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1 Introduction

In practical applications, we remark that, in the finite dimensional case, time delay Ornstein-
Uhlenbeck processes play an important role in various fields of research. For instance, this
model has been applied to the study of a system consisting of a particle coupled to a delayed
quartic potential in physiology [11], and a similar model to a stochastic system subjected to
a time-delayed feedback loop that involves a sigmoidal conversion function in life sciences
(see, [9], [17], [18], [24]). In these works, it may be that a proper infinite dimensional version
as considered here, is more appropriate, as it can approximate in nature the real world due
to the inclusion of spatial variables in the model.

On the other hand, there exists an extensive literature on large deviations of stochastic
evolution equations, especially stochastic partial differential equations (SPDEs). For in-
stance, we mention among others that Peszat [19] extended the large deviation principle of
measures associated with finite-dimensional diffusions to measures given by a class of stochas-
tic evolution equations with non-additive random perturbations, based on some exponential
tail estimates for stochastic convolutions. In the case of parabolic SPDEs, Sower [21] proved
a LDP in the set of α-Hölder continuous functions for α < 1/4 when all coefficients of the
equations are bounded and diffusion term is bounded away from zero. On the other hand,
by focusing on specific SPDEs, large deviations for stochastic reaction-diffusion equations
with non-Lipschitz reaction term are considered in [6]. The same problem is investigated
in [5] for a class of Burgers’ type SPDEs driven by the space-time white noise. Recently,
the study of LDP for stochastic evolution equations driven by jump processes began to at-
tract researchers’ attention. For instance, Röcker and Zhang [20] developed a large deviation
theory for infinite dimensional Ornstein-Uhlenbeck processes driven by Lévy processes.

The aim of this paper is to develop, in line with the spirit of [20], a LDP for the law of
infinite dimensional time delay Ornstein-Uhlenbeck processes of retarded type. To this end,
first let us state some notations and preliminary results.

Let H and K be two real separable Hilbert spaces with associated inner products 〈·, ·〉H ,
〈·, ·〉K and norms ‖ · ‖H , ‖ · ‖K , respectively. We denote by L (K,H) the set of all linear
bounded operators from K into H, equipped with the usual operator norm ‖ · ‖. When
H = K, we denote L (H,H) simply by L (H).

Throughout this work, we denote by r > 0 a fixed constant and define by L2
H =

L2([−r, 0];H) the space of all H-valued equivalent classes of measurable functions ϕ(θ),

θ ∈ [−r, 0], such that
∫ 0

−r ‖ϕ(θ)‖2
Hdθ < ∞. Let H be the product space H × L2

H with the
norm defined by

‖Φ‖H = (‖φ0‖2
H + ‖φ1‖2

L2
H

)1/2 for all Φ = (φ0, φ1) ∈ H.

Consider the following linear retarded differential equation on the Hilbert space H,dy(t) = Ay(t)dt+
(∫ 0

−r
dη(θ)y(t+ θ)

)
dt for any t > 0,

y(0) = φ0, y(t) = φ1(t), t ∈ [−r, 0],

(1.1)
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for arbitrarily given initial Φ = (φ0, φ1) ∈ H. Here A is the infinitesimal generator of some
C0-semigroup etA, t ≥ 0, on H and η is given by the following Stieltjes measure

η(τ) = −1(−∞,−r](τ)A1 −
∫ 0

τ

A0(θ)dθ, τ ∈ [−r, 0], (1.2)

where 1(−∞,−r](τ) is the indicator function, A0(·) ∈ L2([−r, 0]; L (H)) and A1 ∈ L (H). It
is immediate to see that

η(ϕ) :=

∫ 0

−r
dη(θ)ϕ(θ) = A1ϕ(−r) +

∫ 0

−r
A0(θ)ϕ(θ)dθ, ∀ϕ ∈ C([−r, 0];H), (1.3)

where C([−r, 0];H) is the space of all H-valued continuous functions on [−r, 0]. Moreover, we
have the following result whose proof is referred to Lemma 5.1, [16] with a slight modification.

Lemma 1.1. For arbitrary T ≥ 0, the delay operator η defined in (1.3) permits a bounded
linear extension, still denote it by η, from L2([−r, T ];H) into L2([0, T ];H). Moreover, there
exists a real number M > 0 such that∫ T

0

∥∥∥∫ 0

−r
dη(θ)y(t+ θ)

∥∥∥2

H
dt ≤M

∫ T

−r
‖y(t)‖2

Hdt for any y ∈ L2([−r, T ];H) (1.4)

where

M =
{
‖A1‖+ ‖A0(·)‖L2([−r,0];L (H)) · r1/2

}2

> 0.

We define the so-called retarded Green operator G(t), t ∈ R1, by the unique solution of
the following operator integral equation

G(t) =

etA +

∫ t

0

e(t−s)A
∫ 0

−r
dη(θ)G(s+ θ)ds, t ≥ 0,

O, t < 0,

(1.5)

where O denotes the null operator on H. It may be shown (cf. [13]) that G(·) is a strongly
continuous one-parameter family of bounded linear operators on H such that ‖G(t)‖ ≤ C ·eγt,
t ≥ 0, for some constants C > 0 and γ ∈ R1.

For each function ϕ : [−r, 0]→ H, we define its right extension function ~ϕ through

~ϕ : [−r,∞)→ H, ~ϕ(t) =

{
ϕ(t), −r ≤ t ≤ 0,

0, 0 < t <∞.
(1.6)

It is useful to introduce the following structure operator S on the space C([−r, 0];H) by

(Sϕ)(θ) =

∫ 0

−r
dη(τ)~ϕ(−θ + τ), θ ∈ [−r, 0], ∀ϕ(·) ∈ C([−r, 0];H). (1.7)

It may be shown (cf. [15]) that S is extendable to a linear and bounded operator, still denote
it by S, from L2([−r, 0];H) or L2([−r, 0]; L (H)), into itself, respectively. In general, the
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family G(t), t ∈ R1, would no longer be a semigroup on H. However, it may be shown that
it is a “quasi-semigroup” in the sense that

G(t+ s)x = G(t)G(s)x+

∫ 0

−r
G(t+ θ)[SG(s+ ·)](θ)xdθ for all s, t ≥ 0, x ∈ H. (1.8)

Let {Ω,F ,P} be a complete probability space equipped with some filtration {Ft}t≥0.
Let {W (t), t ≥ 0} denote a K-valued {Ft}t≥0-Wiener process defined on {Ω,F ,P} with
covariance operator Q, i.e.,

E〈W (t), x〉K〈W (s), y〉K = (t ∧ s)〈Qx, y〉K for all x, y ∈ K, s, t ∈ [0,∞),

where Q is a linear, symmetric and nonnegative bounded operator on K. In particular,
we shall call W (t), t ≥ 0, a K-valued Q-Wiener process with respect to {Ft}t≥0. If the
trace TrQ < ∞, then W is a genuine Wiener process. If the trace TrQ = ∞, then W
is called a cylindrical Wiener process. On the other hand, let (X, σ(X), ν) be a σ-finite
measurable space. Let p = (p(t)), t ≥ 0, be some stationary {Ft}-Poisson point process on
X with characteristic measure ν (cf. [12]). Let N(dt, dx) be the Poisson counting measure
associated with the process p = (p(t)) and we define the compensated Poisson measure

Ñ(dt, dx) := N(dt, dx)− dtν(dx) (1.9)

so that Ñ([0, t], E), t ≥ 0, E ∈ σ(X), turns out to be a martingale measure.

In this work we shall consider the following retarded Ornstein-Uhlenbeck type stochastic
evolution equation driven by Lévy processes on the Hilbert space H,dy(t) = Ay(t)dt+

∫ 0

−r
dη(θ)y(t+ θ)dt+ dL(t),

y(0) = φ0, y(t) = φ1(t), t ∈ [−r, 0],

(1.10)

for some proper initial data Φ = (φ0, φ1), where L(t), t ≥ 0, is a Lévy process given by

L(t) = bt+W (t) +

∫ t

0

∫
X

J(x)Ñ(ds, dx), t ≥ 0. (1.11)

Here b is a constant vector in H, J is a measurable mapping from X into H and W is an
H-valued Q-Wiener process. We are interested in developing a large deviation principle for
the equation (1.10). More precisely, consider the stochastic retarded evolution equation

yn(t) = φ0 +

∫ t

0

Ayn(s)ds+

∫ t

0

∫ 0

−r
dη(θ)yn(s+ θ)ds+ bt+

W (t)√
n

+
1

n

∫ t

0

∫
X

J(x)Ñn(ds, dx), t ≥ 0,

yn(0) = φ0, y
n(t) = φ1(t), t ∈ [−r, 0], Φ = (φ0, φ1), n ∈ N,

(1.12)

where Ñn(ds, dx) denotes the compensated Poisson measure with intensity measure nν. The
main purpose is to establish a large deviation principle for the law µn(·) of the solutions
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yn(t), t ≥ 0, of (1.12) on D([0, T ];H), the space of all cadlag paths from [0, T ] into H, for
any fixed T ≥ 0.

The organization of this work is as follows. In Section 2, we focus on a class of time delay
systems driven by an additive white noise in which the associated Wiener process could be
a cylindrical Wiener process. We present a LDP of this system based on the existing large
deviation results for infinite dimensional Gaussian processes. Section 3 is devoted to the
establishment of some useful results for deterministic time delay systems, which will play
a key role in the subsequent large deviation analysis. In Section 4, by using a contraction
technique and passing on a finite dimensional approximation, we shall establish a large
deviation principle for a class of retarded Ornstein-Uhlenbeck processes driven by additive
Lévy noise.

2 LDP of Stochastic Systems Driven by White Noise

Let n ∈ N and T ≥ 0. We shall consider mild solutions of the following stochastic retarded
differential equations on the Hilbert space H,yn(t) = φ0 +

∫ t

0

Ayn(s)ds+

∫ t

0

∫ 0

−r
dη(θ)yn(s+ θ)ds+

1√
n
BW (t) for any t ∈ [0, T ],

yn(0) = φ0, y
n(t) = φ1(t), t ∈ [−r, 0], Φ = (φ0, φ1) ∈ H,

(2.1)
where A generates a C0-semigroup etA, t ≥ 0, B ∈ L (K,H) and W (t), t ≥ 0, is a K-valued
Q-Wiener process. For arbitrary t ≥ 0, define Qt =

∫ t
0
G(s)BQB∗G∗(s)dt. It may be shown

(cf. [13]) that if TrQt <∞ for each t ∈ [0, T ], then the equation (2.1), for each n ∈ N, has
a unique mild solution which is represented by

yn(t) = G(t)φ0 +

∫ 0

−r

∫ θ

−r
G(t− θ + τ)dη(τ)φ1(θ)dθ +

1√
n

∫ t

0

G(t− s)BdW (s), t ∈ [0, T ].

To proceed further, let us first consider the stochastic convolution process

WG(t) =

∫ t

0

G(t− s)BdW (s), t ∈ [0, T ].

Lemma 2.1. For arbitrary T ≥ 0, the law µ(WG(·)) is a symmetric Gaussian measure on
L2([0, T ];H) with the covariance operator R given by

Rξ(t) =

∫ T

0

r(t, s)ξ(s)ds, ∀ ξ ∈ L2([0, T ];H) (2.2)

where

r(t, s) =

∫ t∧s

0

G(t− v)BQB∗G∗(s− v)dv, (2.3)

and t ∧ s = min{t, s}.
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Proof. It is evident to see that WG(·) could be regarded as an L2([0, T ];H)-valued ran-
dom variable. It is also immediate that the law µ(WG(·)) is symmetric and Gaussian on
L2([0, T ];H) by using Proposition 2.9, p. 42 and Lemma 5.2, p. 121 in [2].

To show (2.2) and (2.3), we notice that for any ξ, ζ ∈ L2([0, T ];H), by definition,

〈Rξ, ζ〉L2([0,T ];H) = E
(∫ T

0

〈ξ(t),WG(t)〉Hdt
∫ T

0

〈ζ(s),WG(s)〉Hds
)

=

∫ T

0

∫ T

0

E〈ξ(t),WG(t)〉H〈ζ(s),WG(s)〉Hdtds.
(2.4)

On the other hand, for any t > s ≥ 0, we have by virtue of (1.8) and G(t) = O for t < 0
that

E(〈ξ(t),WG(t)〉H〈ζ(s),WG(s)〉H)

= E
(〈
ξ(t),

∫ t

0

G(t− v)BdW (v)
〉
H
〈ζ(s),WG(s)〉H

)
= E

[〈
ξ(t),

∫ t

0

[
G(t− s)G(s− v) +

∫ 0

−r
G(t− s+ θ)[SG(s− v + ·)](θ)dθ

]
BdW (v)

〉
H

· 〈ζ(s),WG(s)〉H
]

= E
[〈
ξ(t), G(t− s)

∫ s

0

G(s− v)BdW (v)

+

∫ t

0

∫ 0

−r
G(t− s+ θ)[SG(s− v + ·)](θ)BdθdW (v)

〉
H

〈
ζ(s),

∫ s

0

G(s− v)BdW (v)
〉
H

]
.

(2.5)

Note that the equality (1.8) yields the following dual relation

G∗(t+ s) = G∗(s)G∗(t) +

∫ 0

−r
G∗(s+ θ)[S∗G∗(t+ ·)](θ)dθ for all s, t ≥ 0. (2.6)

This further implies, in addition to (2.5), that

E(〈ξ(t),WG(t)〉H〈ζ(s),WG(s)〉H)

= E
[(〈

G∗(t− s)ξ(t),
∫ s

0

G(s− v)BdW (v)
〉
H

+

∫ 0

−r

〈
[S∗G∗(t− s+ ·)](θ)ξ(t),

∫ s

0

G(s− v + θ)BdW (v)
〉
H
dθ
)

·
〈
ζ(s),

∫ s

0

G(s− v)BdW (v)
〉
H

]
=
〈∫ s

0

G(s− v)BQB∗G∗(s− v)G∗(t− s)dvξ(t)

+

∫ s

0

G(s− v)BQB∗
∫ 0

−r
G∗(s− v + θ)[S∗G∗(t− s+ ·)](θ)dθdvξ(t), ζ(s)

〉
H

=
〈∫ s

0

G(s− v)BQB∗G∗(t− v)dvξ(t), ζ(s)
〉
H
.
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Hence, the desired results follows and the proof is complete.

For any probability measure µ on L2([0, T ];H), we define a family of measures {µn}n∈N
by

µn(Γ) := µ
( 1√

n
Γ
)
, Γ ∈ B(L2([0, T ];H)), n ∈ N, (2.7)

where B(L2([0, T ];H)) is the Borel σ-field on L2([0, T ];H). We first recall the following
LDP results of Gaussian measures (cf. [2]).

Proposition 2.1. For any T ≥ 0, assume that µ is the Gaussian measure N(0, R) on the
Hilbert space L2([0, T ];H). Then the family {µn}n≥1 given by (2.7) satisfies a LDP with the
rate function

I(z) =


1

2
‖R−1/2z‖2

L2([0,T ];H) if z ∈ RanR1/2,

∞ otherwise,

where RanR1/2 is the range of operator R1/2.

To proceed further, let us consider the following deterministic control system on the
Hilbert space H,dy(t) = Ay(t)dt+

∫ 0

−r
dη(θ)y(t+ θ)dt+BQ1/2u(t)dt, t ∈ [0, T ],

y(0) = φ0, y(t) = φ1(t), t ∈ [−r, 0], Φ = (φ0, φ1) ∈ H,
(2.8)

where T ≥ 0 and u ∈ L2([0, T ];K). It is easy to see that the explicit solution yΦ,u of (2.8)
is given by

yΦ,u(t) = G(t)φ0 +

∫ 0

−r

∫ θ

−r
G(t− θ + τ)dη(τ)φ1(θ)dθ +

∫ t

0

G(t− s)BQ
1
2u(s)ds, t ∈ [0, T ].

For any T ≥ 0, define a mapping L : L2([0, T ];K)→ L2([0, T ];H) by

Lu(t) =

∫ t

0

G(t− s)BQ1/2u(s)ds, u ∈ L2([0, T ];K),

and it is easy to see that

(L∗y)(t) =

∫ T

t

Q1/2B∗G∗(s− t)y(s)ds, y ∈ L2([0, T ];H).

Let R = LL∗ : L2([0, T ];H)→ L2([0, T ];H), then it is immediate to have that

(Ry)(t) =

∫ T

0

r(t, s)y(s)ds, t ∈ [0, T ], (2.9)

where

r(t, s) =

∫ t∧s

0

G(t− v)BQB∗G∗(s− v)dv, 0 ≤ s, t ≤ T. (2.10)

The following proposition whose proofs are referred to p. 411, [2] is useful in establishing
our LDP results.
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Proposition 2.2. For arbitrary T ≥ 0, it holds true that

RanL = RanR1/2

and for any z ∈ RanR1/2 ⊂ L2([0, T ];H), there is

‖R−
1
2 z‖2

L2([0,T ];H) = inf
{∫ T

0

‖Q−
1
2u(t)‖2

Kdt : u(t) ∈ RanQ
1
2 , Q−

1
2u(t) ∈ L2([0, T ];K)

such that

∫ t

0

G(t− s)Bu(s)ds = z(t), t ∈ [0, T ]
}
.

Now we are in a position to state the main result in this section.

Theorem 2.1. For any T ≥ 0, the laws {µn}n≥1 of the solution {yn(·)}n≥1 of (2.1), defined
in (2.7), satisfy a LDP on L2([0, T ];H) with the associated rate functional

I(z) =



inf
{1

2

∫ T

0

‖Q−
1
2u(t)‖2

Kdt : u(t) ∈ RanQ
1
2 , Q−

1
2u(t) ∈ L2([0, T ];K)

such that

∫ 0

−r

∫ θ

−r
G(t− θ + τ)dη(τ)φ1(θ)dθ

+G(t)φ0 +

∫ t

0

G(t− s)Bu(s)ds = z(t), t ∈ [0, T ]
}
,

∞ otherwise,

(2.11)

for any z ∈ L2([0, T ];H).

Proof. It suffices to prove this result for Φ = (0, 0). In this case, note that by Lemma
2.1, the law µn(·) is a symmetric Gaussian measure on L2([0, T ];H) for each n ∈ N with
covariance operator R = R given by (2.9) and (2.10). Hence, the conclusion follows from
Propositions 2.1 and 2.2.

3 Some Useful Results

In the remainder of this work, we shall establish a LDP for the system (1.12). Because we
confine ourselves, in this case, to additive Lévy noise. The method employed for Gaussian
case in the last section does not work. The reason is that the solution of (1.12) is no longer
a Lévy process on this occasion. The additive noise case is already quite involved.

Let V be a Hilbert space with norm ‖ · ‖V which is embedded in H. We identity H with
its dual space H∗ and denote the dual of V by V ∗. Then we have the relation

V ↪→ H ∼= H∗ ↪→ V ∗

8



where the inclusions ↪→ are assumed to be dense and continuous so that for some constant
β > 0,

‖v‖2
H ≤ β‖v‖2

V for all v ∈ V. (3.1)

If we denote the dual pair between V and V ∗ by 〈·, ·〉V,V ∗ , it is clear that

〈u, v〉V,V ∗ = 〈u, v〉H for all u ∈ V, v ∈ H.

Let a(u, v) be a bounded sesquilinear form defined in V × V satisfying G̊arding’s inequality

2a(u, u) ≥ α‖u‖2
V − λ‖u‖2

H , u ∈ V, (3.2)

where α > 0 and λ ≥ 0 are constants. Let A be the operator associated with this sesquilinear
form

〈v,Au〉V,V ∗ = −a(u, v), u, v ∈ V. (3.3)

The operator A is bounded and linear from V into V ∗. The realization of A in H, which is
the restriction of A to the domain D(A) = {v ∈ V : Av ∈ H} is also denoted by A. It is
well known (cf. [22]) that A generates an analytic semigroup etA, t ≥ 0, in H.

Let L2
V = L2([−r, 0];V ) be the space of all V -valued equivalent classes of measurable

functions ϕ(θ), θ ∈ [−r, 0], such that
∫ 0

−r ‖ϕ(θ)‖2
V dθ < ∞. Let V be the product space

H × L2
V with the norm defined by

‖Φ‖V = (‖φ0‖2
H + ‖φ1‖2

L2
V

)1/2 for all Φ = (φ0, φ1) ∈ V .

Let Φ = (φ0, φ1) ∈ V and T ≥ 0. For arbitrarily given f ∈ L2([0, T ];V ), we define y(f) =
y(·, f) ∈ L2([−r, T ];V ) as the unique solution to the following equation:y(t, f) = φ0 +

∫ t

0

Ay(s, f)ds+

∫ t

0

∫ 0

−r
dη(θ)y(s+ θ, f)ds+ f(t), t ∈ [0, T ],

y(0, f) = φ0 ∈ H, y(t, f) = φ1(t) ∈ L2([−r, 0];V ), t ∈ [−r, 0].

(3.4)

For any T ≥ 0, let D([0, T ];V ) be the space of all cadlag mappings from [0, T ] into V .

Lemma 3.1. Let T ≥ 0. Then the mapping y(·) defined by the equation (3.4) is continuous
from D([0, T ];V ) into D([−r, T ];H)∩L2([−r, T ];V ) in the topology of uniform convergence.

Proof. For any f ∈ L2([0, T ];V ), we may define an extension f̄(t) = f(t) for t ∈ [0, T ] and
f̄(t) = 0 for t ∈ [−r, 0]. Let us put

x(f)(t) = x(t, f) := y(t, f)− f̄(t) for all t ∈ [−r, T ]

and substitute this into (3.4). Then it is easy to see that x(·, f) satisfies the following integral
equation:

x(t, f) = φ0 +

∫ t

0

Ax(s, f)ds+

∫ t

0

Af(s)ds+

∫ t

0

∫ 0

−r
dη(θ)x(s+ θ, f)ds

+

∫ t

0

∫ 0

−r
dη(θ)f̄(s+ θ)ds, t ∈ [0, T ],

x(0, f) = φ0 ∈ H, x(t, f) = φ1(t) ∈ L2([−r, 0];V ), t ∈ [−r, 0].

(3.5)
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Hence, to establish the desired result, it suffices to show that the mapping

x(·)(t) : D([0, T ];V )→ D([0, T ];H) ∩ L2([0, T ];V ), t ∈ [0, T ],

is continuous.

Let fn, f ∈ D([0, T ];V ) with respective extensions f̄n, f̄ ∈ D([−r, T ];V ) as above such
that fn → f in D([0, T ];V ) as n→∞. Then we have by the chain rule that for any t ∈ [0, T ],

‖x(t, fn)− x(t, f)‖2
H

= 2

∫ t

0

〈x(s, fn)− x(s, f), A(x(s, fn)− x(s, f))〉V,V ∗ds

+ 2

∫ t

0

〈x(s, fn)− x(s, f), A(fn − f)(s)〉V,V ∗ds

+ 2

∫ t

0

〈∫ 0

−r
dη(θ)

(
x(s+ θ, fn)− x(s+ θ, f)

)
, x(s, fn)− x(s, f)

〉
H
ds

+ 2

∫ t

0

〈∫ 0

−r
dη(θ)

(
f̄n(s+ θ)− f̄(s+ θ)

)
, x(s, fn)− x(s, f)

〉
H
ds

(3.6)

which, together with (3.2), (3.3) and (1.4), implies immediately that for t ∈ [0, T ],

‖x(t, fn)− x(t, f)‖2
H

≤ − α
∫ t

0

‖x(s, fn)− x(s, f)‖2
V ds+ λ

∫ t

0

‖x(s, fn)− x(s, f)‖2
Hds

+ 2

∫ t

0

√
α/2‖x(s, fn)− x(s, f)‖V ·

√
2/α‖A(fn − f)(s)‖V ∗ds

+ 2

∫ t

0

‖x(s, fn)− x(s, f)‖H
∥∥∥∫ 0

−r
dη(θ)

(
x(s+ θ, fn)− x(s+ θ, f)

)∥∥∥
H
ds

+ 2

∫ t

0

‖x(s, fn)− x(s, f)‖H ·
∥∥∥∫ 0

−r
dη(θ)

(
f̄n(s+ θ)− f̄(s+ θ)

)∥∥∥
H
ds

≤ − α

2

∫ t

0

‖x(s, fn)− x(s, f)‖2
V ds+ (λ+M + 2)

∫ t

0

‖x(s, fn)− x(s, f)‖2
Hds

+
2‖A‖2

V,V ∗

α

∫ t

0

‖fn(s)− f(s)‖2
V ds+M

∫ t

0

‖fn(s)− f(s)‖2
Hds.

(3.7)

In view of (3.1), this implies further that for any t ∈ [0, T ],

‖x(t, fn)− x(t, f)‖2
H +

α

2

∫ t

0

‖x(s, fn)− x(s, f)‖2
V ds

≤ (λ+M + 2)

∫ t

0

‖x(s, fn)− x(s, f)‖2
Hds+

(2‖A‖2
V,V ∗

α
+Mβ

)∫ t

0

‖fn(s)− f(s)‖2
V ds.

(3.8)

By virtue of Gronwall’s inequality, it is easy to derive the desired continuity of the mapping
x(·) (and thus y(·)), so that the proof is complete.
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To proceed further, we first establish a lemma which is of its own importance.

Lemma 3.2. Suppose K(·) ∈ L∞([0, T ]; L (H)) for each T ≥ 0. Suppose that S(t), t ≥ 0,
is a C0-semigroup which is compact for all t > 0 on H, then

(i) the bounded operator F (t) =

∫ t

0

S(t− s)K(s)ds is compact for all t > 0. In particular,

the retarded Green operator G(t) is compact for all t > 0;

(ii) the bounded operator H(t) =

∫ t

0

G(t− s)K(s)ds is compact for all t > 0.

Proof. (i) Note that we can write F (t) as

F (t) = S(ε)F (t− ε) +

∫ t

t−ε
S(t− s)K(s)ds for any ε ∈ (0, t].

By the compactness of S(ε), ε > 0, and the boundedness of F (t−ε), S(ε)F (t−ε) is compact.
Moreover, it is easy to see that∥∥∥∫ t

t−ε
S(t− s)K(s)ds

∥∥∥ ≤ sup
s∈[0,t]

‖K(s)‖
∫ ε

0

‖S(s)‖ds→ 0 as ε→ 0.

Hence, F (t) is also compact as a uniform limit of compact operators.

For the compactness of G(t), let S(t), t ≥ 0, be the C0-semigroup with its infinitesimal
generator A. In this case, note that G(t) satisfies

G(t) =

S(t) +

∫ t

0

∫ 0

−r
S(t− s)dη(θ)G(s+ θ)ds, t ≥ 0,

O, t < 0,

and
∫ 0

−r dη(θ)G(· + θ) ∈ L∞([0, t]; L (H)) for each t > 0. Thus the compactness of S(t)
implies the compactness of G(t) for all t > 0.

(ii) On this occasion, we can write H(t) for any ε ∈ (0, t] as

H(t) = G(ε)F (t− ε) +

∫ t

t−ε
G(t− s)K(s)ds

+

∫ t−ε

0

∫ 0

−r
G(t− s− ε+ θ)[SGε](θ)K(s)dθds,

where S is the structure operator introduced in (1.7). By the compactness of G(ε), ε > 0,
and the boundedness of F (t − ε), G(ε)F (t − ε) is compactness. Moreover, it is easy to see
that ∥∥∥∫ t

t−ε
G(t− s)K(s)ds

∥∥∥ ≤ sup
s∈[0,t]

‖K(s)‖
∫ ε

0

‖G(s)‖ds→ 0 as ε→ 0,
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and, by the boundedness of the structure operator S on L2([−r, 0]; L (H)) and Hölder’s
inequality, we have∥∥∥∫ t−ε

0

∫ 0

−r
G(t− s− ε+ θ)[SGε](θ)K(s)dθds

∥∥∥
≤ t sup

s∈[0,t]

‖K(s)‖‖G(s)‖
∫ 0

−r
‖SGε(θ)‖dθ

≤ r1/2t sup
s∈[0,t]

‖K(s)‖‖G(s)‖
(∫ 0

−r
‖[SGε](θ)‖2dθ

)1/2

≤ r1/2t sup
s∈[0,t]

‖K(s)‖‖G(s)‖‖S‖1/2
(∫ ε

0

‖G(τ)‖2dτ
)1/2

→ 0 as ε→ 0.

(3.9)

Hence, H(t) is also compact as a uniform limit of compact operators. The proof of the
lemma is complete.

Let T ≥ 0. For any fixed f ∈ L1([0, T ];H), we define an operator K by

Kf(t) =

∫ t

0

G(t− s)f(s)ds, t ∈ [0, T ], (3.10)

which is the mild solution of the deterministic evolution equation:y(t) =

∫ t

0

Ay(s)ds+

∫ t

0

∫ 0

−r
dη(θ)y(s+ θ)ds+

∫ t

0

f(s)ds, t ∈ [0, T ],

y(0) = 0, y(t) = 0, t ∈ [−r, 0].

(3.11)

Proposition 3.1. Suppose that the C0-semigroup etA generated by A is compact for each
t > 0. Let T ≥ 0 and assume that G ⊂ L1([0, T ];H) is uniformly integrable, then the set
K(G) is relatively compact in C([0, T ];H).

Proof. To establish this proposition, we only need to show, according to Ascoli-Arzelà
theorem, that:

(i) for each t ∈ [0, T ], the set {Kf(t); f ∈ G} is relatively compact in H;

(ii) for each ε > 0, there exists a δ > 0 such that if 0 ≤ s ≤ t ≤ T , t− s ≤ δ, then

‖Kf(t)−Kf(s)‖H ≤ ε for all f ∈ G.

We first prove the claim (i). For any f ∈ G ⊂ L2([0, T ];H) and fixed t ∈ (0, T ], the
quasi-semigroup relation (1.8) implies that for any ε ∈ (0, t],∫ t

0

G(t− s)f(s)ds = G(ε)

∫ t−ε

0

G(t− ε− s)f(s)ds+

∫ t

t−ε
G(t− s)f(s)ds

+

∫ t−ε

0

∫ 0

−r
G(t− s− ε+ θ)[SGε](θ)f(s)dθds

=: I1(ε, t, f) + I2(ε, t, f) + I3(ε, t, f).

(3.12)
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Since G(ε), ε > 0, is compact in accordance with Lemma 3.2, {I1(ε, t, f), f ∈ G} is relatively
compact in H for ε > 0. On the other hand, since G is uniformly integrable, it is easy to see
that

sup
f∈G
‖I2(ε, t, f)‖H ≤ sup

t∈[0,T ]

‖G(t)‖ sup
f∈G

∫ t

t−ε
‖f(s)‖Hds

→ 0 as ε→ 0.

Lastly, for the term I3(ε, t, f), f ∈ G, and t ∈ (0, T ], we have

sup
f∈G
‖I3(ε, t, f)‖H ≤ sup

f∈G

∫ t−ε

0

‖f(s)‖Hds
∫ 0

−r
‖G(t− s− ε+ θ)‖ · ‖SGε(θ)‖dθ

≤ sup
t∈[0,T ]

‖G(t)‖ sup
f∈G

∫ t

0

‖f(s)‖Hds
∫ 0

−r
‖SGε(θ)‖dθ

≤ ‖S‖2r sup
t∈[0,T ]

‖G(t)‖ sup
f∈G

∫ T

0

‖f(s)‖Hds
∫ ε

0

‖G(s)‖2ds

→ 0 as ε→ 0.

(3.13)

Next, we show the second claim (ii). For any t ∈ [0, T ) and δ > 0 with t + δ < T , we
have

‖Kf(t+ δ)−Kf(t)‖H ≤
∫ t

0

‖G(t+ δ − s)−G(t− s)‖‖f(s)‖Hds

+

∫ t+δ

t

‖G(t+ δ − s)‖‖f(s)‖Hds

=: J1(δ, t, f) + J2(δ, t, f).

(3.14)

Let κ = supt∈[0,T ] ‖G(t)‖ < ∞. For arbitrarily given ε > 0, since G is uniformly integrable,
one can choose N > 0 such that

2κ

∫ t

0

1{s: ‖f(s)‖H>N}‖f(s)‖Hds <
ε

2
for all f ∈ G.

Since the retarded Green operator G(t) is compact for t > 0 from (i), it thus follows that

‖G(t+ δ − s)−G(t− s)‖ → 0 for any t− s > 0, as δ → 0.

By the well-known Dominated Convergence Theorem, we have that

lim
δ→0

∫ t

0

‖G(t+ δ − s)−G(t− s)‖ds = 0.

Hence, for the above constant N > 0, there exists δ > 0 such that

N

∫ t

0

‖G(t+ δ − s)−G(t− s)‖ds ≤ ε

2
for all t ∈ [0, T ).
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Therefore, for such a δ > 0 and all f ∈ G, t ∈ [0, T ),

J1(δ, t, f) =

∫ t

0

1{s: ‖f(s)‖H>N}‖G(t+ u− s)−G(t− s)‖‖f(s)‖Hds

+

∫ t

0

1{s: ‖f(s)‖H≤N}‖G(t+ δ − s)−G(t− s)‖‖f(s)‖Hds

≤ 2κ

∫ t

0

1{s: ‖f(s)‖H>N}‖f(s)‖Hds+N

∫ t

0

‖G(t+ δ − s)−G(t− s)‖ds

≤ ε.

(3.15)

For the item J2(δ, t, f), we have by virtue of the uniform integrability of G that

lim
δ→0

sup
f∈G

J2(δ, t, f) ≤ κ lim
δ→0

sup
f∈G

∫ t+δ

t

‖f(s)‖Hds

= 0.

Hence, the claim (ii) is shown and the whole proof is complete.

4 LDP of Systems Driven by Lévy Processes

In this section, we are concerned with the strong solution of the following stochastic evolution
equation driven by a Lévy noise,

y(t) = φ0 +

∫ t

0

Ay(s)ds+

∫ t

0

∫ 0

−r
dη(θ)y(s+ θ)ds+ bt+W (t)

+

∫ t

0

∫
X

J(x)Ñ(ds, dx), t ∈ [0, T ],

y(0) = φ0, y(t) = φ1(t), t ∈ [−r, 0], Φ = (φ0, φ1) ∈ V ,

(4.1)

where b ∈ H and W (t), t ≥ 0, is an H-valued Q-Wiener process with TrQ < ∞. In the
sequel, we impose the following exponential integrability condition on J(·):∫

X

‖J(x)‖2
H exp(c‖J(x)‖H)ν(dx) <∞ for all number c > 0. (4.2)

By virtue of a similar theory presented as in [1], it may be shown that there exists a unique
strong solution to the equation (4.1). Moreover, for any T ≥ 0 and almost all ω ∈ Ω,

y(·, ω) ∈ D([0, T ];H) ∩ L2([0, T ];V ).

Now suppose that there exists a complete orthonormal system {en}∞n=1 ⊂ V of H and a
bounded sequence of nonnegative real numbers λk such that

Qek = λkek, k = 1, 2, · · · , and
∞∑
k=1

λk <∞. (4.3)
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For any m ∈ N, let Pm : H → H be the projection operator

Pmx =
m∑
k=1

〈x, ek〉Hek ∈ V, x ∈ H, (4.4)

and we introduce a mapping ym(t) = ym(t, ·) from D([0, T ];H) into D([−r, T ];H) as follows:
for f ∈ D([0, T ];H), ym(t, f), t ∈ [−r, T ], is the unique strong solution of the equationym(t, f) = Pmφ0 +

∫ t

0

Aym(s, f)ds+

∫ t

0

∫ 0

−r
dη(θ)ym(s+ θ, f)ds+ Pmf(t), t ∈ [0, T ],

ym(0, f) = Pmφ0, ym(t, f) = Pmφ1(t), t ∈ [−r, 0], Φ = (φ0, φ1) ∈ V .
(4.5)

For any n ≥ 1, let

Ln(t) = bt+
1√
n
W (t) +

1

n

∫ t

0

∫
X

J(x)Ñn(ds, dx).

Then it is easy to see that ym,n(t) := ym(t, Ln(t)) is the unique solution of the following
stochastic differential equation:

ym,n(t) = Pmφ0 +

∫ t

0

Aym,n(s)ds+

∫ t

0

∫ 0

−r
dη(θ)ym,n(s+ θ)ds+ bmt+

1√
n
Wm(t)

+
1

n

∫ t

0

∫
X

Jm(x)Ñn(ds, dx), t ∈ [0, T ],

ym,n(0) = Pmφ0, y
m,n(t) = Pmφ1(t), t ∈ [−r, 0], Φ = (φ0, φ1) ∈ V ,

(4.6)
where Jm(x) = PmJ(x) =

∑m
k=1〈J(x), ek〉Hek, Wm(t) = PmW (t) and bm = Pmb for m ∈ N.

Lemma 4.1. For arbitrary T ≥ 0, and δ > 0, it holds true that

lim
m→∞

lim sup
n→∞

1

n
logP

(
sup

0≤t≤T
‖ym,n(t)− yn(t)‖H > δ

)
= −∞, (4.7)

where ym,n(·) and yn(·) are the strong solutions given in (4.6) and (1.12), respectively.

Proof. For any m, n ∈ N and t ∈ [0, T ], let

xm,n(t) = ne−(λ+M)t(ym,n(t)− yn(t)). (4.8)

It is easy to see that

xm,n(t) =

∫ t

0

Axm,n(s)ds+

∫ t

0

∫ 0

−r
dη(θ)xm,n(s+ θ)ds+

∫ t

0

∫
X

(Jm(x)− J(x))Ñn(ds, dx)

− (λ+M)

∫ t

0

xm,n(s)ds+ (Pmφ0 − φ0) + n(bm − b)t+
√
n(Wm(t)−W (t)).

(4.9)
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For any fixed γ > 0, let g(y) = (1 + γ‖y‖2
H)1/2, y ∈ H. Then it is easy to see that

g′(y) = γ(1 + γ‖y‖2
H)−1/2y, y ∈ H,

g′′(y) = −γ2(1 + γ‖y‖2
H)−3/2y ⊗ y + γ(1 + γ‖y‖2

H)−1/2IH , y ∈ H,
(4.10)

where IH stands for the identity operator on H and y ⊗ y is a linear operator on H defined
by: (y ⊗ y)x = 〈y, x〉Hy, x ∈ H. It is immediate to see the following relations

sup
y∈H
‖g′′(y)‖ ≤ γ, sup

y∈H
‖g′(y)‖H ≤ γ1/2. (4.11)

Let q(y) = exp(g(y)), y ∈ H. By Taylor’s expansion, for m ∈ N, there exists a θm ∈ (0, 1)
such that

exp
[
g(y + Jm(x)− J(x))− g(y)

]
− 1− 〈g′(y), Jm(x)− J(x)〉H

= e−g(y)
[
q(y + Jm(x)− J(x))− q(y)− q(y)〈g′(y), Jm(x)− J(x)〉H

]
=

1

2
e−g(y)〈q′′(y + θm(Jm(x)− J(x))), (Jm(x)− J(x))⊗ (Jm(x)− J(x))〉H , x ∈ X.

(4.12)

Note that
q′′(y) = q(y)g′(y)⊗ g′(y) + q(y)g′′(y),

which, together with (4.11), immediately yields that

‖q′′(y)‖ ≤ γq(y) for all y ∈ H. (4.13)

Hence, by virtue of (4.12) and (4.13), it follows for some θ̃m ∈ (0, θm) that∣∣∣ exp
[
g(y + Jm(x)− J(x))− g(y)

]
− 1− 〈g′(y), Jm(x)− J(x)〉H

∣∣∣
≤ γ exp[g(y + θm(Jm(x)− J(x)))− g(y)]‖Jm(x)− J(x)‖2

H

= γ exp[〈g′(y + θ̃m(Jm(x)− J(x))), θm(Jm(x)− J(x))〉H ]‖Jm(x)− J(x)‖2
H

≤ γ exp[γ1/2‖Jm(x)− J(x)‖H ]‖Jm(x)− J(x)‖2
H .

(4.14)

For any s ∈ [0, T ], let us put

h(xm,n(s)) := 〈g′(xm,n(s)), Axm,n(s)〉V,V ∗ +
〈
g′(xm,n(s)),

∫ 0

−r
dη(θ)xm,n(s+ θ)

〉
H

− (λ+M)〈g′(xm,n(s)), xm,n(s)〉H

+ n

∫
X

(
exp

[
g(xm,n(s) + Jm(x)− J(x))− g(xm,n(s))

]
− 1

− 〈g′(xm,n(s)), Jm(x)− J(x)〉H
)
ν(dx) + n〈bm − b, g′(xm,n(s))〉H

+ n

∞∑
k=m+1

λk〈g′(xm,n(s))⊗ g′(xm,n(s)) + g′′(xm,n(s))ek, ek〉H

+ 〈Pmφ0 − φ0, g
′(xm,n(s))〉H .

(4.15)
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Note that by virtue of (3.1), (3.2) and (1.4) and (4.10), we have, for any m, n ∈ N and t ≥ 0,∫ t

0

〈g′(xm,n(s)), Axm,n(s)〉V,V ∗ds+

∫ t

0

〈
g′(xm,n(s)),

∫ 0

−r
dη(θ)xm,n(s+ θ)

〉
H
ds

− (λ+M)

∫ t

0

〈g′(xm,n(s)), xm,n(s)〉ds

≤
∫ t

0

[
γ(1 + γ‖xm,n(s)‖2

H)−
1
2

](
〈xm,n(s), Axm,n(s)〉V,V ∗

+
〈
xm,n(s),

∫ 0

−r
dη(θ)xm,n(s+ θ)

〉
H

)
ds

− (λ+M)

∫ t

0

[
γ(1 + γ‖xm,n(s)‖2

H)−1/2
]
‖xm,n(s)‖2

Hds

≤
(
− α

β
+M + λ

)∫ t

0

[
γ(1 + γ‖xm,n(s)‖2

H)−1/2
]
‖xm,n(s)‖2

Hds

− (λ+M)

∫ t

0

[
γ(1 + γ‖xm,n(s)‖2

H)−1/2
]
‖xm,n(s)‖2

Hds

≤ 0,

(4.16)

which, in addition to (4.15), immediately yields that for t ∈ [0, T ],∫ t

0

h(xm,n(s))ds ≤ TCγ,mn (4.17)

where

Cγ,m = γ

∫
X

‖Jm(x)− J(x)‖2
H exp

[
γ1/2‖Jm(x)− J(x)‖H

]
ν(dx)

+ γ1/2‖bm − b‖H + γ1/2‖Pmφ0 − φ0‖H + 2γ
∞∑

k=m+1

λk.
(4.18)

In view of (4.2), it is easy to see that Cγ,m <∞ for each m ∈ N, and so for t ∈ [0, T ],∫ t

0

h(xm,n(s))ds <∞ for each m, n ∈ N.

Now applying Itô’s formula to exp(g(xm,n(t)) first and then to

exp
(
g(xm,n(t))− g(φ0)−

∫ t

0

h(xm,n(s))ds
)
, t ∈ [0, T ],

we may immediately get that

Mm,n
g (t) := exp

(
g(xm,n(t))− g(φ0)−

∫ t

0

h(xm,n(s))ds
)
, t ∈ [0, T ],
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is an Ft-local martingale. Hence, for arbitrary δ > 0 and m, n ∈ N, by setting δ1 =
e−(λ+M)T δ > 0, we have in view of (4.15) and (4.17) that

P
{

sup
0≤t≤T

‖ym,n(t)− yn(t)‖H > δ
}

= P
{

sup
0≤t≤T

‖xm,n(t)‖H > nδ1

}
≤ P

{
sup

0≤t≤T
g(xm,n(t)) ≥ (1 + γ(nδ1)2)1/2

}
= P

{
sup

0≤t≤T

(
g(xm,n(t))− g(φ0)−

∫ t

0

h(xm,n(s))ds

+ g(φ0) +

∫ t

0

h(xm,n(s))ds
)
≥ (1 + γ(nδ1)2)1/2

}
≤ P

{
sup

0≤t≤T

(
g(xm,n(t))− g(φ0)−

∫ t

0

h(xm,n(s))ds
)
≥ (1 + γ(nδ1)2)

1
2 − g(φ0)− TCγ,mn

}
≤ E

[
sup

0≤t≤T
Mm,n

g (t)
]

exp
(
− (1 + γ(nδ1)2)1/2 + g(φ0) + TCγ,mn

)
.

(4.19)

Since Mm,n
g (t) is a non-negative local martingale, it is a supermartingale and thus there is

E
[

sup
0≤t≤T

Mm,n
g (t)

]
≤ 1. (4.20)

Hence, both (4.19) and (4.20) imply that for any m ∈ N,

lim sup
n→∞

1

n
logP

(
sup

0≤t≤T
‖ym,n(t)− yn(t)‖H > δ

)
≤ lim sup

n→∞

1

n

[
− (1 + γ(nδ1)2)1/2 + g(φ0) + TCγ,mn

]
≤ −γδ1 + TCγ,m.

(4.21)

For any fixed γ > 0, it is easy to see by Dominated Convergence Theorem that

lim
m→∞

Cγ,m = 0.

Thus, letting m→∞ in (4.21), we get

lim
m→∞

lim sup
n→∞

1

n
logP

(
sup

0≤t≤T
‖ym,n(t)− yn(t)‖H > δ

)
≤ −γδ1

which, letting γ → ∞ further, implies immediately the desired result (4.7). The proof is
thus complete.

For arbitrary y ∈ H, we put

H(y) =

∫
X

[
exp(〈J(x), y〉H)− 1− 〈J(x), y〉H

]
ν(dx) + 〈Qy, y〉H + 〈b, y〉H .
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Also, for any u ∈ H, we define

J(u) = sup
y∈H

[2〈u, y〉H −H(y)]. (4.22)

For arbitrarily given f ∈ D([0, T ];H), let y(f) = y(·, f) be the unique solution to the
following equation: for t ∈ [0, T ],y(t, f) = φ0 +

∫ t

0

Ay(s, f)ds+

∫ t

0

A1y(s− r, f)ds+

∫ t

0

∫ 0

−r
A0(θ)y(s+ θ, f)dθds+ f(t),

y(0, f) = φ0 ∈ H, y(t, f) = φ1(t) ∈ L2([−r, 0];V ), t ∈ [−r, 0],

(4.23)
where r > 0, A0(·) ∈ L2([−r, 0]; L (H)) and A1 ∈ L (H).

Lemma 4.2. Assume that A generates a compact C0-semigroup etA, t ≥ 0, and there exist
sequences {αk}, {β1k} ∈ R1 and β0k ∈ L2([−r, 0];R1), k ∈ N, such that

Aek = αkek, A1ek = β1kek, A0(θ)ek = β0k(θ)ek, k ∈ N, θ ∈ [−r, 0].

where {ek} ⊂ V is the complete orthonormal basis of H given in (4.3). Then for any T ≥ 0
and δ > 0, it holds that

lim
m→∞

sup
{f∈D([0,T ];H):

∫ T
0 J(f(s))ds≤δ}

sup
0≤t≤T

‖ym(t, f)− y(t, f)‖H = 0,

where ym(t, f) = Pmy(t, f) =
∑m

k=1〈y(t, f), ek〉Hek is given in (4.5).

Proof. Recall that the retarded Green operator G(t), t ∈ R1, is the unique solution of the
equation

G(t) =

etA +

∫ t

0

e(t−s)AA1G(s− r)ds+

∫ t

0

e(t−s)A
∫ 0

−r
A0(θ)G(s+ θ)dθds, t ≥ 0,

O, t < 0.

(4.24)
By assumption, for any m ∈ N the projection operator Pm commutes with the C0-semigroup
etA, t ≥ 0, and operators A1, A0(·), a fact which implies that for any m ∈ N, the projection

operator Pm commutes with G(t), t ∈ R1. For any f ∈ D([0, T ];H) with
∫ T

0
J(f(s))ds <∞,

the solution of the equation (4.23) is represented in terms of G(t), t ∈ R1, by

y(t, f) = G(t)φ0 +

∫ 0

−r
G(t− θ − r)A1φ1(θ)dθ +

∫ 0

−r

∫ θ

−r
G(t− θ + τ)A0(τ)φ1(θ)dτdθ

+

∫ t

0

G(t− s)f(s)ds, t ∈ [0, T ],

(4.25)

which immediately implies that

ym(t, f) = Pm(y(t, f)) for any t ∈ [0, T ], m ∈ N.
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By using Theorem 3.1, [3] with a slightly different modification, we obtain that the set

{f ∈ D([0, T ];H) :
∫ T

0
J(f(s))ds ≤ δ}, δ > 0, is uniformly integrable on the finite measure

space ([0, T ]; B([0, T ]), L) where L stands for the standard Lebesgue measure. Based on

this fact, it follows further from Proposition 3.1 that ST = {y(f) :
∫ T

0
J(f(s))ds ≤ δ} is

relatively compact in C([0, T ];H). Therefore, for any ε > 0, there exist f1, f2, · · · , fN ∈
{f ∈ D([0, T ];H) :

∫ T
0
J(f(s))ds ≤ δ} such that

ST ⊂
N⋃
k=1

B(y(fk), ε/3),

where B(y(fk), ε/3) is the ball centered at y(fk) with radius ε/3 in C([0, T ];H). Since

lim
m→∞

‖ym(t, fk)− y(t, fk)‖H = 0 for each k ∈ N,

there exists M ≥ 1 such that

sup
0≤t≤T

‖ym(t, fk)− y(t, fk)‖H ≤
ε

3
for all k ≤ N, m ≥M.

Therefore, for any f ∈ D([0, T ];H) with
∫ T

0
J(f(s))ds ≤ δ and δ > 0, there is k ≤ N such

that y(f) ∈ B(y(fk), ε/3), and if m ≥M , it further follows that

sup
0≤t≤T

‖ym(t, f)− y(t, f)‖H ≤ sup
0≤t≤T

‖ym(t, f)− ym(t, fk)‖H + sup
0≤t≤T

‖ym(t, fk)− y(t, fk)‖H

+ sup
0≤t≤T

‖y(t, fk)− y(t, f)‖H

≤ 2 sup
0≤t≤T

‖y(t, fk)− y(t, f)‖H + sup
0≤t≤T

‖ym(t, fk)− y(t, fk)‖H

≤ 2ε

3
+
ε

3
= ε.

(4.26)

The proof is thus complete.

Now we are in a position to state the main results of this work.

Theorem 4.1. Under the same conditions as in Lemma 4.2, the law µn(·) of yn(·), t ∈ [0, T ],
in (1.12) satisfies a LDP on L2([0, T ];H), T ≥ 0, with the rate functional I given by: for
z ∈ L2([0, T ];H),

I(z) =



inf
{1

2

∫ T

0

J(u(s))ds : u ∈ L2([0, T ];H) such that J(u) ∈ L1([0, T ];H) and∫ 0

−r

∫ θ

−r
G(t− θ + τ)dη(τ)φ1(θ)dθ

+G(t)φ0 +

∫ t

0

G(t− s)u(s)ds = z(t), t ∈ [0, T ]
}
,

∞, otherwise.
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Proof. Let νn, n ≥ 1, be the law of the Lévy process {Ln(t), t ∈ [0, T ]}. It is known by [4]
that {νn, n ≥ 1} satisfies a LDP with the rate function: for z ∈ L2([0, T ];H),

I(z) =


inf
{1

2

∫ T

0

J(u(s))ds : u ∈ L2([0, T ];H) such that J(u) ∈ L1([0, T ];H) and∫ t

0

G(t− s)u(s)ds = z(t), t ∈ [0, T ]
}
,

∞, otherwise.

By applying the well-known contraction principle (cf. [23]), we see that {ym,n} satisfies a
LDP on L2([0, T ];H) with a rate functional Im, m ∈ N, given as follows: for z ∈ L2([0, T ];H),

Im(z) =



inf
{1

2

∫ T

0

J(u(s))ds : u ∈ L2([0, T ];H) such that J(u) ∈ L1([0, T ];H) and∫ 0

−r

∫ θ

−r
G(t− θ + τ)dη(τ)Pmφ1(θ)dθ

+G(t)Pmφ0 +

∫ t

0

G(t− s)Pmu(s)ds = z(t), t ∈ [0, T ]
}
,

∞, otherwise.

According to the generalized contraction principle, Th. 4.2, in [8] and Lemmas 4.1 and 4.2,
the desired result follows now. The proof is thus complete.

Corollary 4.1. Assume that A generates a compact C0-semigroup etA, t ≥ 0, such that

Aek = αkek, αk ∈ R1, k ∈ N,

where {ek} ⊂ V is the complete orthonormal basis of H given in (4.3). Suppose further that
A0(·) = a0(·)IH , a0(·) ∈ L2([−r, 0];R1), A1 = a1IH , a1 ∈ R1, in (1.2). Then the law µn(·) of
yn(·), t ∈ [0, T ], in (1.12) satisfies a LDP on L2([0, T ];H), T ≥ 0, with the rate functional
I given by: for z ∈ L2([0, T ];H),

I(z) =



inf
{1

2

∫ T

0

J(u(s))ds : u ∈ L2([0, T ];H) such that J(u) ∈ L1([0, T ];H) and∫ 0

−r

∫ θ

−r
G(t− θ + τ)dη(τ)φ1(θ)dθ

+G(t)φ0 +

∫ t

0

G(t− s)u(s)ds = z(t), t ∈ [0, T ]
}
,

∞, otherwise.

Remark 4.1. In the work of [20], a LDP is established for infinite dimensional Ornstein-
Uhlenbeck processes driven by Lévy noise under the assumption that λ = 0 in (3.2). By
using the transform (4.8) and carrying out a similar argument as in Lemma 4.1, we may
actually see that this restriction could be removed.
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