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We theoretically analyze the anisotropic magnetoresistance (AMR) effects of bcc Fe (+), fcc Co (+),
fcc Ni (+), Fe4N (−), and a half-metallic ferromagnet (−). The sign in each ( ) represents the sign of
the AMR ratio observed experimentally. We here use the two-current model for a system consisting of a
spin-polarized conduction state and localized d states with spin–orbit interaction. From the model, we first
derive a general expression of the AMR ratio. The expressionconsists of a resistivity of the conduction
state of theσ spin (σ =↑ or ↓), ρsσ, and resistivities due to s–d scattering processes from theconduction
state to the localized d states. On the basis of this expression, we next find a relation between the sign
of the AMR ratio and the s–d scattering process. In addition,we obtain expressions of the AMR ratios
appropriate to the respective materials. Using the expressions, we evaluate their AMR ratios, where the
expressions take into account the values ofρs↓/ρs↑ of the respective materials. The evaluated AMR ratios
correspond well to the experimental results.
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1. Introduction

The anisotropic magnetoresistance (AMR) effect,1–19) in
which the electrical resistivity depends on the relative angle
between the magnetization direction and the electric current
direction, is one of the most fundamental characteristics in-
volving magnetic and transport properties. The AMR effect
has been therefore investigated for various magnetic materi-
als. In particular, the AMR ratio has been measured to eval-
uate the amplitude of the effect. The AMR ratio is generally
defined as

∆ρ

ρ
=
ρ‖ − ρ⊥
ρ⊥

, (1)

whereρ‖ (ρ⊥) represents a resistivity for the case of the elec-
trical current parallel to the magnetization (a resistivity for the
case of the current perpendicular to the magnetization). Table
I shows the experimental values of the AMR ratios of typ-
ical ferromagnets, i.e., body-centered cubic (bcc) Fe8) face-
centered cubic (fcc) Co,8) fcc Ni,8) Fe4N,16, 17) and the half-
metallic ferromagnet.11–15) Here, bcc Fe is categorized as a
weak ferromagnet,21) in which its majority-spin d band is not
filled (see Fig. 1(a)). In contrast, fcc Co, fcc Ni, and Fe4N are
strong ferromagnets,21) in which their majority-spin d band is
filled (see Fig. 1(b)). In addition, the half-metallic ferromag-
net is defined as having a finite density of states (DOS) at the
Fermi energyEF in one spin channel and a zero DOS atEF in
the other spin channel (see Figs. 1(d) and 1(e)). As remark-
able points, Fe,8) Co,8) and Ni8) exhibited positive AMR ra-
tios, while Fe4N16, 17)and the half-metallic ferromagnets11–15)

showed negative AMR ratios. Furthermore, in the case of
Fe3O4

12, 13) of the half-metallic ferromagnet, the sign of the
AMR ratio changed from negative to positive with increas-
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ing temperature. For such ferromagnets, however, theoretical
studies to systematically explain their AMR ratios have been
scarce so far. In particular, a feature that strongly affects the
sign of the AMR ratio has not yet been revealed.

Theoretically, expressions of the AMR ratio have been de-
rived by taking into account a resistivity due to the s–d scat-
tering.1, 3, 4, 7, 9, 10, 12,18)This scattering represents that the con-
duction electron is scattered into the localized d states byim-
purities. The d states have exchange fieldHex and spin–orbit
interaction, i.e.,λL ·S, whereλ is the spin–orbit coupling con-
stant,L (=Lx, Ly, Lz) is the orbital angular momentum, andS
(=Sx, Sy, Sz) is the spin angular momentum. Here, the d states
are spin-mixed owing to the spin–orbit interaction.

The applicable scope of the previous theories, however, ap-
pears to be limited to specific materials because only the par-
tial components in the whole resistivities have been adopted.
For example, Campbell, Fert, and Jaoul3) (CFJ) derived an ex-
pression of the AMR ratio of a strong ferromagnet9) such as
Ni-based alloys, i.e.,19)

∆ρ

ρ
= γ(α − 1), (2)

with γ = (3/4)(λ/Hex)2 andα ≈ ρs→d↓/ρs↑.20) Here,ρsσ was a
resistivity of the conduction state (named ass) of theσ spin,
with σ =↑ or ↓. In addition,ρs→dς was a resistivity due to the
s–d scattering, in which the conduction electron was scattered
into the localized d states of theς spin by impurities. Theς
spin represented the spin of the dominant state in the spin-
mixed state, where the up spin (ς =↑) and down spin (ς =↓)
meant the majority spin and the minority spin, respectively.
Note that the CFJ model adopted onlyρs↑ andρs→d↓ on the
basis of scattering processes between the dominant states at
EF. The processes weres ↑→ s ↑, s ↑→ d ↓, ands ↓→ d ↓,3)

wheresσ → sσ represented the scattering process between



2 J. Phys. Soc. Jpn. Full Paper Author Name

Table I. AMR ratioρs↓/ρs↑ andD(d)
↓ /D

(d)
↑ of the various ferromagnets. The AMR ratios represent experimental values. Note that for every material except

for Fe4N, the AMR ratio defined in each paper,xAMR = (ρ‖ − ρ⊥)/[(ρ‖/3) + (2ρ‖/3)], has been transformed into∆ρ/ρ of eq. (1) by using∆ρ/ρ =
3xAMR/(xAMR+3). The ratiosρs↓/ρs↑ ’s of bcc Fe, fcc Co, fcc Ni, and Fe4N are the respective theoretical values evaluated from analyses using a combination

of the first principles calculation and the Kubo formula. Their D(d)
↑ /D

(d)
↓ ’s are roughly estimated from the respectiveDFP

d↑/D
FP
d↓ ’s. Here,D(d)

ς is the DOS of

each d state of theς spin atEF (see eq. (27)), whereD(d)
ς is set to beD(d)

ς = D(d)
Mς by ignoringM for D(d)

Mς of eq. (B·18). In addition,DFP
dς is the partial DOS

of the d band atEF obtained by the first principles calculation. In a simple term, DFP
dς =

∑2
M=−2 D(d)

Mς is realized. The ratiosρs↓/ρs↑ ’s andD(d)
↑ /D

(d)
↓ ’s of the

half-metallic ferromagnets are, respectively, assumed tohaveρs↓/ρs↑ → 0 or∞ andD(d)
↑ /D

(d)
↓ → 0 or∞, judging from the DOS’s atEF of Figs. 1(d) and

1(e).

Category Material AMR ratio∆ρ/ρ (experimental value) ρs↓/ρs↑ D(d)
↑ /D

(d)
↓

Weak ferromagnet21) bcc Fe 0.0030 at 300 K (ref. 8) 3.8× 10−1 (ref. 22) ∼ 2.0 (ref. 39)

Strong ferromagnet21) fcc Co 0.020 at 300 K (ref. 8) 7.3 (ref. 22) ∼ 0 (ref. 40)
fcc Ni 0.022 at 300 K (ref. 8) 1.0× 10 (ref. 23) ∼ 0 (ref. 41)
Fe4N −0.043 -−0.005 for 4.2 K - 300 K (ref. 16) 1.6× 10−3 (ref. 25) ∼ 0.2 (ref. 42)

−0.07 -−0.005 for 4 K - 300 K (ref. 17)

Half-metallic ferromagnet Co2MnAl1−xSix −0.003 -−0.002 at 4.2 K (ref. 11) →∞ → ∞
La0.7Sr0.3MnO3 −0.0015 at 4 K (ref. 15) →∞ → ∞
La0.7Ca0.3MnO3 −0.0012 at 75 K (ref. 12) →∞ → ∞

−0.004 at 100 K (ref. 14)
Fe3O4 −0.005 - 0.005 for 100 K - 300 K (refs. 12 and 13)∼ 0 ∼ 0

the conduction states of theσ spin, whilesσ → dς was the
scattering process from the conduction state of theσ spin to
the σ spin state in the localized d states of theς spin. On
the other hand, Malozemoff9, 10) extended the CFJ model to
a more general model which was applicable to the weak fer-
romagnet as well as the strong ferromagnet. This model took
into accountρs↑, ρs↓, ρs→d↑, andρs→d↓ on the basis of the scat-
tering processes ofs ↑→ s ↑, s ↑→ d ↑, s ↑→ d ↓, s ↓→ s ↓,
s ↓→ d ↓, ands ↓→ d ↑. In the actual application to mate-
rials, however, he often used an expression of the AMR ratio
with ρs↑ = ρs↓ = ρs,9, 10) i.e.,

∆ρ

ρ
=

γ(ρs→d↓ − ρs→d↑)2

(ρs + ρs→d↑)(ρs + ρs→d↓)
, (3)

which was always positive. Equation (3) was an expression
for the weak ferromagnet, while Eq. (3) withρs→d↑ = 0 was
that for the strong ferromagnet.

Furthermore, we point out a problem, namely, that the pre-
vious theories have not taken into account the spin depen-
dence of the effective mass and the number density of elec-
trons in the conduction band in expressions of the resistivi-
ties. For example, the half-metallic ferromagnets which have
the DOS’s of Figs. 1(d) and 1(e) may show significant spin
dependence.

On the basis of this situation, we suggest improvements
for a systematic analysis of the AMR effects of various ferro-
magnets. First, the expression of the AMR ratio should treat
ρs↓/ρs↑ as a variable. The reason is thatρs↓/ρs↑ actually de-
pends strongly on the materials (see Table I). Namely,ρs↓/ρs↑
has been evaluated to be 3.8× 10−1 for bcc Fe,22) 7.3 for fcc
Co,22) 1.0× 10 for fcc Ni,23, 24)and 1.6× 10−3 for Fe4N,25, 26)

from analyses using a combination of the first principles cal-
culation and the Kubo formula within the semiclassical ap-
proximation. The half-metallic ferromagnet is also assumed
to haveρs↓/ρs↑ ≈ 0 orρs↓/ρs↑ → ∞. It is noteworthy here that
the conduction state (calleds in suffixes ofρsσ) is considered
to consist of not only the s and p states but also the conductive
d state. In addition, the exchange splitting of the s and p states

is attributed to the fact that the s and p states are coupled tothe
d states with exchange splitting through the transfer integrals.
Second, in the case of the half-metallic ferromagnet, the ex-
pressions of the resistivities should take into account thespin
dependence of the effective mass and the number density of
the electrons in the conduction band.

In this paper, we first derived general expressions of the
resistivities and the AMR ratio. We here treatedρs↓/ρs↑ as a
variable and took into account the spin dependence of the ef-
fective mass and the number density of the electrons in the
conduction band. Second, on the basis of the expressions,
we roughly determined a relation between the sign of the
AMR ratio and the dominant s–d scattering process. Namely,
when the dominant s–d scattering process wass ↑→ d ↓
or s ↓→ d ↑, the AMR ratio tended to become positive.
In contrast, when the dominant s–d scattering process was
s ↑→ d ↑ or s ↓→ d ↓, the AMR ratio tended to be nega-
tive. Finally, using the expression of the AMR ratio, we sys-
tematically analyzed the AMR ratios of Fe, Co, Ni, Fe4N, and
the half-metallic ferromagnet. The evaluated AMR ratios cor-
responded well with the respective experimental results. In
addition, the sign change of the AMR ratio of Fe3O4 could
be explained by considering the increase of the majority spin
DOS atEF.

The present paper is organized as follows: In§2, we derive
general expressions of the resistivities and the AMR ratio.We
then find the relation between the sign of the AMR ratio and
the s–d scattering process. In§3 and§4, from the general ex-
pression, we obtain expressions of AMR ratio appropriate to
the respective materials. Using the expressions, we analyze
their AMR ratios. Concluding remarks are presented in the§5.
In the Appendix A, we obtain wave functions of the localized
d states (i.e., the spin-mixed states) from a single atom model
that involves the spin–orbit interaction. In Appendixes B and
C, we derive expressions of s–d and s–s scattering rates, re-
spectively. In the Appendix D, we show matrix elements in
the s–d scattering rate. Some parameters are formulated in the
Appendix E.
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Fig. 1. Schematic illustration of the density of states (DOS) of the vari-
ous ferromagnets. (a) The partial DOS of bcc Fe24,39) of the weak fer-
romagnet. (b) The partial DOS of fcc Co40) and fcc Ni24,41) of the
strong ferromagnet. (c) The partial DOS of Fe4N26,42) of the strong
ferromagnet. (d) The DOS of the half-metallic ferromagnet such as
Co2MnAl1−xSix,44) La0.7Sr0.3MnO3,45,46) and La0.7Ca0.3MnO3.47) (e)
The DOS of Fe3O4

52,53)of the half-metallic ferromagnet. In (a) - (c), light-
gray areas (dark-gray areas) correspond to the sp band DOS (the d band
DOS). The sp band is partly covered by the d band (see lighter areas in the
d band). The d band consists of the conductive and localized dstates, and
the respective portions are unspecified here. In (d) and (e),only the DOS’s
in the vicinity of EF (i.e., the d band DOS) are shown. In (e), Fe (A) and
Fe (B) denotes sublattices, andeg↑ andt2g↓ are 3d orbitals of the Fe ion.53)

2. Theory

We derive general expressions of resistivities due to elec-
tron scattering by nonmagnetic impurities and then obtain a
general expression of the AMR ratio. On the basis of the resis-
tivities and the AMR ratio, we explain a feature of the AMR
effect. In addition, we find a relation between the sign of the
AMR ratio and the scattering process.

2.1 Model
Following the Smit model1) and the CFJ model,3) we use a

simple model consisting of the conduction state and the local-
ized d states. The conduction state is represented by a plane
wave, while the localized d states are described by a tight-
binding model, i.e., the linear combination of atomic d or-

bitals.3) The d orbitals are obtained by applying a perturbation
theory to a Hamiltonian for the d electron in a single atom,H :

H = H0 +H ′, (4)

H0 = −
~

2

2me
∇2 + V(r) + HexSz, (5)

H ′ = λL · S. (6)

Here, the unperturbed termH0 is the Hamiltonian for the
hydrogen-like atom with Zeeman interaction due toHex,
whereHex is the exchange field of the ferromagnet,me is the
electron mass, and~ is the Planck constanth divided by 2π.
The termV(r) is a spherically symmetric potential energy of
the d orbitals created by a nucleus and core electrons, with
r = |r|, wherer is the position vector. The perturbed term
H ′ is the spin–orbit interaction with|λ/Hex| ≪ 1. Here, the
azimuthal quantum numberL and the spin quantum number
S are chosen to beL=2 andS=1/2, respectively. From this
model, we obtain the spin-mixed states within the second-
order perturbation (see Appendix A).

2.2 Resistivity
Using the localized d states and the conduction state, we

can obtain the resistivity for the case of a parallel (‖) or per-
pendicular (⊥) configuration. As a starting point, we consider
the two-current model27) composed of the up spin and down
spin current components. In addition, this model is improved
by including the spin-flip scattering, which is due to, for ex-
ample, spin-dependent disorder28, 29) and magnon.30, 31) The
resistivity of ℓ configurationρℓ (ℓ =‖ or ⊥) is then written
as32)

ρℓ =
ρℓ,↑ρℓ,↓ + ρℓ,↑ρℓ,↓↑ + ρℓ,↓ρℓ,↑↓

ρℓ,↑ + ρℓ,↓ + (1+ a)ρℓ,↑↓ + (1+ a−1)ρℓ,↓↑
, (7)

with

ρℓ,σ =
m∗σ

nσe2τℓ,σ
, (8)

ρℓ,σσ′ =
m∗σ

nσe2τℓ,σσ′
, (9)

a =
m∗↓n↑

m∗↑n↓
, (10)

whereρℓ,σ is a resistivity of theσ spin state for theℓ con-
figuration,18, 31, 33–37)while ρℓ,σσ′ (σ , σ′) is a resistivity due
to the spin-flip scattering process from theσ spin state to the
σ′ spin state for theℓ configuration. It is noted that eq. (7)
with ρℓ,σσ′=0 corresponds to the resistivity of the two-current
model. The constante is the electronic charge, andnσ (m∗σ)
is the number density34, 35) (the effective mass38)) of the elec-
trons in the conduction band of theσ spin, where the con-
duction band consists of the s, p, and conductive d states. The
quantityτℓ,σ is a relaxation time of the conduction electron of
theσ spin for theℓ configuration, andτℓ,σσ′ is a relaxation
time of the spin-flip scattering process from theσ spin state
to theσ′ spin state for theℓ configuration. The scattering rate
1/τℓ,σ is expressed as4, 5)

1
τℓ,σ
=

1
τsσ
+

2
∑

M=−2

∑

ς=↑,↓

1

τ
(ℓ)
sσ→dMς

. (11)
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Here,τsσ is a relaxation time of the conduction state of the
σ spin, where this state consists of the s, p, and conductive
d states. In addition,τ(ℓ)sσ→dMς is a relaxation time of the s–d
scattering for theℓ configuration. This s–d scattering means
that the conduction electron of theσ spin is scattered into “the
σ spin state in the localized d state ofM andς” by nonmag-
netic impurities. The quantitiesM (M = −2,−1, 0, 1, 2) and
ς (ς =↑ or ↓) are, respectively, the magnetic quantum number
and the spin of the dominant state in the spin-mixed state (see
Appendix A). The expressions of 1/τ(ℓ)sσ→dMς and 1/τsσ are
derived in Appendixes B and C, respectively.

Using eqs. (B·17), (A·1) - (A·10), and (D·1) - (D·3), we
obtainρℓ,σ of eq. (8) as

ρ‖,↑ = ρs↑ + 2γρs↑→d1↓ + (1− 2γ)ρs↑→d0↑, (12)

ρ‖,↓ = ρs↓ + (1− 2γ)ρs↓→d0↓ + 2γρs↓→d−1↑, (13)

ρ⊥,↑ = ρs↑ +
γ

2
ρs↑→d1↓ +

γ

2
ρs↑→d−1↓ +

3
8
ρs↑→d2↑

+
3
8

(

1− 4
3
γ

)

ρs↑→d−2↑ +
1
4

(1− 2γ) ρs↑→d0↑, (14)

ρ⊥,↓ = ρs↓ +
3
8
ρs↓→d−2↓ +

3
8

(

1− 4
3
γ

)

ρs↓→d2↓

+
1
4

(1− 2γ) ρs↓→d0↓ +
γ

2
ρs↓→d1↑ +

γ

2
ρs↓→d−1↑, (15)

with

γ =
3
4

(

λ

Hex

)2

, (16)

ρsσ =
m∗σ

nσe2τsσ
, (17)

ρsσ→dMς =
m∗σ

nσe2τsσ→dMς
, (18)

1
τsσ
=

2π
~

nimp|Vs|2D(s)
σ , (19)

1
τsσ→dMς

=
2π
~

nimpNn|Vsσ→dσ|2D(d)
Mς, (20)

|Vsσ→dσ|2 =
1
3

∣

∣

∣

∣

∣

vimp(Rn)
∫ ∫ ∫

R(r)(z2 − x2) exp
(

ikF,σz
)

dxdydz
∣

∣

∣

∣

∣

2

.

(21)

Here, terms higher than the second order ofλ/Hex have
been ignored. Accordingly, terms withγρsσ→dς in eqs. (12) -
(15) correspond to terms obtained from only the Smit1) spin-
mixing mechanism7, 10) with (λ/2)(L+S− + L−S+) (see Ap-
pendix A). In contrast, terms related to theλLzSz operator
have been eliminated. A resistivity of the conduction stateof
theσ spin,ρsσ, is due to the s–s scattering, in which the con-
duction electron of theσ spin is scattered into the conduction
state of theσ spin by nonmagnetic impurities (see Appendix
C). In addition,ρsσ→dMς is a resistivity due to the s–d scatter-
ing. The s–d scattering means that the conduction electron of
theσ spin is scattered into “theσ spin state in the localized d
state ofM andς” by the impurities, whereM andς are as ex-
plained above (see Appendixes A and B). The quantitiesτsσ

andτsσ→dMς are the relaxation times of the s–s and s–d scat-

terings, respectively. The quantityVs is the matrix element of
the impurity potential for the s–s scattering (see eq. (C·4)),
while Vsσ→dσ is that for the s–d scattering (see eqs. (B·16),
(B·17), and (A·11), and Appendix D), wherekF,σ is the Fermi
wavevector of theσ spin in the current direction. Here, each
impurity is assumed to have a spherically symmetric scatter-
ing potential which acts only over a short range. The quantity
D(s)
σ is the DOS of the conduction state of theσ spin atEF (see

eq. (C·5)), andD(d)
Mς is that of the d state ofM andς at EF (see

eq. (B·18)). Furthermore,nimp is the impurity density, andNn

is the number of the nearest-neighbor host atoms around the
impurity (see eq. (B·14)).

When theM dependence ofD(d)
Mς in eq. (20) is ignored in a

conventional manner,3) eqs. (12) - (15) become

ρ‖,↑ = ρs↑ + 2γρs↑→d↓ + (1− 2γ)ρs↑→d↑, (22)

ρ‖,↓ = ρs↓ + (1− 2γ)ρs↓→d↓ + 2γρs↓→d↑, (23)

ρ⊥,↑ = ρs↑ + γρs↑→d↓ + (1− γ)ρs↑→d↑, (24)

ρ⊥,↓ = ρs↓ + (1− γ)ρs↓→d↓ + γρs↓→d↑, (25)

respectively, with

ρsσ→dς =
m∗σ

nσe2τsσ→dς
, (26)

1
τsσ→dς

=
2π
~

nimpNn|Vsσ→dσ|2D(d)
ς , (27)

whereγ, ρsσ, and|Vsσ→dσ|2 are given by eqs. (16), (17), and
(21), respectively. Here,D(d)

ς is the DOS of each d state of the
ς spin atEF, whereD(d)

ς is set to beD(d)
ς = D(d)

Mς by ignoring

M for D(d)
Mς of eq. (B·18).

2.3 AMR ratio
Using eqs. (1), (7), and (22) - (25), we obtain the general

expression of the AMR ratio as

∆ρ

ρ
= γ

A+ B
CD

, (28)

with

A = (ρs↑→d↓ − ρs↑→d↑) ×
{

(ρs↓ + ρs↓→d↓)(ρs↓ + ρs↓→d↓ + ρ↓↑ − ρ↑↓)

+
[

(1+ a)ρ↑↓ + (1+ a−1)ρ↓↑
]

(ρs↓ + ρs↓→d↓ + ρ↓↑)

}

, (29)

B = (ρs↓→d↑ − ρs↓→d↓) ×
{

(ρs↑ + ρs↑→d↑)(ρs↑ + ρs↑→d↑ + ρ↑↓ − ρ↓↑)

+
[

(1+ a)ρ↑↓ + (1+ a−1)ρ↓↑
]

(ρs↑ + ρs↑→d↑ + ρ↑↓)

}

, (30)

C = (ρs↑ + ρs↑→d↑)(ρs↓ + ρs↓→d↓ + ρ↓↑) + (ρs↓ + ρs↓→d↓)ρ↑↓,

(31)

D = ρs↑ + ρs↑→d↑ + ρs↓ + ρs↓→d↓ + (1+ a)ρ↑↓ + (1+ a−1)ρ↓↑,

(32)
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Table II. s–d scattering terms inρℓ,σ of eqs. (12) - (15) or eqs. (22) - (25). The configurationℓ is ℓ =‖ or⊥, andσ isσ =↑ or ↓. The terms withρsσ→dMς are
listed for eachm. Here,m is the magnetic quantum number of the d orbitalφm,σ(r), whereφm,σ(r) corresponds to the final state in the s–d scattering process
(see eqs. (A·1) - (A·10)). For eachρℓ,σ, terms withρsσ→dM↓ are written in the upper line, while those withρsσ→dM↑ are given in the lower line. For each
line, the summation of the s–d scattering terms is written inthe right-hand column, whereρsσ→dMς is put to beρsσ→dMς = ρsσ→dς .

m= −2 m= 0 m= 2 Summation

ρ‖,↑ 2γρs↑→d1↓ 2γρs↑→d↓

(1− 2γ)ρs↑→d0↑ (1− 2γ)ρs↑→d↑

ρ‖,↓ (1− 2γ)ρs↓→d0↓ (1− 2γ)ρs↓→d↓

2γρs↓→d−1↑ 2γρs↓→d↑

ρ⊥,↑
γ

2ρs↑→d−1↓
γ

2ρs↑→d1↓ γρs↑→d↓
3
8

(

1− 4
3γ

)

ρs↑→d−2↑
1
4 (1− 2γ) ρs↑→d0↑

3
8ρs↑→d2↑ (1− γ)ρs↑→d↑

ρ⊥,↓
3
8ρs↓→d−2↓

1
4 (1− 2γ) ρs↓→d0↓

3
8

(

1− 4
3γ

)

ρs↓→d2↓ (1− γ)ρs↓→d↓
γ

2ρs↓→d−1↑
γ

2ρs↓→d1↑ γρs↓→d↑

ρσσ′ =
m∗σ

nσe2τσσ′
, (33)

whereρσσ′ (σ , σ′) is a resistivity due to the spin-flip scat-
tering process from theσ spin state to theσ′ spin state, and
τσσ′ is a relaxation time of this scattering. Here,τσσ′ has been
assumed to be independent of the configuration (seeτℓ,σσ′ of
eq. (9)).

2.4 Feature of the AMR effect
On the basis of the above results, we introduce a certain

quantity based on the AMR ratio and then reveal a feature
of the AMR effect. In particular, we find that the sign of the
AMR ratio is determined by the increase or decrease of “exis-
tence probabilities of the specific d orbitals” due to the spin–
orbit interaction. In addition, we roughly determine a relation
between the sign of the AMR ratio and the scattering process.

2.4.1 Zσ;ς

Taking into account the after-mentioned (i) - (iii), we in-
troduce the quantity based on the AMR ratio. Here, the AMR
ratio reflects the difference of “changes of the d orbitals due
to the spin–orbit interaction” between differentm’s, wherem
is the magnetic quantum number of the d orbitalφm,σ(r) of eq.
(A·11). Such a quantityZσ;ς is written as

Zσ;ς = X(0, σ; ς) − Yσ;ς , (34)

Yσ;ς =
1
4

X(0, σ; ς) +
3
8

X(2, σ; ς) +
3
8

X(−2, σ; ς), (35)

X(m, σ; ς) =
2

∑

M=−2

(
∣

∣

∣

∣

∣

∫

φ∗m,σ(r)Φ(d)
M,ς(r)dr

∣

∣

∣

∣

∣

2

− δm,Mδσ,ς
)

, (36)

where Φ(d)
M,ς(r) is given by eqs. (A·1) - (A·10).

Roughly speaking, Zσ;ς may correspond to the nu-
merator of the AMR ratio of eq. (1),ρ‖ − ρ⊥. In par-

ticular,
∑2

M=−2

∣

∣

∣

∣

∫

φ∗0,σ(r)Φ(d)
M,ς(r)dr

∣

∣

∣

∣

2
in X(0, σ; ς) and

∑2
M=−2

[

1
4

∣

∣

∣

∣

∫

φ∗0,σ(r)Φ(d)
M,ς(r)dr

∣

∣

∣

∣

2
+ 3

8

∑

m=±2

∣

∣

∣

∣

∫

φ∗m,σ(r)Φ(d)
M,ς(r)dr

∣

∣

∣

∣

2]

in Yσ;ς may be related toρ‖ and ρ⊥, respectively. This
X(m, σ; ς) represents the change of “the existence probability
of the d orbital ofm andσ” due to the spin–orbit interaction.

Here,
∣

∣

∣

∣

∫

φ∗m,σ(r)Φ(d)
M,ς(r)dr

∣

∣

∣

∣

2
is adopted on the basis of the

scattering rate inρsσ→dς (see Appendix B), and
∑2

M=−2
comes from that in the right-hand side of eq. (11). In addition,
1/4, 3/8, and 3/8 in Yσ;ς correspond to the coefficients of
|Vsσ→dσ|2 of eq. (21) in the scattering rates ofm=0, 2, and
−2, respectively (see Appendix D). SuchZσ;ς andX(m, σ; ς)
have been based on the following (i) - (iii):

(i) By comparing eqs. (22) and (24) or eqs. (23) and (25),
we find that the AMR effect arises from the difference
of s–d scattering terms between‖ and⊥ configurations.
All the s–d scattering terms withρsσ→dς in eqs. (22) -
(25) are listed in Table II, where terms withρsσ→dMς in
eqs. (12) - (15) are also listed. The s–d scattering terms
in ρ‖,σ originate from a transition from the plane wave
to the d orbital ofm=0, φ0,σ(r) (see Appendix D).3) In
contrast, the s–d scattering terms inρ⊥,σ are due to tran-
sitions from the plane wave to the d orbitals ofm = ±2
and 0,φ±2,σ(r) andφ0,σ(r). The d orbitals ofm = ±1,
φ±1,σ(r), give no contribution toρ‖,σ andρ⊥,σ.

(ii) In such s–d scattering terms, only terms withγρs→dς ac-
tually contribute to the AMR effect. Theγρs→dς terms
are induced by the spin–orbit interaction. As found from
eqs. (22) - (25) or the summation in Table II, the case of
γ , 0 leads toρ‖,↑ , ρ⊥,↑ andρ‖,↓ , ρ⊥,↓, while the case
of γ=0 leads toρ‖,↑ = ρ⊥,↑ andρ‖,↓ = ρ⊥,↓.

(iii) The γρs→dς terms stem from the change of the d orbitals
due to the spin–orbit interaction. The d orbital is slightly
changed by the spin-mixing term (λ/2)(L+S−+L−S+) in
the spin–orbit interaction. It is noteworthy that the con-
tributions due to theλLzSz term are eliminated by ig-
noring terms higher than the second order ofλ/Hex (see
Appendix A).

2.4.2 Sign of Zσ;ς and s–d scattering
In order to obtainZσ;ς, we first investigateX(m, σ; ς) of eq.

(36). As seen from Table III,X(2, ↓; ↓), X(0, ↓; ↓), X(0, ↑; ↑),
and X(−2, ↑; ↑) become negative, whileX(0, ↑; ↓), X(−2, ↑
; ↓), X(2, ↓; ↑), and X(0, ↓; ↑) are positive. Here, the former
X(m, σ; ς)’s are obtained from the first terms in the right-
hand sides of eqs. (A·1) - (A·4) and (A·7) - (A·10). The latter
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Table III. Change of the d orbital due to the spin–orbit interaction
X(m, σ; ς) of eq. (36) (m=0, ±2), Zσ;ς of eq. (34), andsσ → dς. Here,
terms higher than the second order ofǫ (=λ/Hex) have been ignored. In ad-
dition, σ andς of sσ → dς are extracted fromX(m, σ; ς). SinceZσ;ς may
correspond approximately toρ‖−ρ⊥ of the AMR ratio, we can roughly de-
termine a relation between the sign of the AMR ratio and the s–d scattering
process.

(σ, ς) (↓, ↓) (↑, ↓) (↑, ↑) (↓, ↑)
sσ→ dς s ↓→ d ↓ s ↑→ d ↓ s ↑→ d ↑ s ↓→ d ↑

X(2, σ; ς) −ǫ2 0 0 ǫ2

X(0, σ; ς) − 3ǫ2
2

3ǫ2
2 − 3ǫ2

2
3ǫ2
2

X(−2, σ; ς) 0 ǫ2 −ǫ2 0

Zσ;ς − 3ǫ2
4 (< 0) 3ǫ2

4 (> 0) − 3ǫ2
4 (< 0) 3ǫ2

4 (> 0)

X(m, σ; ς)’s are obtained from the second terms in them. The
negative sign of the former means that the existence probabil-
ity of the pure d orbital ofmdecreases owing to hybridization
with the other d orbital in the presence of the spin–orbit inter-
action (see the gray areas in Fig. 2(b)). In contrast, the positive
sign of the latter represents the addition of the existence prob-
ability of the other d orbital (see the black areas in Fig. 2(b)).
Note that the spin of the other d orbital is opposite to that of
the pure d orbital under the influence ofS± in the spin-mixing
term.

Furthermore, we find a relation of|X(0, σ; ς)| >

|X(±2, σ; ς)| for each set ofσ andς. The relation is attributed
to the mixing effect of the d orbitals due toL± = Lx ± iLy

in the spin-mixing term. This effect is verified from them
dependence ofC± (=

√
(L ∓m)(L ±m+ 1)) in Fig. 3, where

L±φm,σ(r)=C±φm±1,σ(r) andL=2. The coefficientC± atm= 0
becomes larger than that atm = ±2; that is, the mixing effect
at m= 0 is larger than that atm= ±2.

Using suchX(m, σ; ς)’s, we can obtainZσ;ς of eq. (34) as
shown in Table III. In addition, we find the following relation
between the sign ofZσ;ς and the s–d scattering processsσ→
dς: Z↓;↓ < 0 for s ↓→ d ↓, Z↑;↓ > 0 for s ↑→ d ↓, Z↑;↑ < 0
for s ↑→ d ↑, andZ↓;↑ > 0 for s ↓→ d ↑ (see Table III).
Here,sσ → dς indicates that the conduction electron of the
σ spin is scattered intoφm,σ(r) in Φ(d)

M,ς(r) of M = −2 - 2.
Theσ spin is conserved in the scattering process. The spins
σ andς of sσ → dς are extracted fromX(m, σ; ς). Roughly
speaking, the negative sign ofZ↓;↓ andZ↑;↑ originates from
the decrease of the existence probability of the pure d orbital,
while the positive sign ofZ↑;↓ andZ↓;↑ is due to the addition of
the existence probability of the other d orbital (see Fig. 2(b)).

SinceZσ;ς may correspond approximately toρ‖ − ρ⊥ of
the AMR ratio, we can roughly determine the relation be-
tween the sign of the AMR ratio and the s–d scattering pro-
cess. Namely, when the dominant s–d scattering process is
s ↓→ d ↓ or s ↑→ d ↑, the AMR ratio tends to become nega-
tive. In contrast, when the dominant s–d scattering processis
s ↑→ d ↓ or s ↓→ d ↑, the AMR ratio tends to be positive.
Such a relation agrees with a trend for real materials, as will
be shown in§2.5.

EF

E

ς =↑ ς =↓

EF

E

ς =↑ ς =↓

(a)λ = 0 (b)λ , 0

Fig. 2. Effect of the spin–orbit interaction on the DOS of a typical d band.
(a) The case ofλ = 0. Here,λ is the spin–orbit coupling constant (see eq.
(6)). (b) The case ofλ , 0. In (b), the partial DOS of the pure d orbital
with φm,ς is indicated by the gray areas, while that of the other d orbital
with φm,σ is shown by the black areas, whereσ , ς. The orbitalφm,σ or
φm,ς is given by eq. (A·11), whereς denotes the spin of the dominant state
in the spin-mixed state. In (b), a slight amount ofφm,σ is mixed withφm,ς.
This mixing reduces the existence probability ofφm,ς (see Appendix A).
The dashed curves in (b) represent the shape of the DOS of (a).

–2 –1 0 1 2
m

0

1

2

3

C
+ 

or
 C

–

: C+

: C–

Fig. 3. m dependence ofC± =
√

(L ∓m)(L ±m+ 1) with L=2 andm =
−2, −1, 0, 1, 2. Here, we haveL±φm,σ(r)= C±φm±1,σ(r), whereφm,σ(r) is
given by eq. (A·11).

2.5 Sign of the AMR ratio and s–d scattering of real mate-
rial

Within a unified framework, we find the sign of the AMR
ratio and the dominant scattering process of each material in
Table I. We here utilizeρs↓/ρs↑ andD(d)

↑ /D
(d)
↓ from Table I.

2.5.1 A simple model
Toward the unified framework, we present a simple model

with n↑ = n↓ (, 0), m∗↑ = m∗↓, Vs↑→d↑ = Vs↓→d↓, andρ↑↓ =
ρ↓↑=0. This model has a relation ofρ‖,↑+ρ‖,↓ = ρ⊥,↑+ρ⊥,↓ from
eqs. (22) - (25). The AMR ratio of eq. (1) is then expressed as

∆ρ

ρ
=
ρ‖↑ρ‖↓ − ρ⊥↑ρ⊥↓
ρ⊥↑ρ⊥↓

. (37)

Using eqs. (22) - (27), eq. (37) is rewritten as

∆ρ

ρ
= γ

(

ρs↓→d↑ − ρs↓→d↓

ρ↓
+
ρs↑→d↓ − ρs↑→d↑

ρ↑

)

(38)

∝ γ
















D(d)
↑ − D(d)

↓
ρ↓

+
D(d)
↓ − D(d)

↑
ρ↑

















(39)

= γ
(

D(d)
↑ − D(d)

↓

)

(

1
ρ↓
− 1
ρ↑

)

, (40)
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ρ ρ↑ ↓−

bcc Fe

fcc Co
fcc Ni

Fe4N
Fe3O4

Co2MnAl1-xSix
La0.7Sr0.3MnO3

La0.7Ca0.3MnO3

spin↑

spin↑ spin↓

spin↓

s d↓ ↑→

s d↓ ↓→

s d↑ ↑→

s d↑ ↓→

Fig. 4. Sign of the AMR ratio∆ρ/ρ and the dominant s–d scattering pro-
cesssσ→ dς in a simple model withn↑ = n↓, m∗↑ = m∗↓, Vs↑→d↑ = Vs↓→d↓,

andρ↑↓ = ρ↓↑=0. They are shown in the (ρ↑−ρ↓)-(D(d)
↑ −D(d)

↓ ) plane, where
ρσ = ρsσ+ρsσ→dσ. In each quadrant, the first, second, and third lines from
the top denote the sign of the AMR ratio, the spin of the conduction elec-
trons contributing dominantly to the transport, andsσ→ dς, respectively.
Here, the sign of the AMR ratio can be judged from eq. (40). In addition,
sσ → dς is extracted fromρsσ→dς , which contributes dominantly to the
sign of the AMR ratio. Namely, thisρsσ→dς corresponds to the greater of
ρs↓→d↑ andρs↓→d↓ in the case ofρ↑ > ρ↓ and the greater ofρs↑→d↓ and
ρs↑→d↑ in the case ofρ↑ < ρ↓. Furthermore, materials in Table I are as-
signed to the respective quadrants on the basis of results of(i) - (v) of
§2.5.2.

with

ρσ = ρsσ + ρsσ→dσ, (41)

whereρsσ is given by eq. (17), andρsσ→dσ is written by eq.
(26) with ς = σ. This ρσ corresponds approximately to the
resistivity of theσ spin for a system with no spin–orbit inter-
action, i.e., eqs. (22) - (25) withλ=0. Note here thatD(d)

σ in
ρsσ→dσ in eq. (41) actually contains the effect of the spin–orbit
interaction, as found from eq. (B·18).

From eqs. (38) - (40), we can find the relation between the
sign of the AMR ratio and the dominant s–d scattering pro-
cess. First, the sign of the AMR ratio is shown in each quad-
rant of the (ρ↑ − ρ↓)-(D(d)

↑ − D(d)
↓ ) plane of Fig. 4. The AMR

ratio becomes positive in the case ofρ↑ > ρ↓ andD(d)
↑ > D(d)

↓
or in the case ofρ↑ < ρ↓ and D(d)

↑ < D(d)
↓ . In contrast, the

AMR ratio is negative in the case ofρ↑ > ρ↓ andD(d)
↑ < D(d)

↓
or in the case ofρ↑ < ρ↓ andD(d)

↑ > D(d)
↓ . Here, the case of

ρ↑ > ρ↓ (ρ↑ < ρ↓) shows that the down spin electrons (the
up spin electrons) contribute dominantly to the transport.Fur-
thermore, the dominant s–d scattering process is indicatedby
sσ → dς in each quadrant of Fig. 4. The processsσ → dς
is extracted fromρsσ→dς, which contributes dominantly to the
sign of the AMR ratio. Concretely speaking, thisρsσ→dς cor-
responds to the greater ofρs↓→d↑ andρs↓→d↓ in the case of
ρ↑ > ρ↓ and the greater ofρs↑→d↓ andρs↑→d↑ in the case of
ρ↑ < ρ↓. It is also noteworthy that the relation in Fig. 4 is
consistent with the result in§2.4.2 or Table III.

2.5.2 Application to materials
Applying ρs↓/ρs↑ andD(d)

↑ /D
(d)
↓ of Table I to the results of

Fig. 4, we can roughly determine the dominant s–d scattering
and the sign of the AMR ratio of each material. The deter-
mined signs agree with the experimental results of Table I.
The details are written as follows:

(i) bcc Fe
The dominant s–d scattering iss ↓→ d ↑ because of
D(d)
↑ > D(d)

↓ andρ↑ > ρ↓. The AMR ratio is thus positive.
Here,ρ↑ > ρ↓ originates fromρs↑ > ρs↓ andρs↑→d↑ >

ρs↓→d↓ due toD(d)
↑ > D(d)

↓ .

(ii) fcc Co and fcc Ni
The dominant s–d scattering iss ↑→ d ↓ because of
D(d)
↑ < D(d)

↓ andρ↑ < ρ↓. The AMR ratio is then positive.
Here,ρ↑ < ρ↓ is obtained fromρs↑ < ρs↓ andρs↑→d↑ <

ρs↓→d↓ due toD(d)
↑ < D(d)

↓ .

(iii) Fe4N
The dominant s–d scattering iss ↓→ d ↓ because of
D(d)
↑ < D(d)

↓ andρ↑ > ρ↓. The AMR ratio is thus neg-
ative. Here,ρ↑ > ρ↓ mainly results fromρs↑/ρs↓ =
(1.6× 10−3)−1 (see Table I). The relationρs↑→d↑=0 is as-
sumed by considering thatD(d)

↑ is considerably smaller

thanD(d)
↓ , where it is reported that this model hasnσ , 0.

In addition, we assume that 0.01 . ρs↓→d↓/ρs↑ . 0.5,
which will be estimated in§3.3.

(iv) Co2MnAl1−xSix, La0.7Sr0.3MnO3, and La0.7Ca0.3MnO3

The dominant s–d scattering iss ↑→ d ↑ because of
D(d)
↑ > D(d)

↓ andρ↑ < ρ↓. The AMR ratio is thus negative.

Here,ρ↑ < ρ↓ mainly originates fromρs↓/ρs↑ & 106 (see
(i) of §4.1 or§4.3). The relationρs↓→d↓=0 is roughly set
on the basis ofD(d)

↓ ∼ 0, wherenσ , 0. In addition,
we assume thatρs↑→d↑ ∼ ρs↑, which will be estimated in
§4.3.

(v) Fe3O4

The dominant s–d scattering iss ↓→ d ↓ because of
D(d)
↑ < D(d)

↓ andρ↑ > ρ↓. The AMR ratio is then negative.

Here,ρ↑ > ρ↓ mainly stems fromρs↑/ρs↓ & 106 (see (i)
of §4.1 or§4.3). The relationρs↑→d↑=0 is roughly set on
the basis ofD(d)

↑ ∼ 0, wherenσ , 0. In addition, we
assume thatρs↓→d↓ ∼ ρs↓, which will be estimated in
§4.3. Note that, in this system, the direction of each spin
in (iv) has been reversed by taking into account the DOS
of Fig. 1(e).

3. Application 1: Weak or Strong Ferromagnet

On the basis of the theory of§2, we obtain the expressions
of the AMR ratios of “bcc Fe of the weak ferromagnet” and
“fcc Co, fcc Ni, and Fe4N of the strong ferromagnet.” Using
the expressions, we analyze their AMR ratios.

3.1 AMR ratio
From eq. (28), we first derive an expression of the AMR

ratio of the weak or strong ferromagnet. The weak or strong
ferromagnet has the sp band DOS of the up and down spins
at EF (see Figs. 1(a), 1(b), and 1(c)). We thus use the conven-
tional approximation in order to reduce parameters. Namely,
we setn↑ = n↓, m∗↑ = m∗↓, Vs↑→d↑ = Vs↓→d↓, andτ↑↓ = τ↓↑.

Meanwhile, theσ dependence ofD(s)
σ and theς dependence
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of D(d)
ς are taken into account (see eqs. (17), (19), (26), and

(27)). The AMR ratio of eq. (28) is then given simply by

∆ρ

ρ
=

γ(ρs→d↑ − ρs→d↓)(ρs↑ − ρs↓ + ρs→d↑ − ρs→d↓)

(ρs↑ + ρs→d↑)(ρs↓ + ρs→d↓) + ρ↑↓(ρs↑ + ρs↓ + ρs→d↑ + ρs→d↓)
,

(42)

where

ρsσ =
m∗

ne2τsσ
, (43)

ρs→dς =
m∗

ne2τs→dς
. (44)

Here, we havem∗σ ≡ m∗, nσ ≡ n, andτsσ→dς ≡ τs→dς, where
1/τsσ ∝ D(s)

σ and 1/τs→dς ∝ D(d)
ς . In addition,ρσσ′ of eq. (33)

is rewritten byρσσ′ = m∗/(ne2τσσ′ ). It is noteworthy thatρ↑↓
has no influence on the sign of the AMR ratio of eq. (42).
Also, eq. (42) withρ↑↓=0 corresponds to an expression of the
AMR ratio obtained by Malozemoff.9)

3.2 Weak ferromagnet: Fe
Using eq. (42), we analyze the AMR ratio of bcc Fe of

the weak ferromagnet. Here,ρs→d↑/ρs→d↓ (=D(d)
↑ /D

(d)
↓ ) is as-

sumed to beρs→d↑/ρs→d↓=2.0 on the basis ofD(d)
↑ /D

(d)
↓ =2.0

of Table I.39) The constantγ is chosen to beγ=0.01 as a typ-
ical value. Meanwhile, we ignoreρ↑↓ which does not change
the sign of the AMR ratio. It is noteworthy that the spin-
dependent disorder,28, 29)which gives rise to the spin-flip scat-
tering, may be weak for the present ferromagnets with non-
magnetic impurities.

In Fig. 5, we show theρs↓/ρs↑ dependence of the AMR ratio
for anyρs→d↓/ρs↑. The AMR ratio behaves as a smooth step-
like function. In addition, the AMR ratio tends to be positive
for ρs↓/ρs↑ . 1 or negative forρs↓/ρs↑ & 1. In the case of
ρs↓/ρs↑=3.8×10−1 of Table I, the AMR ratio becomes positive
irrespective ofρs→d↓/ρs↑. In particular, whenρs→d↓/ρs↑=0.5,
the AMR ratio agrees fairly well with the experimental value,
i.e., 0.003.

Figure 6 shows theρs→d↓/ρs↑ dependence of the AMR ra-
tio. Our model withρs↓/ρs↑=3.8×10−1 is compared with the
Malozemoff model with ρs↓/ρs↑=1,9) i.e., eq. (3). The dif-
ference of the AMR ratio between them becomes prominent
for ρs→d↓/ρs↑ . 1. For example, in the case of the above-
mentionedρs→d↓/ρs↑=0.5, the AMR ratio of our model is
about four times as large as that of the Malozemoffmodel.

3.3 Strong ferromagnet: Co, Ni, and Fe4N
Utilizing eq. (42), we investigate the AMR ratios of fcc Co,

fcc Ni, and Fe4N of the strong ferromagnet. The DOS of this
system is schematically illustrated in Figs. 1(b) and 1(c).The
fcc Co40) and fcc Ni24, 41) have little d band DOS of the up
spin atEF. As to Fe4N,42) the d band DOS of the up spin is
considerably smaller than that of the down spin atEF. We thus
assumeD(d)

↑ =0 and then haveρs→d↑=0. Substitutingρs→d↑=0
into eq. (42), we obtain the AMR ratio as

∆ρ

ρ
=

γρs→d↓
(−ρs↑ + ρs↓ + ρs→d↓

)

ρs↑
(

ρs↓ + ρs→d↓
)

+ ρ↑↓
(

ρs↑ + ρs↓ + ρs→d↓
) . (45)

s d s
ρ ρ→ ↓ ↑
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∆
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Fig. 5. (Color) Quantityρs↓/ρs↑ dependence of the AMR ratio∆ρ/ρ of bcc
Fe for anyρs→d↓/ρs↑. The expression of the AMR ratio is given by eq. (42).
Here,γ=0.01,ρs→d↑/ρs→d↓=2.0, andρ↑↓=0 are set. In addition, an arrow
indicates the theoretical value ofρs↓/ρs↑ (=3.8× 10−1) (see Table I).
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Fig. 6. Quantityρs→d↓/ρs↑ dependence of the AMR ratio∆ρ/ρ of bcc Fe.
The solid curve represents our model, i.e., eq (42) withρs↓/ρs↑=3.8× 10−1

(see Table I) andρ↑↓=0. The dashed curve is the Malozemoff model with
ρs↓/ρs↑=1,9) i.e., eq. (3). Here,γ=0.01 andρs→d↑/ρs→d↓=2.0 are set.

Here, whenρs↓/ρs↑ is sufficiently small or sufficiently large,
eq. (45) withρ↑↓=0 is approximated as

∆ρ

ρ
≈



























γ

(

ρs→d↓

ρs↑
− 1

)

, for
ρs↓

ρs↑
≪ 1,

ρs→d↓

ρs↑
,

γ
ρs→d↓
ρs↑
, for

ρs↓
ρs↑
≫ 1,

ρs→d↓
ρs↑
,

(46)

where ρs→d↓/ρs↑ is set to be 0≤ ρs→d↓/ρs↑ ≤ 5 in the
present calculation. The respective expressions of eq. (46) in-
crease with increasingρs→d↓/ρs↑ andγ, while the magnitude
of the difference between the two expressions is given byγ.
We also mention thatγ(ρs→d↓/ρs↑ − 1) corresponds approxi-
mately to the CFJ model3) of eq. (2), which is applicable to
the strong ferromagnet. Here,α in eq. (2) is originally de-
fined byα = ρ⊥,↓/ρ⊥,↑ (see eqs. (24) and (25)). Thisα can
be rewritten asα ≈ ρs→d↓/ρs↑ under the following condi-
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tions: One is the condition of the CFJ model, i.e.,ρsσ→d↑ = 0,
ρs↓/ρs↓→d↓ → 0, γ ≪ 1, andρsσ→d↓ ≡ ρs→d↓. The other is the
condition ofγρs↑→d↓/ρs↑ ≪ 1. The latter reflects thatγ=0.01
andρs↑→d↓/ρs↑ < 10 are set in the present study (see Figs. 7
and 8).
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Fig. 7. (Color) Quantityρs↓/ρs↑ dependence of the AMR ratio∆ρ/ρ of the
strong ferromagnet for anyρs→d↓/ρs↑. The expression of the AMR ratio
is given by eq. (45). Here,γ=0.01 andρ↑↓=0 are set. In addition, arrows
indicate theoretical values ofρs↓/ρs↑ of the respective materials, i.e., 7.3
for Co, 1.0× 10 for Ni, and 1.6×10−3 for Fe4N (see Table I).
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Fig. 8. (Color) Quantityρs→d↓/ρs↑ dependence of the AMR ratio∆ρ/ρ of
Co, Fe, Ni, and Fe4N. The AMR ratio of our model is given by eq. (45)
with ρ↑↓=0, whereρs↓/ρs↑ is set to be 7.3 for Co, 1.0× 10 for Ni, and 1.6
× 10−3 for Fe4N (see Table I). The dashed curve represents the CFJ model
of eq. (2), whereα is given byα ≈ ρs→d↓/ρs↑. The dot-dashed curve is the
Malozemoffmodel withρs↓/ρs↑=1, i.e., eq. (3), whereρs→d↑=0 is adopted.
Here,γ=0.01 is set.

In Fig. 7, we show theρs↓/ρs↑ dependence of the AMR ratio
of eq. (45) withρ↑↓=0. The quantityγ is chosen to beγ=0.01
as a typical value. We find that the AMR ratio behaves as a
smooth step-like function with the limiting values of eq. (46).
In particular, the AMR ratio is positive forρs↓/ρs↑ > 1, while

it can be negative forρs↓/ρs↑ ≪ 1 andρs→d↓/ρs↑ . 1. Note
that the system ofρs↓/ρs↑ > 1 corresponds to Co and Ni, while
that ofρs↓/ρs↑ ≪ 1 corresponds to Fe4N.

When ρs↓/ρs↑’s of Co, Ni, and Fe4N are respectively set
to be 7.3, 1.0×10, and 1.6×10−3 of Table I, we obtain the
ρs→d↓/ρs↑ dependence of the AMR ratios as shown in Fig.
8. The main results are as follows:

(i) The fcc Co and fcc Ni exhibit a positive AMR ratio ir-
respective ofρs→d↓/ρs↑, while Fe4N can take the nega-
tive AMR ratio depending onρs→d↓/ρs↑. Such tenden-
cies roughly correspond to the experimental results (see
Table I). On the basis of the experimental values of the
AMR ratios,ρs→d↓/ρs↑’s of Co, Ni, and Fe4N are eval-
uated to beρs→d↓/ρs↑ ∼ 2.2, ρs→d↓/ρs↑ ∼ 2.5, and
0.01 . ρs→d↓/ρs↑ . 0.5, respectively. It is noted here
that the large AMR ratio of Fe4N (e.g.,−0.07) cannot be
obtained in the present theory. Eventually, a theoretical
model that takes into account a realistic band structure
may be necessary for a quantitative analysis.43)

(ii) The AMR ratios calculated for fcc Co and fcc Ni are
clearly different from the CFJ model of eq. (2) because
ρs↓/ρs↑’s of Co and Ni are largely different from that
in the CFJ model (i.e.,ρs↓/ρs↑ → 0). In contrast, the
AMR ratio calculated for Fe4N agrees well with the CFJ
model, becauseρs↓/ρs↑ (=1.6× 10−3) of Fe4N is much
smaller than 1.

(iii) The AMR ratios calculated for fcc Co, fcc Ni, and Fe4N
deviate from the Malozemoffmodel withρs↓/ρs↑=1, i.e.,
eq. (3). The reason is that theirρs↓/ρs↑’s are different
from 1.

4. Application 2: Half-Metallic Ferromagnet

On the basis of the theory of§2, we derive an expression
of the AMR ratio of the half-metallic ferromagnet. Using the
expression, we obtain an accurate condition for the negative
or positive AMR ratio and further analyze the AMR ratio.

4.1 AMR ratio
We first report the feature of the half-metallic fer-

romagnet of Table I. The DOS of Co2MnAl1−xSix,44)

La0.7Sr0.3MnO3,45, 46) or La0.7Ca0.3MnO3
47) is schematically

illustrated in Fig. 1(d). The conductive and localized d band
DOS’s of the up spin are present atEF, while there is little
DOS of the down spin. In real systems, however, there may
be a slight DOS of the down spin in the presence of disorders
or defects. According to previous studies, such a feature ofthe
DOS of Co2MnAl1−xSix originates from atomic disorders,48)

while that of La0.7Sr0.3MnO3
49, 50)or La0.7Ca0.3MnO3 may be

due to oxygen vacancies.51) It is also noted that, by reversing
the direction of each spin, we can treat the opposite case (i.e.,
Fe3O4

52, 53) of Fig. 1(e)), in which the DOS of the down spin
is present atEF, while there is little DOS of the up spin.

Focusing on the half-metallic ferromagnet with the DOS
of Fig. 1(d), we now obtain an expression of the AMR ratio
as accurately as possible. We here utilize the AMR ratio of
eq. (28) becausenσ andm∗σ are considered to have the signif-
icantσ dependence. Meanwhile,ρ↑↓ andρ↓↑ are ignored in
the same manner as in§3.2. The AMR ratio of eq. (28) with
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ρ↑↓ = ρ↓↑ = 0 is rewritten as

∆ρ

ρ
= −γ

( u− t
u+ 1
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with

r =
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=
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D(s)
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, (48)

t =
ρs↑→d↓
ρs↑

=
τ−1

s↑→d↓

τ−1
s↑
= β↑

D(d)
↓

D(s)
↑
, (49)

u =
ρs↑→d↑
ρs↑

=
τ−1

s↑→d↑

τ−1
s↑
= β↑

D(d)
↑

D(s)
↑
, (50)

v =
ρs↓→d↑

ρs↓
=
τ−1

s↓→d↑

τ−1
s↓
= β↓

D(d)
↑

D(s)
↓
, (51)

w =
ρs↓→d↓

ρs↓
=
τ−1

s↓→d↓

τ−1
s↓
= β↓

D(d)
↓

D(s)
↓
, (52)

βσ = Nn
|Vsσ→dσ|2
|Vs|2

, (53)

where eq. (48) has been derived in the Appendix E and eqs.
(49) - (52) have been obtained by using eqs. (17), (19), (26),
and (27). We also have assumedD(d)

↓ , 0 andD(s)
↓ , 0 on

the basis of the above-mentioned feature of the DOS of the
down spin. Here, the conduction state (named ass in D(s)

σ )
may correspond to the conductive d state in the case of the
present half-metallic ferromagnet (see Figs. 1(d) and 1(e)).
From eqs. (49) - (52), we find the following relation:

t
u
=

w
v
. (54)

Using this relation, we express eq. (47) as

∆ρ

ρ
=
−γ
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. (55)

Here, parameters in eq. (55),r, u, v, andw, are suggested as
follows:

(i) The parameterr of eq. (48) may become extremely large
owing to ρs↓ ≫ ρs↑. This relation is based on the fact
that the resistivity of semiconductors is more than 104

times larger than that of metals.54) As a typical sys-
tem, we considerr to ber & 106 on the assumption of
D(s)
↑ /D

(s)
↓ & 105 andm∗↓/m

∗
↑ ∼ 0.1. Here,m∗↓/m

∗
↑ has been

roughly estimated on the basis of the effective mass of
the carrier of the semiconductor divided by the electron
mass.54)

(ii) The parameteru of eq. (50) takes a finite value, where
D(d)
↑ , 0 andD(s)

↑ , 0. In the present calculation,u is
treated as a variable number of 0.01≤ u ≤ 50.

(iii) The parameterv of eq. (51) may be sufficiently large
because ofD(d)

↑ ≫ D(s)
↓ . In the case of theD(s)

↑ /D
(s)
↓ &

105 reported above, we find the relation ofv/u =

(β↓/β↑)D
(s)
↑ /D

(s)
↓ & 105, whereβ↑ ∼ β↓ has been as-

sumed.

(iv) The parameterw of eq. (52) may take a finite value, al-
though bothD(d)

↓ andD(s)
↓ are extremely small. In addi-

tion, the relation ofw/v = D(d)
↓ /D

(d)
↑ ≪ 1 is realized.

On the basis of eqs. (48) - (52) and the above suggestions,
we next obtain an approximate expression of eq. (55). We here
assumeβ↑ ∼ β↓ andu ∼ w and also take into accountw/v≪ 1
in (iv), r ≫ 1, andr ≫ v/u ∼ D(s)

↑ /D
(s)
↓ , whereD(s)

↑ /D
(s)
↓ &

105 andm∗↓/m
∗
↑ ∼ 0.1 in (i) have been adopted. Equation (55)

has thus been written as

∆ρ

ρ
=
−γ

u−1 + 1
. (56)

The AMR ratio of eq. (56) always takes a negative value.

4.2 Sign of AMR ratio
From eq. (55), we can find the condition for the negative

or positive AMR ratio of the half-metallic ferromagnet. This
condition is more accurate than the result in the unified frame-
work of §2.5. Because ofw/v≪ 1 in (iv), we focus on the nu-
merator in [ ] of eq. (55). The numerator is written byr f (u)
with

f (u) = − (u+ 1)2

ξu
+ 1, (57)

ξ =
r(w+ 1)2

v
, (58)

whereξ > 0 andu > 0. Here, f (u) > 0 and f (u) < 0 corre-
spond to the negative and positive AMR ratios, respectively.
From eq. (57), we first find that the AMR ratio becomes pos-
itive whenξ < 4. Second, in the case ofξ ≥ 4, the AMR ratio
is negative for

µ− < u < µ+, (59)

while it is positive for

0 < u < µ− andµ+ < u, (60)

with µ− = (ξ−2−
√

ξ2 − 4ξ)/2 andµ+ = (ξ−2+
√

ξ2 − 4ξ)/2.
Note that the AMR ratio becomes 0 atu = µ±.

Figure 9 shows the sign of the AMR ratio in theξ-u plane
based on the above results. From this figure, we can find signs
of the AMR ratios of various systems. We here focus on a
simple system withβ↑ = β↓ andD(d)

↑ /D
(s)
↑ = D(d)

↓ /D
(s)
↓ (i.e.,

u = w). For this system, we first determine the specific sets of
ξ andu. The relation betweenξ andu has been obtained as

ξ = p

(

u+
1
u
+ 2

)

, (61)

with p = (m∗↓/m
∗
↑)

4D(s)
↑ /D

(s)
↓ (see eq. (E·6)). In Fig. 9, we show

eq. (61) withp=0.1, 0.5, 2, 3, 5, and 7 by the dashed curves,
where eq. (61) withp=1 corresponds toµ− andµ+. It is found
that eq. (61) withp >1 exists in the region of the negative
AMR ratio. For example, the case ofD(s)

↑ /D
(s)
↓ & 105 and

m∗↓/m
∗
↑ ∼ 0.1 in (i) leads top & 10. This case thus can take

the negative AMR ratio. Negative AMR ratios been experi-
mentally observed, as shown in Table I.
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Fig. 9. (Color) Sign of the AMR ratio∆ρ/ρ of the half-metallic ferromag-
net in theξ-u plane. The negative and positive AMR ratios are shown by
the dark and white regions, respectively. The AMR ratio becomes zero at
u = µ±. Here,u = µ− andu = µ+ are shown by the solid curves withu ≥ 1
andu < 1, respectively. The relation betweenξ andu of a half-metallic
ferromagnet, eq. (61), is shown by the dashed curves, wherep=0.1, 0.5, 2,
3, 5, and 7. In addition, eq. (61) ofp=1 corresponds toµ− andµ+.

4.3 Evaluation of AMR ratio
Using the results of§4.1 and§4.2, we evaluate the AMR

ratio. Theu dependence of the AMR ratio is shown in Fig. 10.
The dashed curves represent eq. (55) with the parameters of
γ=0.01, 0≤ u ≤ 50,v = (D(s)

↑ /D
(s)
↓ )u, r = (0.1)4(D(s)

↑ /D
(s)
↓ )2,

w=1, 10, andD(s)
↑ /D

(s)
↓ =104, 105, 106, wherem∗↓/m

∗
↑=0.1 and

β↑ = β↓. The parameters have been chosen on the basis of
(i) - (iv) in §4.1. We observe that each AMR ratio exhibits a
convex downward curve with a negative minimum value. The
AMR ratio approaches 0 with decreasingu, while it changes
from negative to positive with increasingu. In addition, the
AMR ratio comes close to eq. (56) withγ=0.01 (the solid
curve) with increasingD(s)

↑ /D
(s)
↓ . It is noted that eq. (56) is

obtained from eq. (55) under the condition ofr ≫ (v/u)[(u+
1)/(w+ 1)]2, r ≫ (u+ 1)/(w+ 1), andw/v≪ 1 in (iv). Also,
in the case ofD(s)

↑ /D
(s)
↓ & 105, the AMR ratio becomes about

−0.004 atu = w = 1 (see the upper panel of Fig. 10), where
the system ofu = w corresponds to the simple system in§4.2.
This AMR ratio agrees well with the experimental results of
Table I.

4.4 Sign change of the AMR ratio in Fe3O4

Utilizing eq. (55), we analyze an experimental result of
Fe3O4, in which the sign of the AMR ratio changes from
negative to positive as the temperature increases.12, 13) Here,
Fe3O4 has been theoretically predicted to have a half-metallic
property at the ground state in the absence of the spin–orbit
interaction.53) The DOS of Fe3O4 is schematically illustrated
in Fig. 1(e):52, 53) the DOS of the down spin is present atEF,
while there is little DOS of the up spin.

Recently, Ziese has experimentally observed that the Fe3O4

film on MgO with film thickness of 50 nm or 200 nm changed
the sign of the AMR ratio from negative to positive with
increasing temperature (see the inset of Fig. 11).12, 13) This
Fe3O4 eventually exhibited positive AMR ratios of about
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Fig. 10. (Color) Quantityu dependence of the AMR ratio∆ρ/ρ of the
half-metallic ferromagnet. Upper panel:w=1. Lower panel:w=10. In
each panel, the dashed curves show the AMR ratios of eq. (55) with
D(s)
↑ /D

(s)
↓ =104, 105, and 106. In addition, the solid curve is the AMR ratio

of eq. (56). Here,γ=0.01,m∗↓/m
∗
↑=0.1, andβ↑ = β↓ are set.

0.005 at temperatures higher than 200 K. As a cause of this
phenomenon, he considered that the majority spin band (i.e.,
eg↑ band) came close toEF with increasing temperature, and,
furthermore, this band was present atEF in the high tempera-
ture region (e.g., the region higher than 200 K). On the basis
of such an idea, he proposed a two-band model composed
of t2g↓ andeg↑ bands;t2g↓ andeg↑ bands have been shown in
Fig. 1(e). Using the model, he primarily found that the AMR
ratio became 0.005 for the specific values of the minority-to-
majority resistivity ratio and the reduced spin-flip scattering
resistivity. Meanwhile, he also showed that the sign of the
AMR ratio changed from negative to positive with increas-
ing ρs→d↓/ρs→d↑.55) Here,ρs→d↓/ρs→d↑ is reduced toD(d)

↓ /D
(d)
↑

in our formulation (see eq. (44)). From the standpoint of the
AMR ratio versusD(d)

↓ /D
(d)
↑ , however, we see a problem; that

is, the sign change of this model appears to be contrary to the
experimental trend of the inset of Fig. 11 or the above idea.
In fact, with decreasingD(d)

↓ /D
(d)
↑ , the sign may change from

negative to positive. In addition, we notice that this model
consists of only the resistivities due to the s–d scatteringbut
neglects the resistivity of the conductive d states,ρsσ, due to
the scattering process between the conductive d states.56) For
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this situation, we believe that there is a need to reexamine the
sign change of the AMR ratio by using a model that takes into
account both resistivities.

We, therefore, demonstrate the sign change of the AMR
ratio using our model with both resistivities. On the basis
of the behavior of theeg↑ band reported above, we assume
that the DOS of the up spin atEF increases with increasing
temperature. Our concern, thus, is with how the DOS of the
up spin influences the AMR ratio. To clearly show the influ-
ence, we consider a simple case ofD(s)

↑ /D
(s)
↓ = D(d)

↑ /D
(d)
↓ (or

D(d)
↓ /D

(s)
↓ = D(d)

↑ /D
(s)
↑ ) andβ↑ = β↓. By paying attention to the

DOS of Fig. 1(e), i.e., the reversion of the direction of each
spin of eq. (55), eq. (55) is then rewritten as

∆ρ

ρ
=

−γ
u′−1 + 1

(1− xD)





















(

m∗↑/m
∗
↓
)4 − xD

(

m∗↑/m
∗
↓
)4
+ x2

D





















, (62)

with xD = D(s)
↑ /D

(s)
↓ = D(d)

↑ /D
(d)
↓ and u′ = ρs↓→d↓/ρs↓

=β↓D
(d)
↓ /D

(s)
↓ . Figure 11 shows thexD dependence of the

AMR ratio of eq. (62) form∗↑/m
∗
↓=0.4, 0.55, 0.6, 0.65, 0.8,

and 1. The AMR ratios ofm∗↑/m
∗
↓=0.4, 0.55, 0.6, 0.65, and

0.8 change from negative to positive with increasingxD, al-
though that ofm∗↑/m

∗
↓=1 is always negative. The sign change

appears to originate from the feature in which the s–d scat-
terings ofs ↓→ d ↑ ands ↑→ d ↓ increase with increasing
D(s)
↑ andD(d)

↑ . Here, it is noteworthy that these s–d scatterings
tend to lead to the positive AMR ratio (see§2.4 and§2.5). In
addition, roughly speaking, thexD dependence of the AMR
ratio appears to be qualitatively similar to the experimental
trend of the inset of Fig. 11. In particular, the AMR ratios of
m∗↑/m

∗
↓=0.6 and 0.65 may correspond well to the experimental

results for film thicknesses of 50 nm and 200 nm, respectively.
In addition, the AMR ratio ofm∗↑/m

∗
↓=0.55 may partially cor-

respond to the experimental result for film thicknesses of 15
nm.
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Fig. 11. (Color) QuantityxD (=D(s)
↑ /D

(s)
↓ = D(d)

↑ /D
(d)
↓ ) dependence of the

AMR ratio ∆ρ/ρ of eq. (62) for anym∗↑/m
∗
↓. The inset shows an experi-

mental result of the temperature dependence of the AMR ratioof Fe3O4

films on MgO obtained by Ziese.12) The respective film thicknesses are 15
nm, 50 nm, and 200 nm. Note also that the DOS of Fe3O4 is schematically
illustrated in Fig. 1(e).

5. Conclusion

We systematically analyzed the AMR effects of bcc Fe
of the weak ferromagnet, fcc Co, fcc Ni, and Fe4N of the
strong ferromagnet, and the half-metallic ferromagnet. We
here used the two-current model for a system consisting of
a spin-polarized conduction state and localized d states with
spin–orbit interaction.

From such a model, we first derived general expressions of
resistivities composed ofρsσ andρsσ→dς. The resistivityρsσ

arose from the s–s scattering, in which the conduction elec-
tron of theσ spin was scattered into the conduction state of
theσ spin by nonmagnetic impurities. The resistivityρsσ→dς

was due to the s–d scattering, in which the conduction elec-
tron of theσ spin was scattered into theσ spin state in the
localized d states of theς spin by the impurities, where theς
spin represented the spin of the dominant state in the d states
(i.e., the spin-mixed states).

Using the resistivities, we next obtained a general expres-
sion of the AMR ratio. On the basis of the AMR ratio and
the resistivities, we showed that the AMR effect reflected the
difference of “changes of the d orbitals due to the spin–orbit
interaction” between differentm’s, wheremwas the magnetic
quantum number of the d orbital. In addition, we roughly de-
termined a relation between the sign of the AMR ratio and the
scattering process. In brief, when the dominant s–d scattering
process wass ↑→ d ↓ or s ↓→ d ↑, the AMR ratio tended to
become positive. In contrast, when the dominant s–d scatter-
ing process wass ↑→ d ↑ or s ↓→ d ↓, the AMR ratio tended
to be negative.

Finally, from the general expression of the AMR ratio, we
obtained expressions of AMR ratios appropriate to the respec-
tive materials. Using the expressions, we analyzed their AMR
ratios. The results for the respective materials were written as
follows:

(i) bcc Fe of weak ferromagnet
Using the AMR ratio of eq. (42) withρs↓/ρs↑ = 3.8 ×
10−1 in Table I andρ↑↓=0, we found that the AMR
ratio became positive irrespective ofρs→d↓/ρs↑, where
ρsσ→dς = ρs→dς has been set. In particular, when
ρs→d↓/ρs↑=0.5, the AMR ratio agreed fairly well with
the experimental value in Table I, i.e., 0.003. Here, the
positive AMR ratio originated from the dominant s–d
scattering process ofs ↓→ d ↑. Regarding theρs→d↓/ρs↑
dependence of the AMR ratio, the difference of the AMR
ratio between our model withρs↓/ρs↑=3.8×10−1 and the
Malozemoffmodel withρs↓/ρs↑=1 was clearly observed
for ρs→d↓/ρs↑ . 1.

(ii) fcc Co, fcc Ni, and Fe4N of strong ferromagnet
Using the AMR ratio of eq. (45) withρ↑↓=0 andρs↓/ρs↑’s
in Table I, i.e., 7.3 for fcc Co, 1.0×10 for fcc Ni, and
1.6×10−3 for Fe4N, we found that fcc Co and fcc Ni ex-
hibited a positive AMR ratio irrespective ofρs→d↓/ρs↑,
while Fe4N could take the negative AMR ratio depend-
ing onρs→d↓/ρs↑. In particular, whenρs→d↓/ρs↑’s of fcc
Co, fcc Ni, and Fe4N were, respectively, chosen to be
ρs→d↓/ρs↑ ∼2.2,ρs→d↓/ρs↑ ∼2.5, and 0.01. ρs→d↓/ρs↑ .
0.5, their AMR ratios corresponded well to the respec-
tive experimental values in Table I, i.e., 0.020 for fcc
Co, 0.022 for fcc Ni, and−0.01 -−0.005 for Fe4N. It
is noted, however, that the large AMR ratio of Fe4N
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(e.g.,−0.07 -−0.02) could not be obtained in the present
theory. The positive AMR ratios of fcc Co and fcc Ni
originated from the dominant s–d scattering process of
s ↑→ d ↓. In contrast, the negative AMR ratio of
Fe4N was due to the dominant s–d scattering process
of s ↓→ d ↓. As for theρs→d↓/ρs↑ dependence of the
AMR ratios, the calculation result of fcc Co and fcc Ni
by our model was obviously different from those by the
CFJ model and the Malozemoff model. The reason was
thatρs↓/ρs↑ (> 1) of fcc Co or fcc Ni was largely differ-
ent fromρs↓/ρs↑ (≪1) of the CFJ model andρs↓/ρs↑ (=1)
of the Malozemoffmodel. In the case of Fe4N, the result
by our model agreed well with that by the CFJ model be-
causeρs↓/ρs↑ (=1.6× 10−3) of Fe4N corresponded well
to ρs↓/ρs↑ (≪1) of the CFJ model.

(iii) half-metallic ferromagnet
Using the AMR ratio of eq. (55), which took into ac-
count the spin dependence of the effective mass and the
number density of electrons in the conduction band, we
showed that the AMR ratio could become negative for a
typical system withD(s)

↑ /D
(s)
↓ & 105 andm∗↓/m

∗
↑ ∼ 0.1.

In particular, whenρs↑→d↑/ρs↑ = ρs↓→d↓/ρs↓ = 1, the
AMR ratio was evaluated to be about−0.004, which
was close to the experimental values. Here, the nega-
tive AMR ratio of Co2MnAl1−xSix, La0.7Sr0.3MnO3, and
La0.7Ca0.3MnO3 originated from the dominant s–d scat-
tering process ofs ↑→ d ↑, while the negative AMR
ratio of Fe3O4 was due to the dominant s–d scattering
process ofs ↓→ d ↓. We also analyzed the experimental
result of the AMR effect of Fe3O4, in which the sign of
the AMR ratio changed from negative to positive as the
temperature increased. Such a sign change occurred with
increasing the DOS of the majority spin atEF, D(s)

↑ and

D(d)
↑ . The increase ofD(s)

↑ andD(d)
↑ appeared to enhance

the s–d scatterings ofs ↑→ d ↓ and s ↓→ d ↑, which
tended to lead to the positive AMR ratio.
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Appendix A: Localized d States

Applying the perturbation theory toH of eq. (4), we obtain
the wave function of the localized d state (i.e., the spin-mixed
state),Φ(d)

M,ς(r), with M = −2,−1, 0, 1, 2, andς =↑ or ↓. Here,
r is the position vector, whileM andς are, respectively, the
magnetic quantum number and the spin of the dominant state
in the spin-mixed state.

Within the second-order perturbation,Φ(d)
M,↑(r) is obtained

as

Φ
(d)
2,↓(r) =

(

1− 1
2
ǫ2

)

φ2,↓(r) +
(

ǫ +
3
2
ǫ2

)

φ1,↑(r), (A·1)
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Φ
(d)
−1,↓(r) =

(

1− 1
2
ǫ2

)

φ−1,↓(r) +
(

ǫ − 3
2
ǫ2

)

φ−2,↑(r), (A·4)

Φ
(d)
−2,↓(r) = φ−2,↓(r), (A·5)

whileΦ(d)
M,↓(r) is

Φ
(d)
2,↑(r) = φ2,↑(r), (A·6)

Φ
(d)
1,↑(r) =

(

1− 1
2
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)

φ1,↑(r) −
(

ǫ +
3
2
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)

φ2,↓(r), (A·7)
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(A·9)

Φ
(d)
−2,↑(r) =

(

1− 1
2
ǫ2

)

φ−2,↑(r) −
(

ǫ − 3
2
ǫ2

)

φ−1,↓(r), (A·10)

with ǫ = λ/Hex. Here,φm,σ(r) represents the d orbital of the
magnetic quantum numberm and the spinσ, defined by

φm,σ(r) = um(r)χσ, (A·11)

with u±2(r) = R(r)(x ± iy)2/(2
√

2), u±1(r) = ∓R(r)z(x ±
iy)/
√

2, u0(r) = R(r)(3z2 − r2)/(2
√

3), r = |r|, x = sinθ cosφ,
y = sinθ sinφ, andz = cosθ, whereR(r) is the radial part of
the d orbital andχσ (σ =↑ or ↓) is the spin state.

Here, we mention the right-hand sides of eqs. (A·1) - (A·4)
and (A·7) - (A·10). The coefficient

(

1− 3
4ǫ

2
)

or
(

1− 1
2ǫ

2
)

means that the probability amplitude of the pure orbital de-
creases from 1 owing to hybridization with the other or-

bital. In contrast,
(

ǫ ± 3
2ǫ

2
)

or
( √

6
2 ǫ ±

√
6

4 ǫ
2
)

corresponds to

the probability amplitude of the other orbital. Here,− 3
4ǫ

2 and

− 1
2ǫ

2 in the former andǫ and
√

6
2 ǫ in the latter arise from the

Smit1) spin-mixing mechanism7, 10)with (λ/2)(L+S−+L−S+).

On the other hand,± 3
2ǫ

2 and±
√

6
4 ǫ

2 in the latter stem from a
combination of theλLzSz operator and the Smit1) spin-mixing
mechanism. In deriving the resistivities of eqs. (22) - (25),
however, the terms related to theλLzSz operator are elimi-
nated by ignoring terms higher than the second order ofǫ.

Appendix B: s–d Scattering Rate

We derive an expression of the s–d scattering rate for the
case of theℓ configuration (ℓ =‖ or ⊥), 1/τ(ℓ)sσ→dMς (see eq.
(11). This scattering means that the conduction electron is
scattered into the localized d states by nonmagnetic impuri-
ties. Here, we consider a system in which some atoms of the
host lattice are substituted by the impurity atoms. In addition,
the conduction state is represented by a plane wave, while the
localized d states are described by a tight-binding model.

The scattering rate 1/τ(ℓ)sσ→dMς is written as

1

τ
(ℓ)
sσ→dMς

=
2π
~

∑

k′

〈
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∣
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∣

∣

〈
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∣

∣
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Vimp(r)
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∣

∣
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Ψ
(s)

k(ℓ)
F,σ ,σ

〉
∣

∣

∣

∣

∣

∣

2〉

imp
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×δ
(

EF − E(d)

k′ ,M,ς

)

, (B·1)

with

Ψ
(s)

k(ℓ)
F,σ ,σ

(r) =
1
√
Ω

exp
(

ik(ℓ)
F,σ · r

)

χσ, (B·2)

Ψ
(d)

k′,M,ς
(r) =

1
√

N

∑

j

exp
(

ik′ · R j

)

Φ
(d)
M,ς(r − R j), (B·3)

Φ
(d)
M,ς(r − R j) =

∑

m,σ

cm,σ,M,ςφm,σ(r − R j), (B·4)

Vimp(r) =
∑

i

vimp(r − Ri), (B·5)

vimp(r − Ri) =
∆Ze2

4πǫ0|r − Ri |
exp(−q|r − Ri |) . (B·6)

The functionΨ(s)

k(ℓ)
F,σ

(r) is the plane wave, wherer is the posi-

tion vector,k(ℓ)
F,σ is the Fermi wavevector of theσ spin in the

current direction for the case of theℓ configuration,Ω is the
volume of the system, andχσ is the spin state.10) The eigenen-
ergy ofΨ(s)

k(ℓ)
F,σ,σ

(r) is set to beEF. The functionΨ(d)

k′ ,M,ς
(r) is the

wave function of the tight-binding model.43) Here, k′ is the
wavevector,N is the number of unit cells, andΦ(d)

M,ς(r− R j) is
the spin-mixed state in the atom located atR j , wherecm,σ,M,ς

is the coefficient of φm,σ(r − R j) (see Appendix A). The
eigenenergy ofΨ(d)

k′ ,M,ς
(r) is given byE(d)

k′,M,ς
. The function

Vimp(r) is the scattering potential created by nonmagnetic im-
purities located randomly,57) wherevimp(r−Ri) is a spherically
symmetric scattering potential due to the impurity atRi .4) The
quantity∆Ze is the difference of the effective nuclear charge
between the impurity and the host lattice,q is the screening
length, andǫ0 is the dielectric constant. In addition,〈X〉imp

represents the average ofX over the random distribution of
the impurities, defined by〈X〉imp =

∑

l X({R}l)/(
∑

l 1), where
{R}l (={R1, R2, R3, · · ·}l) is thelth set of the random distribu-
tion of the impurities.

0

electron

atom of host lattice

impurity
iR

jR

jiR
′r

r

Fig. B·1. Vectorsr, r′, Ri , R j , and R ji . Here, r, R j , and Ri are, respec-
tively, the position vectors of the electron, thejth atom of the host lattice,
and theith impurity measured from the origin 0. In addition,r′ is the posi-
tion vector of the electron measured from thejth atom of the host lattice,
while R ji is the position vector of thejth atom of the host lattice measured
from theith impurity.

To rewrite eq. (B·1) as a more specific expression, we con-
sider
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, (B·7)

Λmσ =
∑

i, j

∫

exp
(

−ik′ · R j

)

φ∗m,σ(r − R j)

×vimp(r − Ri) exp
(

ik(ℓ)
F,σ · r

)

dr, (B·8)

where the inner product betweenχσ and the spin state ofφm,σ

has been taken in eq. (B·7). Note here that the case ofi = j
corresponds to the scattering from the conduction state to the
d states of the impurity atom. Such a case may be suitable for
a system containing transition-metal impurities. In the present
study, however, the impurity is considered to be a light ele-
ment, such as carbon, in which 2s and 2p orbitals contribute
to the transport. We, therefore, treat the case ofi , j. Using
R ji (=R j − Ri), we representΛmσ as

Λmσ =
∑

i

∑

j

∫

exp
(

−ik′ · (Ri + R ji )
)

φ∗mσ
(

r − (Ri + R ji )
)

×vimp(r − Ri) exp
(

ik(ℓ)
F,σ · r

)

dr. (B·9)

By replacingr− (Ri + R ji ) by r′ (see Fig. B·1),Λmσ becomes

Λmσ =
∑

i

∑

j

exp
(

i( k(ℓ)
F,σ − k′) · (Ri + R ji )

)

×
∫

φ∗mσ(r′)vimp(r′ + R ji ) exp
(

ik(ℓ)
F,σ · r′

)

dr′. (B·10)

We now assume thatvimp(r′ + R ji ) acts between the impurity
and its nearest-neighbor atoms. We then havevimp(r′ + R ji ) =
vimp(r′ + R j1), indicating thatvimp(r′ + R ji ) is independent of
i. In addition, sinceRj1 is larger than the orbital radius of the
3d electronr ′, |r′ + R j1| is roughly replaced by the dominant
componentRj1. Namely, we have|r′ + R j1| = (R2

j1 + r ′2 +

2r′ · R j1)1/2 ≈ Rj1 owing toR2
j1 > r ′2, 2|r′ · R j1|. As a result,

vimp(r′ + R j1) is approximated as follows:

vimp(r′ + R j1) =
∆Ze2

4πǫ0
∣

∣

∣r′ + R j1

∣

∣

∣

exp
(

−q
∣

∣

∣r′ + R j1

∣

∣

∣

)

≈ ∆Ze2

4πǫ0Rj1
exp

(

−qRj1

)

≡ vimp(Rj1). (B·11)

The distanceRj1 is here set to be constant independently of
j; that is,Rj1 is written asRj1 ≡ Rn, whereRn is constant.
By substituting eq. (B·11) with Rj1 = Rn into eq. (B·10),Λmσ

becomes

Λmσ =
∑

i

exp
(

i( k(ℓ)
F,σ − k′) · Ri

)
∑

j (n.n.)

exp
(

i( k(ℓ)
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)

×vimp(Rn)
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ik(ℓ)
F,σ · r′

)

dr′, (B·12)

where
∑

j of eq. (B·10) has been replaced by
∑

j (n.n.), i.e.,
the summation over the nearest-neighbor atoms around the

impurity. Next, we consider
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,

which is contained in eq. (B·7) (in addition, see eq. (B·12)).



J. Phys. Soc. Jpn. Full Paper Author Name 15

This part is expressed as follows:
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whereNimp is the number of impurities in the volume ofΩ.
In the calculation process of eq. (B·13), we have taken the
summation about random points on a unit circle in a complex
plane and the average over the impurity distributions.57) In a

similar manner, we deal with
∣
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in eq. (B·7) to obtain a simple expression. Note, however, that
〈 〉imp is in fact not contained in this expression and the
number of j (i.e.,

∑

j (n.n.) 1) is also much smaller thanNimp.
Though this treatment may be crude, we have
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whereNn is the number of nearest-neighbor atoms around the
impurity.

Using eqs. (B·1), (B·7), (B·12), (B·13), and (B·14), we ob-
tain
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vM,ς(k(ℓ)
F,σ) = vimp(Rn)

×
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F,σ · r

)

dr.
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We consider a case in which
∑

k′ δ
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EF − E(d)
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is much

larger than (Nimp − 1)(Nn − 1)δ
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)

. Equation

(B·15) may then be given by the following approximate ex-
pression:
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D(d)
M,ς =

1
N

∑
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EF − E(d)

k′ ,M,ς

)

, (B·18)

with nimp = Nimp/Ω. It is noted that the unit ofD(d)
M,ς of eq.

(B·18) is J−1, while that ofD(s)
σ of eq. (C·5) is J−1m−3. The

unit of |vM,ς(k(ℓ)
F,σ)|2 in eq. (B·17) is J2m3, while that of |Vs|2

in eq. (C·4) is J2m6. As to the calculation ofD(d)
ς /D

(s)
σ andβσ

in eqs. (49) - (53),D(d)
ς and |Vsσ→dσ|2 should be replaced by

D(d)
ς /Ωunit and|Vsσ→dσ|2Ωunit, respectively, whereΩunit is the

unit cell volume.

Appendix C: s–s Scattering Rate

We derive an expression of the s–s scattering rate 1/τsσ of
eq. (19).

The scattering rate 1/τsσ is originally written as58, 59)
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, (C·1)

whereΨ(s)

kF,σ ,σ
andVimp(r) are given by eqs. (B·2) and (B·5),

respectively. Here,kF,σ is the wavevector of the incident elec-
tron of theσ spin (i.e., the Fermi wavevector of theσ spin
in the current direction),k′σ is the wavevector of the scattered
electron of theσ spin, andθkF,σ−k′

σ

is the relative angle be-

tweenkF,σ andk′σ. In addition,EF (Ek′σ) is the energy of the
incident electron (the energy of the scattered electron). Equa-
tion (C·1) is also rewritten as58)

1
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wherevkF,σ−k′σ is given by

vkF,σ−k′σ =
∫

vimp(r) exp
(

i( kF,σ − k′σ) · r
)

dr, (C·3)

wherevimp(r) is a short-range potential due to the impurity,
i.e., eq. (B·6). In the case of the s–s scattering,vimp(r) may be
replaced by an approximate potential on the impurity site be-
cause such a potential contributes dominantly tovkF,σ−k′σ . In
brief, vimp(r) is approximated asvimp(r) = Vsδ(r), whereVs is
constant. We thus obtainvkF,σ−k′σ =Vs, which is independent
of theσ spin and the wavevectors. As a result, eq. (C·2) is
expressed as58, 59)

1
τsσ
=

2π
~

nimp|Vs|2D(s)
σ , (C·4)

D(s)
σ =

1
Ω

∑

k′σ

δ

(

EF − Ek′σ

)

. (C·5)

Here,
∑

k′σ δ
(

EF − Ek′σ

)

cosθkF,σ,k
′
σ

disappears.

Appendix D: Matrix Elements

We consider the matrix element in eqs. (B·17) and (B·16),
vimp(Rn)

∫

φ∗m,σ(r) exp
(

ik(ℓ)
F,σ · r

)

dr, with m=−2 - 2 andℓ=‖ or
⊥.

The matrix elements are written by

vimp(Rn)
∫

φ∗0,σ(r) exp
(

ik(‖)
F,σ · r

)

dr



16 J. Phys. Soc. Jpn. Full Paper Author Name

=
1
√

3
vimp(Rn)

∫

R(r)(z2 − x2) exp
(

ikF,σz
)

dr, (D·1)

vimp(Rn)
∫

φ∗0,σ(r) exp
(

ik(⊥)
F,σ · r

)

dr

=
1

2
√

3
vimp(Rn)

∫

R(r)(z2 − x2) exp
(

ikF,σx
)

dr, (D·2)

vimp(Rn)
∫

φ∗±2,σ(r) exp
(

ik(⊥)
F,σ · r

)

dr

=
1

2
√

2
vimp(Rn)

∫

R(r)(x2 − z2) exp
(

ikF,σx
)

dr, (D·3)

with k(‖)
F,σ=(0, 0, kF,σ) and k(⊥)

F,σ=(kF,σ, 0, 0), where
φm,σ(r) is eq. (A·11). In addition, we note
vimp(Rn)

∫

φ∗m,σ(r) exp
(

ik(‖)
F,σ · r

)

dr=0 for m=±1, ±2,

and vimp(Rn)
∫

φ∗±1,σ(r) exp
(

ik(⊥)
F,σ · r

)

dr=0. As for
∣

∣

∣

∣

vimp(Rn)
∫

φ∗m,σ(r) exp
(

ik(ℓ)
F,σ · r

)

dr
∣

∣

∣

∣

2
, we have |Vsσ→dσ|2

for eq. (D·1), 1
4 |Vsσ→dσ|2 for eq. (D·2), and3

8 |Vsσ→dσ|2 for eq.
(D·3), where|Vsσ→dσ|2 is eq. (21).

Appendix E: Parameters

We obtain concrete expressions ofρsσ of eq. (17),r of eq.
(48), andξ of eq. (58).

The resistivityρsσ of eq. (17) is first written as

ρsσ =
61/3m∗σ

2nimp|Vs|2

n2/3
σ e2π1/3~3

. (E·1)

Here, 1/τsσ of eq. (19) has been given by

1
τsσ
=

2π
~

nimp|Vs|2D(s)
σ

=
61/3m∗σnimp|Vs|2n1/3

σ

π1/3~3
, (E·2)

where

D(s)
σ =

1
4π2

(

2m∗σ
~2

)3/2
√

EF + ∆σ

=
1

4π2

2m∗σ
~3

(6π2
~

3nσ)1/3, (E·3)

with EF + ∆σ = (~kF,σ)2/(2m∗σ) = (6π2
~

3nσ)2/3/(2m∗σ) and
kF,σ = (6π2nσ)1/3.37) The quantitynσ (m∗σ) is the number den-
sity34, 35) (the effective mass38)) of the electrons in the con-
duction band of theσ spin. In addition,∆σ is the exchange
splitting energy of the conduction electron, where∆↑ = ∆ and
∆↓ = −∆.

Using eqs. (E·1) and (E·3), r of eq. (48) is expressed as

r =















m∗↓
m∗↑















4 















D(s)
↑

D(s)
↓

















2

. (E·4)

Using eqs. (E·4), (51), and (52),ξ of eq. (58) is obtained as

ξ =















m∗↓
m∗↑















4
1
β↓

(D(s)
↑ )2

D(d)
↑ D(s)

↓

















β↓
D(d)
↓

D(s)
↓
+ 1

















2

, (E·5)

whereβσ is eq. (53). Furthermore, in the case of a simple

system withβ↑ = β↓ andD(d)
↑ /D

(s)
↑ = D(d)

↓ /D
(s)
↓ , ξ becomes

ξ = p

(

u+
1
u
+ 2

)

, (E·6)

with p = (m∗↓/m
∗
↑)

4D(s)
↑ /D

(s)
↓ , whereu is eq. (50).
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