and
AMR Tratio of eq. (62) form; /m'=0.4, 0.55, 0.6, 0.5, 0.8, the resistivities, we showed that thg AMRext reﬂecteq the .
and 1. The AMR ratios ohﬁ/m£=0.4, 0.55, 0.6, 0.65, and Q|fferen_ce ”of “changes of the’d orbitals due to the spln—_orb|t
0.8 change from negative to pésitive with increaskag al- interaction” between tﬂieremm_s, wherem_v_vas the magnetic
though that oi‘rt*r/r‘rszl is always negative. The sign Changequar?tum numbgr of the d orbltal._ln addition, we rogghly de-
appears to originate from the feature in which the s—d ScaHs_rmme_d arelation betwgen the sign of the_AMR rat|o.and the
terings ofs |— d T ands T— d | increase with increasing scattering process. In brief, when the domlnaqt s—d saagter
DY andDW. Here, it is noteworthy that these s—d scattering rocess was T_> diorsl—dT, the AMR r:_;mo tended to
tend to lead to the positive AMR ratio (sé2.4 and§2.5). In  © ecome positive. In contrast, when the domlnan_t s—d seatter
addition, roughly speaking, the, dependence of the AMR N Process was1— dtors|—dJ, the AMR ratio tended

: N L : to be negative.
ratio appears to be qualitatively similar to the experimaént ™ ~. . .
trend of the inset of Fig. 11. In particular, the AMR ratios of Finally, from the general expression of the AMR ratio, we

i/m*=0.6 and 0.65 may correspond well to the experimenteglbtained gxpress_ions Oof AMR rat!os appropriate to the "espe
results for film thicknesses of 50 nm and 200 nm, respectivel Ve materials. Using the expressions, we a_nalyzed the'.RAM
In addition, the AMR ratio ofn’f/m’£=0.55 may partially cor- atios. The results for the respective materials were eritts
respond to the experimental result for film thicknesses of 1f§"0W5:
nm. (i) bcc Fe of weak ferromagnet
Using the AMR ratio of eq. (42) witlyg /psy = 3.8
107! in Table | andp;;=0, we found that the AMR
ratio became positive irrespective pf .q;/ps, Where
Psorode ps»de. has been set. In particular, when
] Ps—dy /psp=0.5, the AMR ratio agreed fairly well with
Lt ] the experimental value in Table I, i.e., 0.003. Here, the
?@% ] positive AMR ratio originated from the dominant s—d
e OTIN scattering process af|— d 7. Regarding th@s_.q; /pst
%0 emperature (%) % dependence of the AMR ratio, thefdirence of the AMR

ratio between our model withs, /p=3.8x107! and the

Malozemdt model withpg /p=1 was clearly observed
for psay/ps < 1.

(i) fcc Co, fce Ni, and FgN of strong ferromagnet
Using the AMR ratio of eq. (45) witpy; =0 andos; /'S
in Table |, i.e., 7.3 for fcc Co, 110 for fcc Ni, and
1.6x1073 for FeN, we found that fcc Co and fcc Ni ex-
1 hibited a positive AMR ratio irrespective @k ,q;/ps1,
while FeN could take the negative AMR ratio depend-
ing Onps_.q;/pst- IN particular, whems_.q; /ps’s of fcc

Ap — —y

p ul+l

(1-xp) , (62

w

Fe,0, (Exp.)|

m’/ni'=0.4

N
i

[ 15nm ]

[N

AMR ratio (%)
. o

-

(Dol p)[AU™+1)]

Fig. 11. (Color) Quantityp (:D(TS)/D(LS) = D(Td)/D(Ld)) dependence of the

AMR ratio Ap/p of eq. (62) for anym;/mj. The inset shows an experi-
mental result of the temperature dependence of the AMR adtie;O4
films on MgO obtained by Zies®) The respective film thicknesses are 15
nm, 50 nm, and 200 nm. Note also that the DOS af®&s schematically
illustrated in Fig. 1(e).

Co, fcc Ni, and FgN were, respectively, chosen to be
Ps-di/Pst ~2.2,055d)/pst ~2.5,and 01 < psdy/pst <
0.5, their AMR ratios corresponded well to the respec-
tive experimental values in Table |, i.e., 0.020 for fcc
Co, 0.022 for fcc Ni, and-0.01 - —-0.005 for FeN. It
is noted, however, that the large AMR ratio of,Re
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- §62)¢o (r)+(£e— if ]¢ 11(r), (A-3)

(e.g.,—0.07 -—0.02) could not be obtained in the present <I>(d)(r) (
theory. The positive AMR ratios of fcc Co and fcc Ni

originated from the dominant s—d scattering process of

s 17— d |[. In contrast, the negative AMR ratio of q)(d) (r) = (1_ :—sz)¢—1r(r)+(€— §62)¢—2T(r)’ (A-4)
Fe,N was due to the dominant s—d scattering process bl 2 ’ 2 '

of s |- d |. As for theps .q; /0 dependence of the @ (r) = ¢_o,(r) (A-5)
AMR ratios, the calculation result of fcc Co and fcc Ni P ’

by our model was obviously flerent from those by the while q)(d) (n)is

CFJ model and the Malozerfianodel. The reason was

4

thatps, /ps; (> 1) of fce Co or fee Ni was largely dier- — @52(r) = ¢24(1), (A-6)
ent frompg, /ps (<«1) of the CFJ model angk; /o« (=1) 1
of the Malozem@ model. In the case of B8, the result ~ »{?(r) = (1 - 2) ¢11(r) — (e + =€ )q)zl(r) (A7)

by our model agreed well with that by the CFJ model be-
causepg /pst (=1.6x 107°) of FeyN corresponded well 3 \/'
0 psy/pst (1) of the CFJ model. g1 = ( -2 2)¢or(f) [—e te )m(r) (A-8)

(i) half-metallic ferromagnet

Using the AMR ratio of eq. (55), which took into ac- q)(d) (N =|[1- _E ¢_14(r) — ig_ ig B0 (1),

11 1 0.l
count the spin dependence of theeetive mass and the
number density of electrons in the conduction band, we (A-9)
showed that the AMR ratio could become negative for a 1 3
typical system witrD(?/DY 2 10° andm/m; ~ 0.1 @9 (1) = (1" '52) ¢-21(1) - (f‘ 'fz)m,r(r), (A10)
In particular, whernpga/pst = psi»di/psy = 1, the ' 2 2
AMR ratio was evaluatcd to be abou0.004, which with € = A/Hey. Here,¢m(r) represents the d orbital of the
was close to the experimental values. Here, the negaagnetic quantum numbarand the spirr, defined by
tive AMR ratio of CoMnAl 1_4Siy, Lag7Srp3MnO3, and B
Lag7Ca3MnO; originated from the dominant s—d scat- $mo(r) = Um(rxo, (A-11)
tering process o6 T— d 7, while the negative AMR  wjith u,,(r) = R(r)(x = iy)2/(2V2), ua(r) = FRI)zZ(x +
ratio of F&O, was due to the dominant s—d scatteringy), v2, u(r) = R(r)(322 - r2)/(2V3),r = ||, X = sinf cosg,
process of | — d |. We also analyzed the experimental, = singsing, andz = cosd, whereR(r) is the radial part of
result of the AMR &ect of FQO4, in which the sign of the d orbital an(ko_ (O' :T or l) is the Spin state.

the AMR ratio changed from negative to positive as the Here, we mention the right-hand sides of eqs1jA (A-4)

temperature increased. Such a sign change occurred Withq (A7) - (A-10). The cofficient (1 - -52 or (1-

increasing the DOS of the majority spin &t, D and  means that the probability amplitude of the pure orbltal de-
D. The increase ob!¥ andD{” appeared to enhancecreases from 1 owing to hybridization with the other or-

the s—d scatterings of T—d l ands |- d T, which i) | contraste + 3¢?) or ( Yoy VB 2) corresponds to
tended to lead to the positive AMR ratio.

the probability amplitude of the other orb|tal Here?-‘e and
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Appendix B: s—d Scattering Rate

Appendix A: - Localized d States We derive an expression of the s—d scattering rate for the

Applying the perturbation theory t of eq. (4), we obtain case of the? configuration ¢ =|| or 1), 1/7%_ . (see eq.
the wave function of the localized d state (i.e., the spiredi (11). This scattering means that the conduction electron is
State),(bﬁ?g(f)- withM = -2,-1,0,1,2,and =T or |. Here, scattered into the localized d states by nonmagnetic impuri
r is the position vector, whill andg are, respectively, the ties. Here, we consider a system in which some atoms of the
magnetic quantum number and the spin of the dominant staigst lattice are substituted by the impurity atoms. In adjt

in thc spin-mixed state. @ _ the conduction state is represented by a plane wave, wiale th
Within the second-order perturbatiob,’,(r) is obtained |ocalized d states are described by a tight-binding model.
as The scattering rate/isg_)dM is written as
1 3
o0 = (1- 38)ors) (e 3o A :
> > ’ d
2 ([) T Z <|<\P( ) ’V|mp(r)'\y(|?e> >‘ >
TS(r~>dMg Imp

cp‘d)(r) = (1— e )¢1l(r) + (§E+ ie ]q)OT(r) (A-2)
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E - EO B-1 2
<o~ EQ,, ) ®1) ~ s (S eeetnd ) @D
with m imp
1
PO ()= — exp(ik®. - 1) yo., B2 Amy = fex —ik’ - R{)¢% (r — R
b (0= = ex(ik )y (8-2) m Zj p(=iK - Rj) s (r = R))
d 1 L d -
T(k’),M,.;(r) = z,: exp(ik'- R)) @ (r - Ry). (B-3) xVimp(r = Ri) exp(ik?, - r)dr, (B-8)

where the inner product betwegp and the spin state @y

o\ (r-R)) = Z CnoMebmo(r — R)), (B-4) has been taken in eq. (B. Note here that the case iof |
' mo corresponds to the scattering from the conduction stateeto t

d states of the impurity atom. Such a case may be suitable for
a system containing transition-metal impurities. In thesent
study, however, the impurity is considered to be a light ele-
ment, such as carbon, in which 2s and 2p orbitals contribute
to the transport. We, therefore, treat the case #ofj. Using
Rj (=R; — R), we represenin, as

Vimp(1) = D Vimp(r = R). (B:5)

AZ&
Vimp(r = Ri) = Irelr —RI| exp(=aqir - Rif). (B-6)

The functionkI’(l?[) (r) is the plane wave, whereis the posi-
Fo

tion vector,k!)_is the Fermi wavevector of the spin in the Amr = Z Z fexp(—ik’ “(Ri+ Rii)) ‘ﬁm(r -(Ri+ Rji))
current direction for the case of tifeconfigurationQ is the b
volume of the system, ang. is the spin staté? The eigenen- *Vimp(F = RY) exp(i k(Ffzr . r) dr. (B-9)

ergyof‘I‘(SZ[) (r) is setto beEg. ThefunctioﬂP(lS,)M (r)isthe
sVL§

Fo 0
wave function of the tight-binding modé&® Here, k’ is the .
wavevectorN is the number of unit cells, anﬁm(r -Rj)is  Amr = Z Z exp(i(k(F,ZT -K)- (R + Rji))
the spin-mixed state in the atom locatedRqt wherecmq m.¢ P
is the codicient of ¢m(r — R;j) (see Appendix A). The
% A ’ . 10 ’ 4
eigenenergy oﬂ’(l?M (r) is given byEﬁg?M . The function Xf¢nv(r Wimp(r' + Rji) exp(ik{l), - ') dr’. (B-10)
. Ve . > VbS ..
Vim,?(_r) is the scattering potential created by nonmag_netlc IMpe now assume thaty(” + R;) acts between the impurity
purities located randomR/) wherevimp(r-Ri) is a;phe)ncally and its nearest-neighbor atoms. We then haygr’ + R;i) =
symm_etrlc sgatterlng potential due to theT impuritRat) The Vimp(r’ + R}1), indicating thatimp(r’ + R;) is independent of
quantityAZeis the diference of the ective nuclear charge j |n addition, sinceR;; is larger than the orbital radius of the
between the impurity and the host latticpis the screening 3 glectron, |1’ + R/ is roughly replaced by the dominant
length, ande is the dielectric constant. In additio®X)imp componenR;;. Namely, we havér’ + Rjy| = (Rgl 1?4
ts th xfover the random distribution of Y 2 oxpr )
represents the average Xfover the random distibution of 5., g )12 + Ry, owing toRE, > 1”2, 2 - Rygl. As a resull
€ impurities, defined byX)mp = X X({Rh)/(X 1), where -, (r' + Rj1) is approximated as follows:

{R} (={R1, Ry, Rs, - - -}) is thelth set of the random distribu- """ ! '
tion of the impurities. , AZ€E

4rreg

atom of host lattic AZE
~ 4regRj1
= Vimp(Rj1)- (B-11)
The distanceR;; is here set to be constant independently of
j; that is, Ry is written asRj; = R,, whereR, is constant.

By substituting eq. (BL1) withRj; = R, into eq. (B10), A
becomes

Amr = Y exp(i(k, = K) - R) 37 exp(i(k) — k) - Ris)
i j (n.n)

By replacingr — (Ri + R;i) by r’ (see Fig. Bl), Ay, becomes

exp(—qlr’ + Rill)

r+ Rj1|

exp(-aR;a)

impurity

Fig. B1. \Vectorsr, r’, R, Rj, andRji. Here,r, Rj, andR; are, respec-
tively, the position vectors of the electron, tite atom of the host lattice,
a_md theith impurity measured from the origin 0. In additiari,is the po;i- XVimp(Rn)f(ﬁ:m-(r/) exp(i k(Fé’ZT . r/) dar’, (B-12)
tion vector of the electron measured from tjtle atom of the host lattice, ’
while Rj; is the position vector of th¢th atom of the host lattice measured

from theith impurity. where }; of eq. (B10) has been replaced y; (,n), i.€.,

the summation over the nearest-neighbor atoms around the
2
impurity. Next, we consideﬂzi exp(i(k(F?T ~K)- Ri)| > ,
imp

To rewrite eq. (Bl) as a more specific expression, we Conghich is contained in eq. (B) (in addition, see eq. (B2)).

sider
2
(d) . )
<K‘Pkm‘v'mp‘”"Pk&,) >
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This part is expressed as follows: With Nimp = Nimp/Q. It is noted that the unit ODSL of eq.
2 (B-18) is J1, while that of D of eq. (G5) is J'm=3. The
<lz exp(i(k¥, - K) - R) > unit of (K in eq. (B17) is m®, while that of|V?
i imp in eq. (G4) is mS. As to the calculation ob® /DS andp,,
in eqgs. (49) - (53)fo’) and|Vs,_d-|? should be replaced by
= (> exp(i(k¥), - K) - (Ri - Ry)) @ 2 - :
/ Fo i i D’ /Qunit and|Vss—do|“Qunit, respectively, wher&yni is the
L’ imp unit cell volume.
= <Z Sii + Z exp(i(k(F?T —K)- (R - Ri,))> Appendix C: s—s Scattering Rate
ii’ i’ imp We derive an expression of the s—s scattering rate, lof
eg. (19).

~ Nimp + Nimp (N‘mp - 1) Ok K> (B-13) The scattering rate/ts, is originally written a8859)

ViV >'2>

imp

whereNimp is the number of impurities in the volume X ©
: ' — == %
In the calculation process of eq.-(B), we have taken the e R Z
summation about random points on a unit circle in a complex K,
plane and the average over the impurity distributi®s$n a

similar manner, we deal Wit{lzj (nny €xp(i(kY, - K') - le)'Z X8 (Ep Ek[,) (1 COSHkFﬂ-,k:r)’ (C1)
in eq. (B7) to obtain a simple expression. Note, however, th*’%here\l’(;) andVimy(r) are given by egs. (B) and (B5),
(  imp is in fact not contained in this expression and the
number ofj (i.e., 3}j (nny 1) is also much smaller thaimp.
Though this treatment may be crude, we have

2

respectlvely Herek; - is the wavevector of the incident elec-
tron of theo spin (i.e., the Fermi wavevector of tlee spin

in the current direction). is the wavevector of the scattered
electron of ther spin, and@k K, is the relative angle be-

Z eXP(i(k(F?r - K- le) tweenkg, andk’.. In addition, EF (E ) is the energy of the
1) incident electron (the energy of the scattered electromgyaE
- Z Sij + Z exp(i(k(ﬁ, ~K)- (Rjz — Rj’l)) tion (C1) is also rewritten &8
ji’ (nn) j#’ (nn) 2. Zﬂ Bre Z‘ Vk 6(EF -Ey )
~ Np + N (Nn - 1)6k(,:[) K> (B-14) Tsor Fo= Ko -
yvhere_Nn is the number of nearest-neighbor atoms around the « (1 ~costy ¢ ) (C2)
impurity. Fo- Ky
: _Using egs. (B), (B-7), (B-12), (B13), and (B14), we ob- WhererF i is given by
ain o Ke
1 2r N|mp , = . i — k). .
NOR = Z o [1 + (Nimp — 1)‘5k“) k] Vike, -k f Vimp(r) exp(i(ke s — K;,) - r)dr, (C3)
S(T—>dM¢ Kk . . . .
wherevimp(r) is a short-range potential due to the impurity,
<N, [1 + (Nn = 16,00 ] i.e., q. (B6). In the case of the s—s scatteringy(r) may be
Ke.. K replaced by an approximate potential on the impurity site be
021 ) ' cause such a potential contributes domlnantIyQo .In
X |VM"‘(k )l 6(EF Ek’,M,g)’ (B:15) brief, vimp(r) is approxmated aBmp(r) = \_/S(S(t) _whereVs is
VM,c(k(f) ) = Vimp(Ro) constant. We thus Obta“k&,fk[, =Vs, which is independent
of the o spin and the wavevectors. As a result, eq2jGs
% Z Gt f G () exp(ikY, - 1) . expressed §&°9
1 2n
= == ), .
(B.16) — = 5 Mgl VoD (C4)
. . . (d) . 1
We consider a case in which - (S(EF - Ek’,M,g) is much DY = 5 ;5(& - Ek})' (C5)
larger than Nimp — 1)(Nn — 1)0 (EF EE()”) MS) Equation -

(B-15) may then be given by the foIIowmg approximate exHere, 2 5(EF - Eg )0059k . disappears.

pression: . .
Appendix D:  Matrix Elements

% - %nimpNn s (k) | D).  (B17)  We consider the matrix element in eqs:1B) and (B16),
Tsr—dMg Vimp(Ry) [ 85(r) exp(i k9. r) dr, with m=—2 - 2 and¢=|| or
g 1 y L.
D$V|?s‘ N Z 5(EF B E(k’),M,g)’ (B-18) The matrix elements are written by
%

Vimp(Ro) f 85, (1 exp(ik®) - r)dr
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— i (Rn) fR(I')(ZZ _ 2) eXp(ik;:,g—Z) dr, (Dl) system WitmT =B and D%d)/Dgs) = Djd)/D(lS), 3 becomes

\/évimp
Vimp(Rn)f¢a,g(r) eXp(i k‘;ﬁl-r)dr

- 2—1v§vimp(Rn> [ ROE - explke, ar. 02
Vimp(Ry) f o0 (r) exp(ike) - r)dr
- Z—bzvimp(m [ RO0E -2 expike . (03
with k¥ =(0,0,ker) and  k2=(ke,0,0), where
¢mo(r) is eq. (All). In additon, we note
Vimp(Ro) [ @ () exp(ik®, - r)dr=0  for m=+1, +2,
and  Vimp(Ra) [ %, (1) exp ikt r)dr:O. As  for

2
Vimp(R) [ @i, (1) exp(ik), - ) dr|’, we  have Ve ol
for eq. (D1), $|Vsr—ao|? for eq. (D2), and|Vs, 4. for eq.
(D-3), whergVs, 4|2 is eq. (21).
Appendix E: Parameters

We obtain concrete expressionseaf of eq. (17)r of eq.
(48), andf of eq. (58).

The resistivityps, of €q. (17) is first written as
_ 6]'/3|‘nZ—2|’]imp|Vs|2
EEETE

Here, J1g, of €g. (19) has been given by

(E1)

27T 2
—— = 5 MVl DY

1/3
63 nimp Va2
71/353 ’

(E-2)

where

1 (2 3/2
D((TS) = F(F) \/EF+A0—
12m, 5.3 \us
= a2 Or )
with Er + A, = (fike)?/(2mt) = (67%1%n,)?/3/(2m) and
ke = (67°n,)Y/3.37) The quantityn,. (M) is the number den-
sity®* 3% (the efective mas¥)) of the electrons in the con-
duction band of ther spin. In addition A, is the exchange
splitting energy of the conduction electron, whése= A and
Ay = —A.
Using egs. (EL) and (E3), r of eq. (48) is expressed as

N4 [ (912
[CR
m”; Di

(E-3)

(E4)

Using egs. (), (51), and (52) of eq. (58) is obtained as

3 (E:5)

m)t 1 092 (D Y’
(E] A DD [ﬁl@ ) 1] ’
T l

fzp(u+é+2), (E-6)

with p = (m:/m)*D'¥/D{Y, whereu is eq. (50).
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